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Electroexcitation of giant multipole resonances in "Ca
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A study of inelastic electron scattering from ' Ca in the momentum transfer range q = 0.43—1.40
fm ' has revealed strong excitations with quadrupole and octupole character which spread over the
range of excitation energy E„=10—25 MeV. For comparison, a simple shell model calculation is made
based on the quasielastic model.

NUCLEAR REACTIONS Ca(e, e'), measured cr(E,'i, 0 ~). &„=10-35 MeV,
q = 0.43 1.4 fm . Enriched target.

I. INTRODUCTION

Systematic studies of inelastic scattering of
electrons, ' ' protons, "'~ and other charged par-
ticles" "from medium and heavy nuclei have re-
vealed the existence of a, giant E2-like resonance
at the excitation energy E„=65A' ' MeV for a,l-
most all the nuclei investigated to date. A recent
analysis of inelastic proton spectra in the continu-
um region in "Ca has shown that a -large bump
seen at 10-25 MeV is composed of dipole, quad-
rupole, and octupole states located at -20, -17,
and -13.5 MeV, respectively. ' A broad peak ob-
served at -17 MeV in inelastic scattering of
71-MeV 'He from 'Ca has been ascribed as a,

giant quadrupole state. " Inelastic scattering of
115-MeV n particles from Ca has also shown a
prominent peak with quadrupole character at
-18.25 MeV which exhausts 32% of the isoscalar
energy-weighted sum rule (EWSR). Our previous
investigation"" on the electroexcitation of 'Ca
indicated that the observed form factor was in-
consistent with the excitation of the giant dipole
resonance (GDR) alone and that considerable
strength remains in the neighborhood of the dif-
fraction minimum. A collective octupole excita-
tion was then inferred at -19 MeV besides the
GDR."

The giant multipole resonance appears as a bump
in the region of the nuclear continuum. Hence
major uncertainties of giant resonance data arise
from the separation of the resonant and nonreso-
nant parts. In this paper we report the result of
a reinvestigation of the excitation of giant multi-
pole resonances of Ca by inelastic scattering of
electrons. The nuclear continuum is estimated

from a. calculation based on a simple shell model,
in order to understand the process.

II. EXPERIMENT

The experiment was performed with the Tohoku
300-MeV electron linear accelerator. The energy
spectra, of inelastically scattered electrons were
measured at seven different values of the momen-
tum transfer q ranging from 0.43 to 1.40 fm '.
A 99.5% enriched 40Ca target was employed and
data were taken with an over-all energy resolu-
tion of 0.15%. The elastic cross section was also
measured and used for the normalization of in-
elastic cross sections. Experimental details may
be found elsewhere. " In the present measure-
ment the room background (target-out background)
was equivalent to a cross section of 5x 10 "
cm'sr 'MeV ' and can be neglected. The so-
called instrumental scattering (target-in back-
ground) was carefully investigated and found to
be of the same order as the room background.

III. RESULT AND DISCUSSION

The measured energy spectra were corrected
for the radiative effects by the method described
earlier. " In the present work, the tail subtrac-
tion has been improved by including the effect of
the elastic form factor which was neglected pre-
viously. The resulting spectra are displayed in
Fig. 1. One notes several peaks at the excitation
energies of 10.3, 10.9, 11.8, 12.6, 13.8, 14.6,
16.9, and 19.5 MeV together with the large back-
ground of the nuclear continuum.

As in our previous analysis we have subtracted
a smooth background from each spectrum and ob-
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Energy
(MeV)

Angle
(deg) Z (x10-4 Me V-')

TABLE I. Parameters for the background subtraction. TABLE II. Values of B(EL) and ~M(0) ~
and the per

centage of the isoscalar energy-weighted sum rule
(EWSR). The errors are +15% and -30%.

150
183

250

35
35
45
55
50
60
70

0,248
0.508
0.447
0.523
0.534
0.531
0,538

(Me V)

10-13

13—16

~(«)
(g2 fm2L)

72
117

2.97 x 103

144
235

2.93 x 103

Percentage
of EWSR (T= 0)

8.2
12.6
6.3

20.6
31.7
7.9

approximate shape of the E2 excitation. Using
the q dependence of the form factors for the quad-
rupole and octupole excitations shown in Fig. 2,
the parameters A and n, and the energy depen-
dence of the quadrupole and octupole excitations
have been varied to fit the observed spectra. The
energy dependence of the quadrupole and octupole
excitations which reproduce the observed spectra.
best are plotted in Fig. 1 with the values of A and
n given in Table I.

The obtained quadrupole and octupole strengths
are found to spread over the region of E„between
10 and 25 MeV. Since the data have been taken at
forward angles (35'-70'), the multipole excitations
are mainly due to the longitudinal (Coulomb) ex-
citations of 'Ca. From the q dependence of the
longitudinal quadrupole (C2) and octupole (C3) ex-
citations as described above, we can interpolate
our data for the C2 and C3 excitations to the pho-
ton point (q =E„)in the region of E, =10-25 MeV.
This interpolation furnishes values of B(E2,E„)
and B(E3,E„)which correspond to the strengths of
the E2 and E3 photoabsorptions. These values are
listed in Table II as a function of E„for every 3
MeV interval in E„.The errors, which are not
larger than +15'%%up and -30'%%up, were estimated semi-
empirically. The percentage of the corresponding
classical energy weighted sum rule' (isoscalar
for E2 and E3) is also shown in the table. The
total strength integrated over the whole energy
region (10-25 MeV) becomes a. large fraction of
the sum rule limit for both E2 and E3 excitations,
indicating strong collective nature of the observed
quadrupole and octupole resonances.

The q dependence of the C2 strength is similar
to that of the monopole in the Tassie model, and
this similarity is also expected in more general
classes of nuclear models. Therefore it is dif-
ficult to distinguish between the quadrupole (C2)
and monopole (CO) excitation. However, various
theoretical considerations"'2 place the centroid
of the giant collective E2 resonance at about
E, =~2ktp —v 2x41A 'i' MeV —ll MeV for ~ Ca,
at which our result shows the strongest excitation.

16-19

19-22

22-25

148
241

2.71 x 10

57
93
2.43" 103

0
1.03 x 10'

421
688

1.21 x 104

25.6
39.4
8.8

11.6
17.8
9.2

0
4 4

66
102
36.6

[iVl(0) ['=
[ (g i r t) (2 in ftn4.

-4ia W—jl+ exp [(r-R)/a]) '.d
(3)

This leads us to believe the main contribution to
our C2-like resonance is most likely due to the
quadrupole excitation rather than due to the mono-
pole. However, the possibility of the existence of
a significant fraction of the monopole strength
cannot be excluded from our results alone. It
is worthwhile to point out that if the C2-like res-
onance is assumed to be due to a monopole exci-
tation instead of C2, then the integrated mono-
pole strength (from 10 to 25 MeV) amounts to
102'%%up of the monopole sum rule limit.

In order to have some qualitative understanding
of the background in continua and the importance
of various multipole strengths, we have calculated
the inelastically scattered electron spectra using
a shell model, in which protons in a potential make
transitions from a bound to a scattering state. No
residual interactions have been taken into account.
Such a model has been used in calculations of the
quasielastic scattering process, and has been
found to be quite successful in predicting the posi-
tion and width of experimentally observed spec-
tra ' at large values of q a,nd E„.

We have employed in our calculations a Woods-
Saxon type potential (a square well potential has
also been used) used by Gibson and van Oostrum"
with an imaginary part
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background. The background thus obtained here
contains not only quasielastic scattering but also
multipole resonances which are probably broad
and fragmented.

In conclusion, our analysis on the electroexci-
tation of Ca indicates the very strong collective
nature of the quadrupole and octupole excitations
in the range of excitation energy E,=10-25 MeV.
The quadrupole strength is rather uniformly dis-
tributed over the range between 13 and 19 MeV
while the octupole strength is distributed into the
several narrow peaks at 10.3, 10.9, 11.8, 12.6,
13.8, 14.6, 16.9, and 19.5 MeV.

During the preparation of this paper the detailed
random phase approximation theory which
calculates high multipole excitations in Ca has
been presented. The results are in good agree-
ment with our experiment for both quadrupole
and octupole strengths. The spectral shape in
Fig. 1 is excellently reproduced by the theory"

with the sum of the several giant multipole res-
onances. Furthermore, this theory has divided
the quadrupole component shown in Fig. 1 into the
monopole resonance at -14.0 MeV and quadrupole
resonance at -17.5 MeV. The inelastic n particle
scattering"'" which excites isoscalar 2 states
strongly but 0+ states weakly indicates a promi-
nent peak (32% EWSR) at -18.25 MeV and the
strength is fragmented near 14 MeV. The E2 (EO)
strength in Table II can be divided into the EO
(10 —16 MeV) and E2 (16-22 MeV) excitations
which exhaust the corresponding EWSR 44% and
-37%, respectively.
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