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Attractive potential with forbidden states for the X-W interaction
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A potential model with forbidden states for describing the nucleon-nucleon interaction
in the inner region is suggested. Forbidden states in the N-~ system may occur due to
the composite structure of nucleons as a consequence of the Pauli exclusion principle. A

consistent description of singl. et even phase shifts at energies up to 400 MeV has been ob-
tained, The generalization of Levinson's theorem taking forbidden states into account
permits a new interesting interpretation of the phase-shift analysis data at higher energies
and as a result gives a "smooth matching" of the low-energy phase shifts with the asymp-
totic region E ~ 10 GeV. The loop which the wave function has in the inner region pro-
vides a considerable contribution to the deuteron form factor at great momentum transfers.
A comparison is made with the repulsive core model. . Possible consequences for the
three- and many-nucleon systems are discussed.

NUCLEAH REACTIONS N (N, Ã)N, potential model with forbidden states, So
phase shift to 400 MeV.

I. INTRODUCTION

Presently a host of data have been accumulated
in favor of the composite structure of nucleons.
%e note here the deeply inelastic scattering of
electrons by nucleons, ' as wel. l as the recent neu-
trino experiments at CERN with a Gargamelle
bubble chamber' which provide new strong argu-
ments in favor of the Gell-Mann-Zweig quark
model of a nucleon with quarks as Fermi parti-
cles. '

The composite structure of nucleons shouM
necessarily appear also in the N-N interactions
at: small distances whereas this is in no way re-
flected in the currently accepted potential models
for the N-N forces. Meanwhile, in nuclear phys-
ics experience has been ga, ined in the potential
description of the interaction of composite parti-
cles (e.g. , o. parIicles), which accounts for the
Pauli exclusion principle for nucleons. " Here,
as it appeared, there is a striking analogy between
the peculiarities of scattering in the N-N and n-n
system. Since the N-N interaction is much more
complicated than the n-n interaction, it is reason-
able to confront the n-n system with only the
singlet even partial waves of the N-N system
where the inieraeiion is purely central. Analogy
between boih systems' is reflected, for example,
in the characteristic behavior of phase shifts.
The phase shifts of the lowest partial waves (S
and D in the n-e system and 'So in the N-X sys-
tem~ at a certain energy become negative while

the phase shifts of all the highest partial waves
are positive up to very high energies. In order
to explain such behavior the n-n phase shifts in
aceordanee with the Pauli principle which, as it
seemed earlier, should explicitly forbid n parti-
cles to penetrate one another, purely phenomeno-
logical. cumbersome L, -dependent a-e potentials
were proposed in the 1950's which contained for
the S and D waves a repulsive core of a different
radius introduced into a shallow attractive poten-
ti.al of peripheral type. '

However, a microscopic analysis of the behavior
of the wave function for the relative motion of e
particles in their overlap region, performed on
the basis of the shell model' and especially on the
basis of the resonating-group method' (RGM), has
shown that the Pauli principle in the a-Q. system
leads to oscillations of the wave function different
for different partial waves rather than to its dying
out in the internal region. The possibility of de-
scribing phase shifts in a limited energy range
using potentials with a hard core turned out to be
associated with the fact that the position of the
core coincides with that of the external node of
the wave function which is practically immobile at
small energies. At high energies these potentials
will give an incorrect energy dependence of the
phase shif ts.

The indicated oscillations have an intimate con-
nection with the inner structure of colliding parti-
cles and are very weakly dependent on energy. ~'
For instance, in terms of the shell model the low-
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est state of the n-n system in an S wave is the
state of the 4S type with two nodes in the internal
region [the shell-model configuration (Os)' (1P)'
involves four oscillator quanta which, in the
cluster representation of the shell-model wave
functions, wholly go over to the wave function
for the relative motion of two n clustersj. Simi-
larly, in a D wave the lowest state is the 4D state
with one node while the lowest 4G state is free of
nodes as are all the states with L &4.

That the lowest state of the n-n system has an
oscillating function has been considered quite re-
cently as a clear indication of. the fact that in
essence the n- n system cannot be described in
terms of a potential and that the description of
the n-n interaction can be carried out only within
the framework of the resonanting-group method,
i.e., only by the explicit treatment of the known

interaction of nucleons constituting an n particle.
With respect to the N-N system a similar 3p-

proaeh was adopted in the known works of Otsuki,
Tamagaki, and %ada" who suggested the idea of
a "structural core" with a microscopic descrip-
tion similar to t,he ROM calculations in the a-n
system. However, in Ref. 4 it has been demon-
strated recently that an adequate potential descrip-
tion of the scattering of compound particles of the
n-n type is still quite feasible, all the properties
of the n-n system known from the shell model and
the RGM (e.g. , the oscillating character form of
the ground state wave function) being preserved.
Moreover, on this basis it has become clear which
n-n scattering at high energies of hundreds of
MeV should be used, namely, deep local attrac-
tive potentials with forbidden states introduced.

Actua1. ly this means that we subdivide the Hil-
bert space of states into two orthogonal subspaces,
one of which is entirely left out of consideration in
the following. In the reduced Hilbert space the
system is already incapable of "going down" to
the lowest-lying states, although the interaction
potential can be used here in the usual manner,
as a local operator. Gn the other hand, if we
would want to write that interaction in the whole
configurational space, then, in order to prevent
the system from going down into the region of
forbidden spectrum, we would have to redeter-
mine the Hamiltonian for separate vectors, which

would be equivalent to the introduction. of a nonlo-
cal pseudopotenti3l yielding a strong repulsion in

the subspace of occupied states. The off-mass-
shell behavior of the T matrix for such a pseudo-
potential is quite similar to its behavior for stan-
dard potentials with a repulsive core."

In fact, there is a large class of potentials de-
scribing the N-N scattering phases by equivalent
methods. Local potentials with the repulsive core

are far from being the only representatives of the
class just mentioned. Furthermore, at small dis-
tances one may expect the "true" interaction to be
nonlocal and energy-dependent. Forbidden s tates
in some potential, irrespective of whether it is
local or nonlocal, should provide a contribution
to Levinson's theore~ which in this case appears
as

o~(0) —5~(~) = w(nz+mz),

where n~ is the number of allowed states, m~ the
number of forbidden states with orbital angular
momentum I. in a given potential, and where the
natural condition 5~(~) = 0 is taken. The theorem
(1) was proven by Swan" for the very schematic
case of exchange potentials of the resonating-
group method. In the case of local potentials used
in the present paper Eq. (1) merely connects the
value of phase shifts at zero with the total number
of bound states, N~ =n~+m~ in the potential well,
i.e., it transforms to the standard form of Levin-
son's theorem'4 with the usual requirements for a
local potential.

Proceeding from these considerations, we have
just used the generalized Levinson theorem from
Ref. 4. Since the theorem has quite a general char-
acter it should find wide application. For example,
the standard optical model for scattering of nucle-
ons by nuclei is in good agreement with the formula
5~(0) = wN~. "'" The versatile character of theorem
(1) can also be well illustrated by the results of
calculations of the neutron-deuteron elastic scat-
tering obtained by Sloan' in terms of the Faddeev
equations with a separable N-N potential, taking
into account the inelastic channels and antisym-
metrization of the three-particle wave function
with respect to permutation of two neutrons, Here
the total interval of variation of both the quartet
and doublet S phase is equal to z although in the
quartet Sstate there is no physical bound state of
three particles whereas in the doublet S state there
is such a state (the bound state of tritium).

So, according to Eq. (1) the S phase of the o. -o.
scattering, remaining positive all the time, h3s a
value at zero energy 50(0) =3m (if the threshold 45
state is assumed to be bound) and extends to the
region of the Born values 5„» 1 at energies E,.„,
~ 300 Me V. To sum up the foregoing discuss ions,
we can say that the hard core in the e-n and sim-
ilar systems appears only as a result. of a rather
crude and essentially inadequate phenomenolog-
ie3l description of the complex Fermi structure
of such systems connected with the Pauli princi-
ple. Basically the potentials with the hard core
belong to the class of pseudopotential. s wel. l known

in the theory of solids. " For completeness it
should be noted that the pseudopotentials with
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singularity R and with an exponential decrease
at infinity'9 (giving the wave function which dis-
agrees with the microscopic treatment at small
distances) are only phase equivalent to the poten-
tials under consideration. They do not satisfy the
conditions of applicability of Levinson's theorem.

In dealing with the problem of application of
deep attractive potentials with forbidden states
to the N-N system we ought to consider the argu-
ments in favor of the repulsive core in the N-N
interaction.

II. REPULSIVE CORE IN THE N-N INTERACTION-
ARGUMENTS IN FAVOR OF AND AGAINST IT

The hypothesis of a repulsive core in the N-N
interaction was proposed by Jastrow' in 1951 for
explaining the U-shaped angular distributions in

the n-P scattering. The subsequent phase-shift
analysis" proved to be consistent with this hypoth-
esis. For example, the 'So phases go through zero
at E„,, —= 300 MeV, which is considered as a direct
indication of the change of sign of the interaction
at distances 8 =—0.5 fm. However, similar argu-
ments are ambiguous as the phase shifts are de-
termined from experiment within nz. The repul-
sive core may be replaced by a node of the wave
function whose position is weakly dependent on

energy. Then the phase goes not through zero
but, in accordance with Levinson's theorem,
through Non.

The origin of the repulsive core is usually as-
sociated with the exchange of heavy vector mesons.
Quantitative results can be obtained here within
the framework of the model of one-boson exchange
(OBE). Due to complications involved in the anal. —

ysis of many-meson exchanges the OBE potentials
are truncated at a small separation (0.6-0.8 fm)"
and the region of the nucleon core is left for phe-
nomenological treatment, which also accentuates
the inadequacy of arguments for solving the repul-
sive core problem on the basis of meson represen-
tations.

One can point out a number of difficulties assoc-
iated with the OBE models. " For example, an
attempt to attribute the repulsive core to the ~-
meson exchange leads in the "So state to an abnor-
mally great coupling constant up to g~'/4w —= 30-40"
compared with the value g~'/4m = 11"or even
with g~'/4w = 1 —4"required in higher partial waves.
The meson core is too "soft" and all attempts" to
describe phenomenologically the 'So phase up to
energies E„., =700 MeV using a repulsive core of
the Yukawa type with the radius in the order of a
radius of the vector meson exchange prove to be
abortive, and it is only a very steep core of the
Gaussian type having the height of several GeV
that gives the required slope of the curve of the

'S, phase. Next, if I-S forces are ascribed to the
exchange of heavy vector mesons, then the re-
quired coupling cons tants become inconsis tent
with the description of the P-P-scattering phase
shifts. "

In the high-energy scattering data there are
some features which seem to be inconsistent with
the idea of a "nontransparent" core. For example,
the spin-orbit splitting of the p-p scattering P~
phase at E,,,b

=—3 GeV reaches an enormous value
of -160',"which corresponds to great spin-orbit
forces located at distances much smaller than the
core radius. " Fur ther more, the recons true tion"
of the N-N potential by Orear's empirical formu-
la" (a relativistic and nonrelativistic calculation
with the Born term) leads to a complex attractive
potential with the ra("".ial dependence at zero of the
form (R'+n') '.

Now we shall briefly dwell upon the properties
of the 'H-'He three-particle systems. Calcula-
tions with "realistic" potentials containing a re-
pulsive core, which have been performed in recent
years, lead to a rather general result": the 'H

and 'He nuclei turn out to be markedly undercou-
pled (by 1 or 2 MeV) and the electric form factor
of 'He calculated in various models is found to be
much smaller than the experimental values at
great momentum transfers q' =15-20 fm ' (in
the region of the second maximum). In all calcu-
lations the Coulomb energy of 'He is found to be
approximately 100 keV smaller than the experi-
mental value, while the calculated r.m. s radii of
'H and 'He are somewhat greater than the experi-
mental ones (from 2 to 15% in various models).

For each of these discrepancies there is its own

specific explanation. " The common feature of
these difficulties, in our opinion, is a too low

density of matter (and of charge) in the inner re-
gion of the nucleus for potentials with a repulsive
core. We note that the N-N potential with forbid-
den states obviates this difficulty although appro-
priate calculations are as yet unavailable. "

In this context it is interesting to note that strong
N-N correlations of attractive type may appear in
nuclei at a small separation. For example, in
scattering of nucleons from nuclei with great mo-
mentum transfer the knockout of rather loosely
bound few-nucleon clusters (d, 'He, etc. ) occurs.
This is possible only in the case where several
nucleons in the nucleus can be located with a
marked probability in a small volume and can in-
teract as an entity in collisions with high-energy
protons. "

To summarize, we can say that under close ex-
amination the concept of a "nontransparent" nu-
cleon core that originally arose from a phenome-
nological approach proves to be contradictory to
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some known facts. As the same time the exper-
ience gained in the description of scattering of
compound systems' allows one to give a new in-
terpretation of the data on the N-N scattering
without introducing a repulsive core.

III. WAVE FUNCTION NODE IN PLACE OF THE
REPULSIVE CORE IN THE N-N POTENTIAL

The possibility of abandoning the repulsive core
model was first discussed by Otsuki, Tamagaki,
and Wada (the model of a "structural" core)."
They added to the OBE potential truncated at
small distances a very strong exchange term of
the resonating group method (RGM) for a system
of six ur-fermions with several fitting parameters
characterizing their interaction.

Such parametrization enabled Tamagaki et al."
to describe quite well the E dependence of differ-
ent N-N scattering phases at energies up to 700
MeV. The radial wave functions for the S and P
wave have a node approximately at that point where
the repulsive core is located in realistic potentials.
Due to a great magnitude of the exchange interaction
the position of the node is practically independent
of the relative motion energy in a broad interval.
The shortcoming of such an approach is the as-
sumption, on the basis of which the RGM calcula-
tions are just performed, that the nucleon has ex-
actly "the same" structure as the 'H-'He system:
the symmetric orbital part (OS state) and the anti-
symmetric STY part of the nucleon wave function
as a system of three quarks. In fact, as nucleon
spectroscopy shows, "the STY part of the nucleon
wave function is symmetric with respect to permu-
tations. What kind of symmetry the orbital part
of the wave function has is unknown now. Besides,
use of the interaction between quarks in the ex-
plicit form about which nothing is practically known

is also arbitrary.
Preserving the idea about the replacement of the

repulsive core by the wave function node, we use
the description of the N-N interaction in terms of
a deep attractive potential with forbidden states.
In spite of the simplicity of such a description we
obtain new results. For example, application of
generalized Levinson's theorem as a natural con-
sequence of the potential description allows one
to describe on a unified basis the scattering
phases at low (E„.„—500 MeV) and high (E„., 1-3
GeV) energies. The change of the character of
the wave function in the inner region affects also
the form factors at relatively great momentum
transfers. We shall discuss singlet even states.
Here first, most clearly exhibited are the prob-
lems associated with the repulsive core and, sec-
ond, there are no calculational complexities in-

volved in spin (phase splitting, tensor forces, etc).
Certainly, the form of the potential discussed in

the intermediate and especially in the outer region
has to be similar to the form of the usually em-
ployed OBE potentials. The character of the po-
tential in the intermediate and inner region, as
the following discussion shows, is very closely
connected with the features of the E dependence
of the lowest scattering phases. We shall see
that the experimental data unambiguously point
to the presence of one forbidden state for L=O
and to the absence of forbidden states for L& 2.
First let us evaluate the radius 80 of the inner
region where the relative motion wave function
u(R) is fully determined by structural effects and
the boundary condition at a point 8 =80

1 du'
=q(E) -=const

0
(2)

is practically independent of energy.
For an S wave this gives the following additive

contribution to the phase shift

(4)

As is known from the phase-shift analysis, "'~'
this slope is constant up to energies 2-3 GeV and
is equal to

R0=0.6 fm. (5)

Since the intermediate region also provides some
contribution to the slope of the curve of the 'S,
phase shift, it is reasonable to take a somewhat
smaller value

A0—= 0.4-0.5 fm .

The quantity (6) is used in "realistic potentials" as
the radius of the repulsive core" ' and the quan-
tity (5) was taken by Feshbach and Lomon in their
model with the boundary condition" as a radius of
truncation of the interaction potential part (the
boundary of the "black box").

We shall use the quantity (6) as a dimension of
the region where the forbidden S state is localized.
Then in the vicinity of the point 80 a node of the
wave function of the allowed state which is almost
immobile at E& U0 will occur, which just ensures
the fulfillment of the condition (2) [Here fj, is the
characteristic depth of the potential V(E).]

4 5 (0) = —kR +a,rctan —+nw .1-
0 0

n

At fairly great energies the first term on the right-
hand side determines the slope of the curve of the
S phase shift
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IV. CHOICE OF A POTENTIAL AND RESULTS
OF CALCULATIONS

As the investigated variants of N-N potentials
have shown, a consistent description of the sin-
glet-even phase shifts S, D, and G at energies
E,„, , ~ 500 MeV by a deep attractive potential of
interest can be obtained but the potential must be
sufficiently singular as the 'D, phase shift is
small. The singularity of the potential (weaker,
of course, than 8 ') ensures strong attraction for
S waves in that region which D waves cannot reach
due to the centrifugal barrier.

So, we discuss the potential
QR

+ V

where 1& e & 2 and P
' -0.5 fm, and by way of com-

parison, to illustrate the dependence of the lowest
phase shifts on the potential character, we give
the results for the %'oods-Saxon potential

ues of parameters

U, =470 MeV, P '=0.64 fm, E =1.225,
the quantity Uo»&:» being, as usual, of the form

~ -0.78
IopI, p (ff) = -10.464 MeV

where A is expressed in fm.
In the region 8 ~ 0.5 fm, the potential (7) is very

close to the Gammel-Thaler potential, "for which
e =1, U, =425.5 MeV, P '=0.69 fm. The essential
difference, however, is that at 8 =0.5 fm the Gam-
mel-Thaler potential has a hard core, whereas
the potential (2) has a deep-lying forbidden S state
with binding energy about 730 MeV.

We see that at an energy of E~, = 300 MeV the
S phase shift passes through m and should extend
to the Born region 5, & 1 at great energies of tens
of GeV. Figure 1 also shows (dotted curves) the
'S, and 'D, phase shifts for the potential (8) with
the parameters

VB = —V~
1

o 1+exp' -R„)/a] ' (8)
U0=3281 MeV, A =0.3028 fm, a=0.2019 fm

(10)

240—

I 80

———RSC
-.-.-- —SIAt

FSMI—.—FSM2

40

The phase shifts for the potential (7) are repre-
sented in Fig. 1 by solid curves versus the experi-
mental data at E,„, , & 500 MeV at the optimum val-

which give an optimum description of the E depen-
dence of the S phase shift. These curves clearly
illustrate the need for a singular potential.

Finally, for comparison we give similar phase
shifts for the L-independent realistic" potential
obtained by Reid (dashed curves). " It is clear
that the efficiency of both approaches is approxi-
mately equal.

In Figs. 2 and 3 the wave functions of the poten-
o
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FIG. 1. The phase shifts in the model with a forbidden
OS state. The solid lines: potentials (7), (9); the dotted
lines: potentials (8), (10); the dashed lines: the Reid
soft core potential (Ref. 37) (the potential with no I de-
pendence). For ease of comparison the So phases in
the Reid potential are displaced by the value of 7t. The
dot-dash line shows the qualitative idea of the behavior
of the phase shifts in the model with a forbidden OS state
in the high-energy region. The experimental data: at
energies E~,b &750 MeV the nP phase shifts are from.
Ref. 21; at E»b&750 MeV and PP phase shifts are from
Refs. 26 and 39. (The So experimental PP phase shifts
at E&,b &320 MeV are practically identical with the So
phase shifts in the Reid potential. )
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FIG. 2. The continuum wave functions. The numbers
denote energy in the laboratory system (MeV). T1 is
the "structural core" model of Tamagaki (Ref. 11) with
nonlocal "repulsion" at small distances. T2 is the same
but the nonlocal "attraction. " FSM denotes the potentials
(7) and (9). (The normalization is arbitrary: All func-
tions become unity at the point R —= 0.85 fm).
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tial (I) are compared to the wave functions of the
model of the "structural core"" and the wave
functions for the "realistic" potential with the
hard core." One can see that the wave function
of the S state has one node in the overlap region
of nucleons at R =—0.4 fm, i.e., there is one for-
bidden state. This fact is also in good qualitative
agreement with the data on scattering phases at
high energies E„,~ 1 GeV"': Increasing the
value of the S phase shift at zero from 5(0) =0 to
5,(0) = tt in accordance with the generalized Levin-
son's theorem Eq. (1) we obtain natural "matching"
of the data at low and high energies to form a
unified picture (the dot-dash line in Fig. 1). In
analogy with the nuclear optical potential, " the
transition of the S phase shift from zero at an
energy of E,.„„=—5 GeV to small negative values
seems to be caused by strong absorption and "de-
pression" of the real part of the potential with in-
creasing E.

It is natural to analyze also the electron form
factors for a deuteron in order to find out how
these are influenced by the fact that at small dis-
tances the wave function does not die out, but os-
cillates, has a node, and has a loop.

In our preliminary calculations, we have used
a modification of the Hulthen function obtained by
its orthogonalization to the OS oscillator function
of small radius a:

(ft) 1 (e-a/t e-'//t) &-/t /2-nB — 8 + -R2 a

N,

(~)
1 ~, (aM2 )' q2a 2/16

looP 2 g ~ 8&2

0 02e-o.o 0490 fm3/'2 (12)

It is very essential that this term damps but weak-
ly at large q', whereas the contribution to the
form factors from the remaining part of the wave
function for the deuteron F,(q') = f~"(u~'+„')j, (2q&)
xdgdies out much faster (it practically coincides

potential is in the repulsive core (0.4-0.5 fm).
It has turned out that all these requirements may
be met simultaneously only provided that the posi-
tion of the node is close to the point A=0.36 fm,
at which the node of the wave function for the po-
tential (I) is located. At the parameter values
@=0.232 fm ', y=1.4 fm ', and a=0.28 fm we
obtain ((A') )'"= 1.9'I2 fm, p(- e, —e) = 1.840 fm,
and A„,d, =0.393 fm. For normalization taking
into account that the contribution from the D wave
is 7% [f,"u„'(R)dA =0.93] the normalizing constants
are N, =1.151217 fm'" and N, =0.490306 fm"'.
As a wave function for the deuteron 'D, wave,
tt/, (A), we have used the wave function in the
Hamada- Johns ton potential. At dis tances
B d 0.5 fm, the wave function (11) is close to
that in the realistic potential (Fig. 3). At small
distances it has a loop whose contribution to the
deuteron form factors is easy to estimate: It is
equal approximately to a one-half of the Fourier
transform of the squared Gaussian term in formu-
la (11)"

The parameters y and a have been chosen from
the requirement of correct description of the deu-
teron range characteristics [the r.m. s and effec-
tive radii are, as is known, ((8 ))' '=1.98 fm and
p(-e, —e) =1.82 fm, respectively], with the addi-
tional requirement that the node of the wave func-
tion (11)be approximately where the "realistic"

I.Q

HJ--- H

—- —FSM

0.6 0. I

0.4-

0.2-

O.OI

4
q (tm-')

6

R (&r)

FIG. 3. The wave functions of the deuteron in the
model with a forbidden state (FSM). HJ is the function
for the Hamada- Johnston potential (Ref. 40).

I"IG. 4. The integral ~Eo~ determining the deuteron
charge monopole form factor. H stands for the Hulthen
function without a repulsive core; HJ for the Hamada-
Johnston potential; and FSM for the model with forbid-
den states.
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with the deuteron form factor for the "realistic"
potential). At momentum transfer q' -=8-10 fm '
the contribution from (12) is as high as 20 or 30%
of the whole matrix element of the deuteron 'S,
wave (see Figs 4 and 5).

Unfortunately, the available experimental results
on the elastic scattering do not allow one to estab-
lish whether or not the term (12) is present in the
deuteron charge monopole form factor Go(q')
=G»I'0, since the cross section depends on the
form factor G, (q') only at small momenta q' ~ 6
fm ', when one may distinquish only cruder de-
tails of the deuteron (if models with or without a
repulsive core lead in this region to cross sections
different by 10 to 20%, the finer effects that dis-
tinguish models with forbidden states from those
with a core do not exceed here 5%). At large q',
the cross section is determined by the quadrupole
form factor G, (q') (i.e., by the contribution from
the deuteron D wave), which dies out only at q' ~ 60
fm '. At the present time, many authors~' propose
more delicate polarization experiments, which
would allow the contribution from the monopole
form factor G, (q') to be separated in the region of
interest q' —=20 fm ', where it changes its sign.
Figure 4 demonstrates that the position of the
corresponding minimum I F, l in the model with
forbidden states differs from that obtained for
the "realistic" potential. Here one should bear

in mind, however, that at large momentum trans-
fer, the nonrelativistic treatment of the deuteron
is inadequate. Further, one should take into ac-
count the nonadditive effects from the exchange
meson currents. Accordingly, the shift to the
right of the minimum I Eol obtained in the model
with forbidden states may be considered merely
as a qualitative prediction.

In experiments on the ed inelastic backward
scattering near the threshold of deutron breakup
(&*= 1-3 MeV), a pure Ml transition4~'4' into the
S states of the continuum has been observed. The
structural functions for magnetic transition ("nu-
clear" matrix elements) may be expressed, in
the nonrelativistic impulse approximation, in
terms of the wave function for the continuum
z, (E*,R) and the deuteron wave functions u, (R)
and w„(R) "'":

H (q') fu, (R)z=~(E, P)j (,qR)dR-
0

(13)

w, (R)z, (E*,R)j,(-,'qR)dR .
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FIG. 5. The structural functions for the dipole mag-
netic transition. RHC and BSC denote the Reid potential
with a hard and soft core, respectively (Bef. 45). FSM
denotes the model with forbidden states.

FIG. 6. The differential cross section E (d' o/dE,'dQ, )
for the deuteron breakup in electron backward scattering
(the excitation energy E~ =3 MeV is above the threshold).
The values shown at experimental points in Bef. 46 are
divided here by the factor 0.92, which takes into account
the contribution from radiative processes. The curves
show the total "nuclear" cross section for the transition
to the So and S& states, Designations are the same as
in Fig, 5 ~
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Figure 5 compares the functions Hs and 4s for the
model with forbidden states for the transition to
the 'So state with the corresponding functions for
the "realistic" potentials. Figure 6 shows the re-
spective contributions to the cross section calcu-
lated by the formula of impulse approximation '

(14)

where n =1/137, P=(E*M)"", M is the nucleon
mass, G~v(q') is the magnetic isovector form fac-
tor for the nucleon, 4' F, , E,' are the initial and
final electron energies F =(M'+q')'", E*, =3
MeV. For momenta q' ~ 8 fm ', the term (12)
turns out to be very significant in comparison
with the value (H~ -2J~) standing in the expression
for the cross section. As a result, the cross sec-
tion (14) increases by a factor of 2 or 3, as com-
pared with that obtained for the "realistic" poten-
tial. However, in the region q'~ 8 fm the "nu-
clear" cross section (8) in any case turns out to
be several times lower than does the experimental
one which is accounted for by a large contribution
from the exchange meson currents to the magnetic
transition. The contribution from meson currents
may be calculated only fairly approximately; there-
fore, against such a background one cannot unique-
ly determine the (relatively great) contribution to
the "nuclear" cross section, predicted by the mod-
el with forbidden states. According to the most
recent calculations by Hockert et al. ,

' taking into
account the exchange currents only in the peripher-
al n-meson region of the deuteron gives the break-
up cross sections close to the experimental ones.
The additional term in the "nuclear" cross section
arising in the model with forbidden states increases
the total cross section only by about 20%%up if q' =10
fm '. This serves to improve our preliminary re-
sults" based on an earlier paper by Adler. ~

V. CONCLUSION

In conclusion, just a few words as to further pos-
sibilities. It is known that as the nucleon energy
E,„. , approaches 2 or 3 GeV, the exchange effects
associated with the operators P„, P„etc., be-
came insignificant. ' Therefore, it may be thought
that at energies of 2-3 GeV all. partial waves will
be described approximately by a single potential
possessing a strong spin-orbital interaction (the
gradient term of the singular potential), together
with a strong absorption. Indeed, at E~.,b

——3 GeV,
the spin-orbital splitting of the 'P~ phases reaches
a very high value of -160'." Obviously, at such
high energies it is necessary to use the relativistic
quasipotential equation": Here one should remem-
ber that the role of the imaginary part of the quasi-
potential, which grows proportionally to the ener-
gy,

"becomes dominant at energies E„b-=5-10 GeV.
However, at energies of several GeV the quasi-
potential approach, combined with consideration
of the LS forces obtained by differentiating the po-
tential (7), appears to provide us with the interest-
ing possibility of interpreting polarization in the
N-N scattering. Moreover, the approach suggested
here may be applied to describe the interaction
between any two hadrons. Comparison between
the N-N and N-N interactions in the region be-
yond the node of the wave function may give an
idea of the contribution from the vector mesons
and so on.

Of course, our treatment is rather tentative
and should be critically analyzed further, but if
the concept of a deep potential with forbidden
states turns out to be correct, it may bring im-
portant information on the statistics of quarks,
their interactions, and the character of symmetry
of the orbital part of the nucleon wave function.
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