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Effect of deuteron breakup on (d, p) cross sections
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Deuteron-nucleus breakup wave functions, obtained in a previous study, are applied to calculate the

contribution of breakup to zero range stripping matrix elements for the case of 21.6 MeV deuterons

incident on ' Ca. The results are compared with the method of Johnson and Soper. The two

calculations agree quite well, but the Johnson-Soper method slightly overestimates the effect of breakup

for the surface partial waves, and it suppresses too much the stripping amplitudes for the interior

partial waves.

NUCLEAR REACTIONS Effect of deuteron breakup on cr(d, p). Comparison with

Johnson-Soper theory for 21.6 MeV 4 Ca(d, p) Ca (2p and 1f).

I. INTRODUCTION

In 19'IO, Johnson and Soper'(JS) proposed a very
simple method for including the effect of deuteron
breakup into the calculation of stripping and pickup
cross sections. As compared to the conventional
distorted-wave Born-approximation (DWBA)
method of calculation, the JS method gives in most
cases an improved fit to the experimental cross
sections, and has been widely used for the analysis
of data.

The method of Johnson and Soper was reexamined
in a recent study of the effect of breakup on the
elastic deuteron-nucleus scattering cross section. '
It was found that the approximations which underlie
the method of JS lead to errors which tend to com-
pensate each other, at least as far as the elastic
cross section is concerned. The purpose of the
present note is to investigate whether such com-
pensatory cancellations also exist for the case of
the stripping cross sections. In order to discuss
whether such cancellations are or are not to be
expected for the stripping cross section, the as-
sumptions of JS will be reviewed below, and a
summary of the method of Ref. 2, denoted as the
"A-by-0" method will also be given.

The coordinates of the center of mass of the in-
cident deuteron relative to the center of the nu-
cleus is denoted by R. The coordinates of the
neutron and proton relative to the center of the
nucleus are r„and r~, and the coordinate of the
neutron relative to the proton is denoted by r i.e. ,
r =r„—r~, 28 =r„+ r~. The nucleus is considered
as having no explicit internal degrees of freedom,
and antisymmetrization of the nucleons in the deu-
teron with those of the nucleus is ignored. The
interaction of the neutron and proton with the nu-
cleus is described by the phenomenologica1 nu-
cleon-nucleon optical potential for nucleon ener-

gies taken at half the incident deuteron energy.
These potentials are denoted, respectively, by

U„„(r„)and U~ ~(r~) and their sum is

V„(r, R) = U„„(~„)+U„,(~,) .

With these assumptions the wave function which
describes the motion of the proton and neutron
relative to the nucleus, P(r, R), obeys the equation

[Ts +H„&(r) + V„(r, R) —E]g(r, R) =0,

where H„~ = T„+v„~(r) is the neutron-proton Hamil-
tonian, v„& is the nucleon-nucleon potential, and

T„and T„are the kinetic energy operators operat-
ing on the coordinate r and R, respectively.

In addition to the assumptions already stated,
the main assumption of JS consists in replacing all
the energies of relative motion e~ of the two nu-
cleons by the binding energy of the deuteron e~.
This is the adiabatic assumption, according to
which that part of g(r, R) which gives the main con-
tribution to the stripping cross section contains
only states of low relative nucleon momenta Ak.
Mathematically this assumption enables one to re-
place H„~g(r, R) by e~g(r, R), and Eq. (2) is re-
placed by

LTs + V~(&, &) &D] 0(r, R) =—o,
where ED=8 —e~ is the incident deuteron energy.

For the calculation of the stripping cross sec-
tions in the zero range approximation the full func-
tion! P(r, R) is not needed, but only the projection
g„(R), given by

iT(R) = P(r, R)v„~(~) dr.

Since v„~(r) is assumed to be spherically symme-
tric, i.e., independent of the directions of r, the
projection g„eliminates from $(r,R) all the states of
angular momenta of relative motion hl in the r co-
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ordinate other than l = 0. JS arrive at the Schro-
dinger equation for P(R)

[r, + V(R) -Z,]y(8) =0 (5)

by multiplying Eq. (3) by v» and integrating over
d'z and by replacing the integral involving t/"~ by

v»(r) V„(r,R)g(r, R)d r - V(R)P(R) . (6)

The last step involves the further approximation
that only the l = 0 components of )1)(r, R} are kept.
This can be seen by expanding the x dependence
of both g(r, R) and V„(r,R} in a series of spheri-
cal harmonics Y, (r'), with coefficients y, (r, 8)
and v, (r, 8), respectively, and noting that the
integral in Eq. (6), in addition to the term
fy»(r, R)v»(r, R)v»(r)r'dr included in Fq. (6),
will also contain sums over terms of the form

fy, v, „v,~r'dr with / & 0, neglected in Eq. (6).
The latter terms were included explicitly' in a
generalization of the JS equation based on Eq. (3).
This generalization leads to a set of coupled equa-
tions, involving $„(H) as one of the functions, and

is obtained by multiplying Eq. (3) by Y, (r)v»(r)
and integrating over d'r. Angular momenta l = 0
and 2 were included in a numerical application of
this generalization, and it was found that the ef-
fect of the l =2 terms on the zero range stripping
cross section gave only a small correction to the
result based on the original JS procedure.

However, it was also found in this study' that
very large values of e~, of 40 MeV and larger, are
required to be included in |f(r, R) before the contri-
bution of the l = 2 term on the zero range stripping
cross section becomes small, and hence the valid-
ity of the Eq. (5) was put into question. This ques-
tion is connected with the fact that the calculation
of P(H) by means of the solution of Eq. (5}does
not indicate how large a spectrum of breakup en-
ergies is included in g (8), and does also not re-
veal how large a contribution to the stripping cross
section arises from the breakup components in

P(8), as compared to the contribution from the
bound (deuteron) component.

The 0-by-k procedure, ' on the other hand, sepa-
rates explicitly the components of P(r, 8) in the
various ranges of momenta 0, called momentum

bins, and thus lends itself to investigating the ex-
tent to which the various momentum bins contri-
bute to the stripping cross section. The results
for the crudest version of the presently available
k-by-k wave functions —namely in which, in addi-
tion to the bound state component, the breakup
components of the wave function for only one mo-
mentum bin for both l =0 and l =2 are known for
21.6 MeV deuterons incident on Ca—are presented
below and are compared with the stripping results

based on the JS method. The comparison shows
the extent to which the breakup components con-
tribute to the stripping cross sections —a result
not known up to now —and also indicates the non-
negligible influence which the l =2 components have
on the cross section.

Since the stripping cross sections are calculated
in zero range, the f40 components in $(r, R) do not
contribute explicitly to the DWBA integrals. Hence,
in both the generalization of the JS equation' men-
tioned above and in the calculation discussed be-
low, the l &0 terms affect the zero range stripping
cross sections only indirectly via the effect which
they have on the l=0 terms through the coupling
potentials in the coupled equations. This situation
is somewhat similar to the elastic scattering case.
There the elastic component of $(r, R) is obtained
through the l=0 projection fgt, (r))f)(r, 8)d'r where

P~ is the bound deuteron internal wave function.
However, in view of the long radial range of P„(r)
as compared to v„~(r), a much larger range of val-
ues of x is expected to contribute to the elastic
cross section than to the stripping cross section.
Since the l+0 terms in |f(r, R) go to zero as r-0,
the effect of the l~0 terms on the elastic component
of the wave function is expected to be larger than
on the P„component, and thus the assumptions of
JS are expected to affect the stripping cross sec-
tion differently than the elastic cross section.

II. CALCULATION

The 0-by-k method has been described in detail''
and only a very brief review is given below. The
main idea is to expand g in a series of eigenstates
(1/r)u, (k, r) Y,„(r) of H„~, where kk is the nucleon-
nueleon relative momentum, kl is the relative
angular momentum, e„=h'k'/m is the energy
eigenvalue, and obtain the infinite set of coupled
equations for the coefficients of this expansion.
In view of the angular momentum algebra involved,
it is convenient to expand P(r, R) in a series of bi-

A

polar spherical harmonics g~, z)~„(r, R) with radial
coefficients (rR) 'E«z) z(r, R) and where I+ I, =J.
Upon expanding each I"~,~~~ in a momentum integral
over u, (k, r), one obtains

F«+~(r, R) =6, ,u~(r)f J(k R)+ u)(k r)f«g)g(k R)dk,
0

where u, (r) is the radial wave function of the deu-
teron.

The coupled equations involve the functions

f&,~)z(k, R) for a continuous range of k and a dis- .

crete set of values of l. The next step consists in

truncating the series in l to the terms. with l=0
and 2. For deuteron energies above the Coulomb
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barrier of the target nucleus the l= 1 terms are
found to be small, ' and the l ~ 3 terms are also
found to be less important than the l=2 terms. The
continuous range of k is divided into discrete bins
each of size b, k, and a new set of discretized func-
tions f&, z& J(n, R) are defined for each bin n,.

The projection g defined in Eq. (4) can be written
as

g(R) =R 'g E (R)I' „(R), (8)

where in terms of the notation given by Eq. (7)

(4») '~'& (R) =D,f (b, R)+ P D,(n) f«z& (n, R),

D„= v„~u&,(r)r d r, (10a)

D,(n) = momentum average in bin n of

(kk)' ~ fv&(y)u', (k, r)r dr . (lob)
0

As noted in the Introduction, only the terms with
l= 0 contribute to E~.

The calculation of the stripping cross section
consists in solving the coupled equations for the

f&,~»(n, R) described above and in detail in Ref. 2,
then evaluating E~ according to Eq. (9), and then
utilizing the result in evaluating the conventional
DWBA stripping overlap matrix elements. The
functions u, (k, r) are evaluated by solving numeri-
cally the Schrodinger equation for various values
of k in bin n, with v~ given by a Gaussian poten-
tial. ' The resulting values of D~ and Do(k) are
listed in Table A.I of Ref. 3, where they are de-
noted as D~~'& and Do«(k), respectively. Inserting
these results in Eq. (10b), one obtains

(9)

and where, as discussed in Eqs. (3.10) and (3.18)
of Ref. (3)

[& Ts) i —En+ V»)fi(R) + rifi(R) = o

t&(Ts) i —E, + V„]f,(R) + V,~f,(R) = 0 .

(12a)

(12b)

Plots of the potentials V», the Watanabe potential,
V„and V»= V» are given in Ref. 2. If further-
more &, is set equal to &&, such that E, =E~, and
if V» is replaced by V», then by adding Eqs. (12a)
and (12b) one obtains

a+ V»+ V~i)(A+ fi) = o.

local complex potentials such as to give rise to
the experimental elastic deuteron-nucleus scatter-
ing cross section. At the same time the value of
v'4&TD, is taken as equal to (8»n)' '(k'/m) -101
Mepfm' ' times a factor such as 1.5, where n
=(me, /5')' '. However, in the calculation reported
below, the value of D, is taken from Eq. (11a) in
all three cases. In the JS method, F~(R) is calcu-
lated directly from the solution of Eq. (5), with V
calculated according to Eq. (20b) of Ref. 1 from
the phenomenological nucleon-nucleus optical po-
tentials. " In the k-by-k method the breakup con-
tributions Z„R,(n)f&»&~(n, R), as well as the bound
state component D, f~(b, R), are calculated by solv-
ing the coupled equations for the f's. The poten-
tials which enter the coupled equations are calcu-
lated from the nucleon-nucleus optical potentials, '
without any adjustable parameters.

The k-by-k method gives different results for
F~ than the JS method because the two methods of
calculation are different. It is, however, possible
to change the k-by-k method so that it gives nearly
the same answer as the JS method. This change,
denoted as the JS simulation, ' is as follows. The
terms with l&0 in the coupled equations for the
functions f&,1&z(n, R), given by Eq. (4.3) in Ref. 3,
are deleted, since, as discussed in the Introduc-
tion, the JS equations do not allow for the pres-
ence of these terms. Further, denoting the break-
up function f«z&z(I, R) by f,(R), the equations sim-
plify to

(4s) ~ Dy
——128.9 Meyfm

R,(1)=—D,(1)/D, =0.59,

(1la) The simulation of the F~ as obtained in the JS
method by f~+ f, now is possible in view of the ap-
proximate validity of the relation'

where bin 1 (n = 1) extends from 0 &k&0.5 fm ',
0 + a~&10 MeV.

The difference between the conventional optical
model DWBA, the JS, and the k-by-k methods for
calculating DWBA stripping cross sections con-
sists in the choice of the function E~(R) defined in
Eq. (9). In the conventional optical model method
the. breakup terms in the sum over n in Eq. (9) are
absent, and the f~,'s (the elastic deuteron distorted
waves) are obtained 'from the. requirement that they
are the solutions of a Schrodinger equation'with

V -
V~~ + VbI (14)

provided that one also set R,(1)=D,(l)/D, equal to
unity, so as to make Eq. (9) compatible with E~
-f, + f, . To the extent that Eq. (14) is not exactly
valid, the JS simulation provides only an approxi-
mation to the JS results. In passing, it can be
noted that Eq. (14) is an approximation to Eq. (4.8)
of Ref. 3 which, when written in the present nota-
tion, reads V(R) = V»(R) + Z„",R,(n) V,„(R). Accord-
ing to Table I in Ref. 3, the contribution from the
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first two terms in the sum over n already gives a
very good description of V for the case of d-Ca.
According to that table, the first term in the sum
is more than three times larger than the second,
thus justifying the approximate validity of Eq. (14).
Further, changing the value of Ro(1) from 0.58 to
unity suggests that the JS method exaggerates the
contribution from the breakup component to the
stripping cross section.

III. RESULTS

The numerical results presented below refer to
21.6 MeV deuterons incident on the nucleus of ' Ca.
This case has been chosen because the numerical
wave functions were already available from the
study of Ref. 2. The values of l,=0 and 2 are in-
cluded, and only momentum bin 1 from 0 + k &0.5
fm ' and 0 ~ e„&10MeV is included. The bound
states in "Ca are described by a neutron bound to
the "Ca core in a I= 3 (1f) and /= 1 (2P) states,
with separation energies equal to -8.58 and -6.42
MeV, respectively. These states are bound in a
Woods-Saxon potential of radius 4.14 fm, diffuse-
ness 0.65 fm, and a spin-orbit potential of the
same geometry and strength of 6.927 MeV x (5/
m, c)'r 'd/dr. No j values are indicated since the
spins of the nucleons are ignored through the re-
mainder of the calculation. The outgoing proton
waves are distorted by a Woods-Saxon potential
given by potential H of Hnizdo et al. ' The deuter-
on-nucleus potential V required for obtaining the
JS results is obtained from the nucleon-nucleus
potential as given by Eq. (20b) of Ref. 1. The re-
spective nucleon-nucleus potentials are the same
as those described in Ref. 2. For the optical
model calculations denoted in the figures by the
letters OM, the deuteron-Ca elastic optical poten-
tial is taken from Table II of Percy and Pezey. '

Stripping cross sections are illustrated in Fig.
1. The long dashed and the solid lines illustrate
the JS and JS simulation results, respectively.
The good agreement shows that the simulation
works well, as was also the case' for the elastic
phase shifts. The dash-dot curves, obtained for
R, = 0, are considerably different from the R, = 1
result (the JS simulation), which illustrates the
large contribution which the breakup components
make to the stripping cross sections. For both the

p and f transitions the breakup contribution mark-
edly increases the cross section in the forward
peak, and deepens the first minimum. In the ab-
sence of the breakup contribution, the cross sec-
tions illustrated by the dash-dot curves resemble
the OM result (short dashes) for the P transitions.
For the f transitions a similarity can be seen in
the backward region, and in this case the breakup
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FIG. 1. (a)-(c) Differential stripping cross sections
versus proton angle for 21.6 MeV deuterons incident on

Ca. The curves in parts (a) and (b), whose detailed
meaning is explained in the text, illustrate stripping to
the 2P and 1f neutron states in 4~Ca, respectively. In

part (c) the 1f stripping cross sections, calculated by
the JS and 4-by-4 methods are compared to each other
and to experiment. The latter is for 21.0 MeV deuterons
rather than 21.6 MeV.

contribution has a coherently destructive effect
markedly reducing the cross section. In part c of
Fig. 1 the stripping cross section obtained with the
k-by-k method is shown by the solid and dash-dot
lines. For the former, the average value of the
energy &~ in bin 1 is set equal to 5 MeV, in the
latter it is set equal to &~. The effect due to the
change in energy is quite small. Both curves lie
much closer to the JS result than to the OM result,
thus supporting, on the whole, the JS method.
Nevertheless, differences are apparent, such as
a slightly smaller cross section in the for":;.- '"d

stripping peak (also present for the P case) and a
less rapid fall off with angle, at the larger angles.
The circles represent experimental points, ' but
comparison with experiment is not as yet too
meaningful since the calculation is in zero rather
than finite range, and the effect due to coupling to
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stripping channels, possibly of importance in this
case, ' is not included.

A more detailed comparison between the various
methods is shown in Fig. 2, which illustrates, by
means of an Argand diagram, the amplitudes AJ
for the stripping to the lf state in ~'Ca. The values
of J are given by the numbers in the figure, points
of equal J are connected by lines, and the angular
momenta of the distorted proton waves, L~, are
L~=J—1. The k-by-k results are indicated by
squares. The value of R,(1) was taken equal to
0.51 (rather than 0.58, inadvertently). The JS sim-
ulation, for which A, (1), is shown by crosses (x),
and the JS simulation results in the absence of the
breakup contribution is shown by (+). One sees
that the breakup terms contribute significantly to
the stripping amplitudes, particularly for the an-
gular momenta 5 & J +9, for which the magnitude
of the stripping amplitude (the distance to the ori-
gin) is increased. These partial waves apparently
contribute to the forward stripping maximum,
which gets enhanced by the breakup contributions.
The enhancement of the stripping amplitudes for
the partial waves J= 7-9 is not as pronounced for
the k-by-k results, for which the stripping ampli-
tudes (solid squares) lie approximately half way
in between the (x)'s and (+)'s, which explains why
the k-by-k forward stripping peak is slightly

smaller than the JS result. On the other hand,
for the smaller value of J (the "interior" partial
waves) the k-by-k stripping amplitudes are larger
than the JS results, but not as large as the OM re-
sults which fall outside of the figure. If one inter-
prets the contribution from the interior partial
waves as responsible for the steepness of the fall-
off of the cross section with proton angle, one can
understand why the k-by-k results fall off less
steeply than the JS results, and more steeply than
the OM results. Both results (a smaller peak
cross section and a slower falloff with angle than
the JS results) appear to be in the right direction
for one to expect an improved agreement with ex-
periment, as compared with the fits based on the
JS method, for the case of "O(d, P)"0, as dis-
cussed by Cooper, Hornyak, and Boos.' These
authors find that although the JS method gives
better agreement with experiment than the conven-
tional optical model, the JS result falls off too
steeply with angle and appears to give too small a
spectroscopic factor, particularly in the case of
the stripping to the unbound d,~, level, where a
basic inconsistency with the elastic neutron-"0
scattering is found. "

The present calculation also reveals that the ef-
fect of the 3=2 breakup channel on the stripping
cross section is quite considerable. It is found
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FIG. 2. Argand diagram for the 1f stripping amplitudes whose corresponding cross sections are illustrated in Fig. 1.
The real and imaginary parts are plotted along the horizontal and vertical axes, respectively. Points of equal J values
are connected by lines, L&=J-1, and the meaning of the points is described in the text.
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that leaving out coupling to the l= 2 channel has
the effect of decreasing the f-stripping cross sec-
tion, shown by the solid line in Fig. 2(c), to rough-
ly the JS result, illustrated by the dashed line. In
view of the much smaller effect resulting from re-
placing eA, by e„, these two effects do not cancel in
the stripping case nearly as well as they do in the
elastic case. It is possible that the effect on the
stripping cross section, due to the indirect cou-
pling of the 1=2 with the l= 0 waves found in the
present study, could be reduced once contributions
from higher momentum bins are included. This
conclusion is based on the fact that in Ref. 3 the
effect of the 1=2 channel on the stripping cross
section was found to be much smaller than that
found here, presumably because contributions
from larger momenta k are included in that study.
However, in this case the replacement' of e, by
&~ will certainly not be justified.

The magnitudes of the l = 2 wave functions

f~,~~~(I, A) in bin 1 are comparable to those of the
l=0 breakup wave functions f«~l~(I, R), and both
have magnitudes between 10 and 20% of the elastic
wave functions f~«&z (5, B) as is illustrated in Fig.
3. The magnitude of the l=2 functions is expected
to' remain as large for the second momentum bin
(10 ~ e~& 40 MeV) not yet included in the calcula-

1.0
2I MeV d-Ca

I I

/ &g i/
V V

J=L=8

O, l—

0.0 I

I

il !
2i

/
/

I I I I

6 8 IO I2
RADIAL DISTANCE ( fm)

I'IG. 3. Absolute values of the radial wave functions
f~,z ~z obtained by solving the k-by-k coupled equations
as described in the text. Plotted are the values of these
functions at discrete radial intervals of 1 fm, and the re-
sulting points are connected by straight lines so as to
guide the eye. The functions are normalized such that
the elastic omponent f&0+&z(b, R) is asymptotically equal to
E'z+ g/2i) [exp(2iK~)-11 (&~+iPz) where I' z and G~ are
the regular and irregular point Coulomb wave functions,
respectively, for an orbital angular momentum L = J,
and where Ez is the corresponding nuclear phase shift.

tion. It is conceivable that for these large mo-
menta the direct contribution of the l0 waves to
the stripping amplitudes which will occur in finite
range calculations could have a non-negligible ef-
fect, particularly on the vector and tensor analyz-
ing powers. " Further work along these lines would
be desirable, particularly an attempt to apply the
k-by-k method to the analysis of experimental data
such as "O(d, P) discussed above, in view of the
fact that the corrections obtained by the present
k-by-k results appear to be in the right direction
so as to improve the fits based on the JS method.

IV. SUMMARY AND CONCLUSION

The k-by-k method was employed to calculate
stripping cross sections for the d-Ca transitions
to 1f and 2P states in "Ca. By employing a modi-
fication of this method it was possible to examine
the JS method of calculation, and determine sep-
arately the contributions from the breakup com-
ponents which, in the JS method, are lumped to-
gether with the elastic deuteron component. It is
found that the breakup contribution raises the JS
stripping cross section in the forward direction by
approximately a factor of 1.5 for both the 2P and
1f stripping transition, and it tends to decrease
the cross section for the 1f transition at the larger
angles. The k-by-k method confirms the JS re-
sults in the forward stripping peak, but the in-
crease is found to be slightly smaller, which sug-
gests that the JS method tends to overemphasize
the breakup contributions to the stripping peak.
The large effect of the breakup amplitude in the
forward stripping peak also suggests that fits with
the conventional optical model-DWBA method,
which does not include such breakup effects, may
need reinterpretation. " At larger angles the strip-
ping cross section for the f transition falls off less
steeply with angle in the k-by-k method than in the
JS method, which is due to less of a suppression
of the contribution of the "interior" partial waves
to the stripping amplitude, as compared to the JS
calculation. The presence of the coupling of the
/= 0 parts of the wave function to the l= 2 breakup
amplitude is found to have a nonnegligible effect
on the f stripping cross sections. Omission of
the 1=2 channels is not compensated by the neglect
of breakup energies, as had been the case to some
extent for the elastic cross section. ' Additional
work with the k-by-k method, in particular the re-
moval of the zero range approximation, would be
very desirable.

The calculations were performed at the Computer
Center of the University of Connecticut, supported
in part by Grant No. GJ-9 of the National Science
Foundation.
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