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Radiative corrections to the beam-normal spin asymmetry in elastic electron scattering from 208Pb
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Estimates for the quantum electrodynamical (QED) and dispersion effects on the spin asymmetry of per-
pendicularly polarized electrons scattered from a 208Pb nucleus are given. The QED effects are calculated
nonperturbatively in terms of their respective potentials. For dispersion, the transient nuclear excitations of
208Pb with low multipolarity and energy below 30 MeV are accounted for. Collision energies up to 1 GeV
are considered. The results can help to explain the measured spin asymmetry near 1 GeV at forward angles.
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Measurements of the beam-normal spin asymmetry (also
known as Sherman function) in elastic electron-nucleus colli-
sions at energies from 200 MeV to several GeV [1–7] revealed
a considerably larger asymmetry than predicted from the
phase-shift analysis for potential scattering [8,9]. Such large
asymmetries were attributed to dispersive effects resulting
from transient excitations of the target during the scattering
process. In order to account for hadronic excitations beyond
the pion production threshold, two-photon exchange models
were developed. For electron-nucleon scattering, these excita-
tions were explicitly taken into account in terms of resonances
in inelastic e-p scattering [10] or in terms of one-pion in-
termediate states [11]. The results were found to be in good
agreement with experiment covering scattering angles up to
145◦ [3,12].

For small-angle electron-nucleus scattering, the hadronic
excitations of arbitrary targets were considered with the help
of the forward Compton scattering cross section known from
experiment [9,13,14]. This hadronic model was able to ex-
plain the measurements at forward angles for the lighter nuclei
up to 90Zr within the theoretical uncertainty [5–7]. For the
doubly magic 208Pb nucleus, however, the small-angle exper-
iments [2,7] could not be reconciled with this theory. It was
therefore argued that the consideration of QED corrections
might help to explain the discrepancy [7].

In the present work the influence of vacuum polarization
and the vertex plus self-energy (vs) effect on the Sherman
function is considered nonperturbatively. To this aim, a po-
tential describing the vs effect is generated from the relation
between the first-order Born amplitude for the process under
consideration and the underlying potential [14,15] (in atomic
units, h̄ = me = e = 1),

Vvs(r) = − 2Z

π
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0
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where Z is the nuclear charge number, and q = ((Ei −
E f )/c, q) is the 4-momentum transfer to the nucleus with
q = ki − k f . The total energy and momentum of the electron
in its initial and final state, respectively, are denoted by Ei, ki

and E f , k f . FL is the nuclear ground-state charge form factor,

j0 a spherical Bessel function, and F vs
1 the electric form factor

for the vs process [16] (omitting the infrared-divergent term):
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where Li(x) = − ∫ x
0 dt ln |1−t |

t is the Spence function [17], and

v =
√

1 − 4c2/q2.
Together with the Uehling potential for vacuum polariza-

tion [18,19] and the nuclear potential VT , generated from a
Gaussian ground-state charge distribution [20], Vvs is included
in the Dirac equation for the electronic scattering states. The
resulting scattering amplitude fvac+vs, consisting of the direct
term A and the spin-flip term B, is obtained from the con-
ventional phase-shift analysis [21]. The soft-bremsstrahlung
contribution to the QED effects is disregarded, since it does
not influence the Sherman function [15,22]. The latter is given
by

SQED = 2 Re {AB∗}
|A|2 + |B|2 . (3)

The change of the Sherman function by the QED effects is
defined in terms of the difference

�SQED = SQED − SCoul, (4)

where SCoul relates to potential scattering from the Coulombic
field VT . It is defined according to (3) by inserting for A and B
the direct and spin-flip terms which determine the Coulombic
scattering amplitude fCoul. Figure 1 shows the energy distribu-
tion of �SQED at the forward scattering angle ϑ f of 10◦. It is
seen that this spin asymmetry change is basically determined
by the vs correction, while the contribution from vacuum
polarization is in general much smaller and of opposite sign.
The QED effects are formidable below 250 MeV, but they are
of the order of 10−8 at the higher energies. Increasing insta-

2469-9985/2024/109(6)/L061303(3) L061303-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9782-3796
https://ror.org/02kkvpp62
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.L061303&domain=pdf&date_stamp=2024-06-13
https://doi.org/10.1103/PhysRevC.109.L061303


D. H. JAKUBASSA-AMUNDSEN PHYSICAL REVIEW C 109, L061303 (2024)

FIG. 1. Energy distribution of the spin asymmetry change by
the QED effects (———) in e + 208Pb collisions at ϑ f = 10◦. Also
shown are the separate contributions from vacuum polarization (− ·
− · −) and from the vs correction (− − − − −).

bilities with the number of included partial waves and with
the matching point between the inner and outer solutions of
the Dirac equation, relying on the Fortran code RADIAL [23],
prohibit a precise determination of �SQED beyond 500 MeV
at this angle.

Dispersion in terms of the two-photon box diagram (within
the second-order Born approximation) can be expressed by
the transition amplitude [24–26]

Abox
f i =

√
EiE f

π2c3

∑
L,ωL

L∑
M=−L

∫
d p

×
3∑

μ,ν=0

1(
q2

2 + iε
)(

q2
1 + iε

) tμν (p) T μν (LM, ωL ), (5)

where the denominator results from the propagators of the
first and second photon with four-momentum q1 = ki − p
and q2 = p − k f , respectively, with p = (Ep/c, p) and Ep the
energy of the intermediate electronic state. The electronic
transition matrix element is denoted by tμν (p). The transient
excitation of the nucleus to a state with energy ωL, angular
momentum L, and projection M together with its subsequent
decay to the ground state, by means of the transition densities
J = (�, J), is given by

Tμν (LM, ωL ) = 〈0|Jμ(q2)|LM, ωL〉 〈LM, ωL|Jν (q1)|0〉. (6)

For the 208Pb nucleus, ten dominant excited states with L � 3
and ωL up to 30 MeV are considered [27]. The required
transition densities are calculated within the self-consistent
Hartree-Fock (HF) plus random phase approximation (RPA)
[28,29], as well as within the RPA-based quasiparticle phonon
model [30,31].

The differential scattering cross section of an electron with
initial polarization vector ζi, including dispersion to lowest

TABLE I. Calculated dispersive spin asymmetry change �Sbox

when considering only the dipole states (third column) and when
considering all ten states with L � 3 (fourth column). The experi-
ments are by Adhikari et al. for 0.95 GeV [7] and by Abrahamyan
et al. for 1.063 GeV [2].

Ei,kin

(GeV) ϑ f (�Sbox )	L=1 (�Sbox )	L�3 �Sexp

0.950 4.7◦ 6.69 × 10−7 6.96 × 10−7 (5.8 ± 2.0) × 10−7

1.063 5◦ 1.36 × 10−6 1.25 × 10−6 (4.9 ± 2.5) × 10−7

order, is calculated from [21,26]

dσbox

d� f
(ζi ) = |k f |

|ki|
1

frec

∑
σ f

[ | fCoul|2 + 2 Re
{

f ∗
Coul Abox

f i

}]
,

(7)
where frec is the recoil factor, and the sum runs over the two
polarization directions σ f of the electron in its final state. For
ζi perpendicular to the scattering plane, the Sherman function
is obtained from the relative cross section difference when ζi
is flipped,

Sbox = dσbox/d� f (ζi ) − dσbox/d� f (−ζi )

dσbox/d� f (ζi ) + dσbox/d� f (−ζi )
, (8)

and its dispersive correction is obtained by means of

�Sbox = Sbox − SCoul. (9)

Table I displays the results for �Sbox in comparison
with the two experimental data points [2,7]. Since the spin
asymmetry from Coulombic scattering is included in the mea-
surements, SCoul was subtracted from the data.

In accordance with Fig. 1, the spin asymmetry changes by
the QED effects are negligibly small in the GeV region (an

FIG. 2. Energy distribution of the dispersive correction �Sbox

(——–) for e + 208Pb collisions at ϑ f = 5◦. Included are its dipole
contribution (− − −−) and SCoul (· · · · · · ), as well as the dispersive
experimental results �Sexp from Adhikari et al. (�, [7]) and from
Abrahamyan et al. (�, [2]).
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estimate gives �SQED ≈ 5 × 10−9 for 0.95 GeV at 4.7◦ to
an accuracy of a factor of 2) as compared to the dispersive
corrections. The accuracy of the latter is estimated to be about
50%. The main source of uncertainty is due to the choice
of the nuclear models for calculating the transition densities,
followed by the incomplete consideration of all L � 2 exci-
tations. Some 5% are attributed to numerics. A more detailed
analysis is provided in [32].

Figure 2 displays the energy dependence of the dispersive
correction to the Sherman function at an angle of 5◦. At such
a small angle, diffraction structures are still absent and �Sbox

increases monotonically with kinetic energy Ei,kin. It is also
demonstrated that �Sbox results basically from the nuclear
dipole excitations, whereas higher multipoles gain importance
at the larger scattering angles [27].

In conclusion, it has been shown that the dispersive effects
lead to a considerable increase of the beam-normal spin asym-
metry beyond its value from Coulombic potential scattering

which, amounting to −2 × 10−7 at high energies and a scat-
tering angle of 5◦, has, however, still to be considered. On the
other hand, QED corrections seem to be negligible at collision
energies beyond 300 MeV.

The calculated spin asymmetry Sbox = 5.19 × 10−7 at
950 MeV and 4.7◦ is in accord with the measured value Sexp =
(4.0 ± 2.0) × 10−7, while the result at 1063 MeV overesti-
mates experiment by a factor of 2.5 (but still agrees within
theoretical and experimental error bars). It is, however, still an
open question how the excitations beyond 135 MeV, leading
within the hadronic model to a large negative spin asymmetry,
are suppressed by experiment.
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