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Nuclear saturation and the symmetry energy are key properties of low-energy nuclear physics that depend on
fine details of the nuclear interaction. The equation of state around saturation is also an important anchor for
extrapolations to higher densities and studies of neutron stars. Here we develop a unified statistical framework
that uses realistic nuclear forces to link the theoretical modeling of finite nuclei and infinite nuclear matter. We
construct fast and accurate emulators for nuclear-matter observables and employ an iterative history-matching
approach to explore and reduce the enormous parameter domain of �-full chiral interactions. We perform
rigorous uncertainty quantification and find that model calibration including 16O observables gives saturation
predictions that are more precise than those that only use few-body data.
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Introduction. A key question in low-energy nuclear physics
is whether it is possible to successfully describe all systems
from finite nuclei to infinite nuclear matter using nucleons
as effective degrees of freedom. Realistic interaction models
based on chiral effective field theory (χEFT) used in com-
bination with ab initio methods, that solve the many-body
problem with controlled approximations, have the potential
to deliver on that research program [1–9]. However, using a
complicated interaction model and calibration data with lim-
ited independence implies a risk for overfitting unless relevant
theoretical uncertainties are accounted for. Furthermore, the
extrapolation from well-studied few-nucleon systems to heav-
ier nuclei and infinite nuclear matter will lead to increasing
variances in model predictions. Therefore it becomes impor-
tant to study the precision of these predictions and to explore
the sensitivity to different choices of calibration data. The
emergence of nuclear saturation—represented by a minimum
in the equation of state (EOS) for infinite symmetric nuclear
matter (SNM)—is particularly important since it affects bulk
properties (such as binding energies and radii) of finite atomic
nuclei. Furthermore, the density dependence of the EOS for
pure neutron matter (PNM) is central for the physics of neu-
tron stars [10–12].

In the last decade significant progress has been made
towards quantifying EFT uncertainties of ab initio nuclear
matter predictions and identifying possible correlations with
observables in finite nuclei [2,7,13–20]. Very recently, some
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of the authors of this work identified correlations between
the symmetry energy and its slope with the neutron skin and
dipole polarizability of the heavy nucleus 208Pb starting from
chiral interactions at next-to-next-to-leading order (NNLO)
with explicit delta isobars (�) [7]. This finding was made
possible by employing novel statistical tools such as Bayesian
inference [21] and history matching [7,22–24] together with
accurate emulators of ab initio computations of light nuclei
[25–28].

In this Letter we develop fast and accurate emulators of
coupled-cluster computations of PNM and SNM [29,30] start-
ing from �-full χEFT interaction models at NNLO [5,31–
36]. Our construction of emulators is based on the subspace-
projected coupled cluster (SPCC) method [25], which we
here extend with small batch voting [37]—a new on-the-fly
validation approach that addresses the possible appearance of
spurious states when diagonalizing a Hamiltonian in a sub-
space of biorthogonal coupled-cluster solutions [38]. Using
these emulators we can reproduce full-space coupled-cluster
computations of infinite nuclear matter with high precision at
a tiny fraction of the computational cost.

After validating our approach, we use history matching to
identify a region of the 17-dimensional parameter space of the
low-energy constants (LECs) at NNLO that give acceptable
results when confronted with few-body data. This iterative
parameter search is enabled by employing emulators of few-
body systems up to 4He and allows us to collect 1.7 × 106

nonimplausible interaction samples. Finally, we calibrate our
ab initio model with two alternative LEC posterior probability
density functions (PDFs) and use the principle of importance
resampling [39,40] to quantify the sensitivity of nuclear mat-
ter predictions to calibration data. Here we focus on the results
of this analysis, and the emergence of nuclear saturation,
while details of the small-batch voting scheme and the history
match are presented in a companion paper [37].
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Method. The chiral Hamiltonian of �NNLO is
parametrized with 17 LECs [5], and following Refs. [25–27]
it can be written as

H (α) = h0 +
NLECs=17∑

i=1

αihi. (1)

Here, h0 = tkin + v0, where tkin is the kinetic energy and v0

represents the constant potential term without LEC depen-
dence. Note that �α is a vector that denotes all LECs. In
this work we use nonlocal regulators with a cutoff � = 394
MeV/c.

Recently, model reduction methods [41] such as eigen-
vector continuation (EC) [42,43], has proven to be both
efficient and accurate for emulating the output of ab initio
computations of both scattering [44,45] and bound-state ob-
servables [25–28,46]. These methods employ the fact that
the eigenvector trajectory generated by smooth changes of
the Hamiltonian matrix is well approximated by a very low-
dimensional manifold [42]. Following Refs. [25,26] we can
therefore obtain good approximations of the ground-state of
a target Hamiltonian H (�α�) by projecting it on a subspace
of Nsub different ground-state training eigenvectors and solv-
ing the corresponding (Nsub × Nsub)-dimensional generalized
eigenvalue problem. In this work we employ emulators for
2,3H and 4He for history matching, and the SPCC method with
single, double, and leading-order triple excitations (CCSDT-
3) for subsequent model calibration on 16O (see Ref. [7] for
details). We also construct a new emulator for 6Li based
on Ref. [28] for model checking. Here we used Nsub = 32
training points reaching a relative accuracy of 10−3 for the
nonimplausible parametrizations [47].

In this Letter we use the coupled-cluster method [38,48–
59] within the doubles approximation (CCD) and solve for
pure neutron and symmetric nuclear matter on a cubic lattice
in momentum space using periodic boundary conditions [30].
The model-space has (2nmax + 1)3 momentum points with
nmax = 4. We use 132 nucleons for SNM and 66 neutrons for
PNM which allows us to minimize finite-size effects [30,60].
We then use the EC-inspired SPCC method [25] to con-
struct subspace emulators at five different nuclear densities.
Since the subspace projected coupled-cluster Hamiltonian is
non-Hermitian, the variational theorem does not hold [61].
This might lead to the appearance of “spurious” states in
the subspace spectrum that are lower in energy than the
corresponding full-space coupled-cluster solution for certain
combinations of the LECs. These states appear due to the
nonsymmetric treatment of the left and right biorthogonal
coupled-cluster states [56]. Therefore, we have developed a
new algorithm—called small-batch voting—which allows us
to identify the physical ground state using a set of differ-
ent subspace projections. This algorithm employs the strong
sensitivity of spurious states on the specific choice of basis,
and the contrasting stability of physical states. Details of this
algorithm are given in the companion paper [37].

Results. We used history matching to collect a large
number of 1.7 × 106 model parametrizations that exhibit
acceptable (or at least nonimplausible) fits to the history-
matching observables. The latter include a total of 36

FIG. 1. Cross-validation of the SPCC emulator with exact CCD
calculations using 50 interaction samples. Shown here from top to
bottom is the nuclear matter saturation density (ρ0), saturation en-
ergy (E0/A), and symmetry energy (S). Histograms of relative errors
are shown in the right column.

neutron-proton phase shifts in S and P waves up to Tlab =
200 MeV scattering energy and six bound-state observables
for A = 2, 3, 4 systems. This set is relevant for model cal-
ibration, allows fast model simulation or emulation, and
permits the construction of simple implausibility measures.
In the final wave we defined the nonimplausible volume
using a rotated hyperrectangle that captured parameter cor-
relations and allowed to significantly increase the number
of collected nonimplausible samples. Further details of the
history match are presented in the companion paper [37].
We then strategically selected 64 of the most accurate non-
implausible samples for which we performed full CCD
computations for SNM and PNM at five different densities
ρ ∈ {0.12, 0.14, 0.16, 0.18, 0.20} fm−3. Together with small-
batch voting this allowed us to create SPCC emulators for
E/A and E/N at these densities. Finally, the nuclear matter
EOS around saturation could be obtained by interpolation
using Gaussian processes [62] as described in more detail in
Ref. [37].

Cross validation of emulator performance is shown in
Fig. 1. The 50 validation interactions were randomly selected
from the nonimplausible volume in a space-filling manner. We
conclude that our emulators predict the energy per particle for
SNM (PNM) with <10−2 (<10−4) relative precision at a com-
putational cost that is six (eight) orders of magnitude smaller
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than the full solution. Furthermore, Gaussian-process inter-
polation of the emulated EOS allows us to extract empirical
nuclear-matter properties with ≈1% precision (increasing to
3% and 10% for derivative quantities L and K , respectively).

Having access to fast and accurate emulators, and
having identified a nonimplausible region in the parameter
space of our chiral interaction model, we can proceed
to study the general behavior of nuclear matter model
predictions and possible correlations between different
properties of these systems. Here we are not interested
in the usual optimization approach that results in a single
(“best fit”) model parametrization. Instead, we consider
all nonimplausible samples from the history match. About
73% of these samples predict saturation within the studied
density region and are kept for further consideration. The
outputs from the nuclear matter emulators for these 1.2 × 106

interaction samples are shown in the upper triangle of Fig. 2.
Here we have applied a density-dependent energy shift to
approximately account for triples corrections [37].

We observe a strong anticorrelation between the saturation
energy E0/A and the saturation density ρ0 (Pearson correla-
tion coefficient r = −0.92). This finding is in agreement with
the Coester line [63] for nucleon-nucleon interactions. Simi-
larly, the symmetry energy S and its slope L show a positive
correlation (r = 0.60). These correlations have been seen in
DFT calculations [64,65] and have been indicated with small
families of EFT-inspired [15] or (�-less) chiral interactions
[16]. The comparison with empirical nuclear matter properties
reveals that the model predictions from the history match
are clustered in a region with too small |E0/A|, ρ0, and S.
This finding is consistent with previous results from various
few-body optimized interactions [20,36,66].

The nonimplausible predictions of nuclear matter proper-
ties that is shown in the upper triangle of Fig. 2 is a form
of Bayes linear forecasting. By just considering expectation
values such as means and variances—thereby avoiding the full
probabilistic specification of uncertain quantities—we made
the analysis simpler and more technically straightforward.
While this allowed us to identify the parameter region of inter-
est and to explore the model’s forecasting capabilities, we now
make an effort to extract a posterior predictive distribution
(PPD) with which we can make probabilistic statements.

First, we revisit all remaining interaction parametrizations
and keep only those that survive an extra implausibility anal-
ysis involving the selected S and P wave phase shifts and
that give an unbound 1S0 ground-state in the neutron-proton
system. This step results in a significant reduction to 8218
acceptable samples. Second, we introduce a set of calibra-
tion observables Dcal and a normally distributed likelihood,
L(Dcal | �α), assuming independent experimental, method, em-
ulator, and model errors [37]. At this stage we employ the
established method of sampling and importance resampling
[39,40] to approximately extract samples from the parameter
posterior pr(�α |Dcal, I ). In this step we assume a uniform prior
probability for all nonimplausible samples [71].

In this work we especially considered two different sets
of model calibration data: (i) Dcal = DA=2,3,4 encompass-
ing binding energies and point-proton radii of 2,3H and 4He
plus the quadrupole moment of the deuteron, and (ii) Dcal =

DA=2,3,4,16 where we complemented the above set of ob-
servables with the energy and radius of 16O. Note that our
choice of history-matching observables allows for both PPD
resampling analyses to be performed from the same set of
nonimplausible prior samples.

Having access to approximate parameter posteriors we first
extract samples from the model PPD defined as PPDth =
{yth(�α) : �α ∼ pr(�α |Dcal, I )}. As a nontrivial model validation
we predict the 6Li threshold energy Sd = E (2H) + E (4He) −
E (6Li) using our EC emulators. The 90% credible inter-
vals are [−0.14, 1.54] MeV and [1.23, 1.84] MeV for PPDth

with DA=2,3,4 and DA=2,3,4,16 calibration data, respectively.
Both predictions are consistent with the experimental value
Sd = 1.474 MeV [72], but the latter one is significantly more
precise.

We then predict nuclear matter properties. For these predic-
tions we collect samples from the full PPD, which includes
the EFT truncation error, CC method errors, and the SPCC
emulator error (estimated from cross validation shown in
Fig. 1). The density dependence and relevant cross correlation
of these errors are described by a Bayesian machine-learning
error model [19,20,37]. Our strategic emulator construction—
using training samples with high importance weight—implies
that up to 60% of resampled interactions have zero emulator
error. Using the two different sets of calibration data, DA=2,3,4

and DA=2,3,4,16, we compare the resulting PPDs that we label
PPDA=2,3,4 and PPDA=2,3,4,16, respectively. These are shown
in the lower triangle of Fig. 2.

The marginal distributions on the diagonal reveal that ρ0,
E0/A, and S for PPDA=2,3,4 are characterized by low precision
and mild tension with the empirical region—as previously
observed with the non-importance-weighted samples. In other
words, even by enforcing a higher accuracy for two- and
few-body systems via the data likelihood, the general de-
scription of nuclear matter properties is not improved. On the
other hand, the predictions become more precise and accu-
rate when we include the 16O observables. In particular, the
saturation point is more precisely predicted while its mode
shifts to larger saturation density and binding energy. We
actually find that PPDA=2,3,4 displays a significant asymme-
try in some dimensions, e.g., ρ0, which hints to a possible
bimodality. Samples from the tail region of PPDA=2,3,4 corre-
spond largely to the mode of PPDA=2,3,4,16. This finding shows
that the emergence of saturation, represented by the position
and shape of this mode, depends on the choice of calibration
observables.

Our predictions of the nuclear EOS around saturation, with
quantification of relevant sources of uncertainty, can serve
as an important anchor for extrapolations to higher densities
and studies of neutron-star physics. To illustrate, we show a
simple extrapolation based on PPDA=2,3,4,16—which gives the
most precise predictions—for empirical parameters in Fig. 3.
It highlights the fact that an uncertainty band is obtained,
which is key for rigorous error estimates at higher densities. A
multivariate Gaussian approximation of our PPD for nuclear-
matter parameters is provided as Supplemental Material [67].
The interaction samples with importance weights are provided
in the companion paper [37].
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FIG. 2. Upper triangle: nuclear matter emulator output (saturation density ρ0, saturation energy E0/A, symmetry energy S, symmetry
energy slope L and incompressibility K) for the nonimplausible interactions from the fifth wave of history matching. The axes limits are the
same as in the corresponding panels in the lower triangle. Lower triangle and diagonal: PPDs for nuclear matter properties using two different
PDFs for the LECs plus error sampling. These predictions are based either on few-body (A = 2, 3, 4) calibration data (orange PPD) or the
addition of 16O to the calibration dataset (blue PPD). See the Supplemental Material [67] for a Gaussian approximation of PPDA=2,3,4,16.
The contour lines on the bivariate distributions denote 68% and 90% credible regions. The red bands indicate empirical ranges for E0/A =
−16.0 ± 0.5 MeV, ρ0 = 0.16 ± 0.01 fm−3, S = 31 ± 1, L = 50 ± 10, and K = 240 ± 20 MeV from Refs. [68–70].

Summary and outlook. In this work we constructed em-
ulators that accurately reproduce full-space coupled-cluster
computations of nucleonic matter starting from �-full χEFT
at NNLO while reducing the computational cost by sev-
eral orders of magnitude. The small-batch voting algorithm

was developed to remove spurious states that occurred in
the SPCC method. Using these tools, together with em-
ulators of light nuclei, we employed history matching to
identify more than one million acceptable interaction samples,
and could reveal correlations between different properties of
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FIG. 3. Dark (light) blue bands show the PPDA=2,3,4,16 for the
energy per particle of PNM (upper panel) and SNM (lower panel)
computed in the ρ ∈ [0.12, 0.20] fm−3 range. The corresponding
purple bands represent simple extrapolations based on the empirical
nuclear-matter parameters. For each sample of the PPD the EOS is
generated by using the expansion of Ref. [73] and retaining up to
quadratic terms in x = (ρ − ρ0 )/3ρ0. Ten such samples are shown
with thin, gray lines. The extrapolation uncertainty is not incorpo-
rated in the error bands.

infinite nuclear matter. We then employed importance re-
sampling to obtain PPDs and studied the sensitivity to the
choice of calibration data. Broad, asymmetric marginal distri-
butions for the saturation energy and density were observed
when making predictions conditional on few-nucleon data

only, while the predictions become more precise and accurate
when adding the 16O energy and radius to the calibration
dataset. Binding energies and radii of finite nuclei are obvi-
ously useful for model calibration, but are not the only choice.
Other observables such as the 3H beta-decay rate and three-
nucleon scattering cross sections should also be considered
within a statistical framework involving many-body predic-
tions. Ongoing work shows that also these observables can be
efficiently computed [74,75] or emulated [27,45]. Our rigor-
ous error bands for the nuclear matter EOS around saturation
will be important for advances in studies of dense, neutron-
rich matter and for the interpretation of nascent observations
from multimessenger astronomy [10–12].

The introduction of small-batch voting demonstrates how
emulators can be successfully constructed for challenging
many-body observables. Further developments within various
many-body computational frameworks are expected to follow
[76] in both nuclear physics and beyond. Future work using
history matching, Bayesian PPD sampling, and many-body
emulators, as exemplified by this study, will help to elucidate
the information content of various low-energy observables,
the order-by-order convergence of χEFT, and the predictive
power of ab initio modeling across the nuclear landscape.

Acknowledgments. We thank Andreas Ekström and
Thomas Papenbrock for useful discussions. This work was
supported by the Swedish Research Council (Grants No.
2017-04234 and No. 2021-04507), the European Research
Council under the European Unions Horizon 2020 re-
search and innovation program (Grant No. 758027), and the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC (Oak Ridge National
Laboratory). The computations and data handling were
enabled by resources provided by the Swedish National In-
frastructure for Computing (SNIC) at Chalmers Centre for
Computational Science and Engineering (C3SE), and the Na-
tional Supercomputer Centre (NSC) partially funded by the
Swedish Research Council through Grant No. 2018-05973.

[1] R. Machleidt and D. R. Entem, Chiral effective field theory and
nuclear forces, Phys. Rep. 503, 1 (2011).

[2] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and
A. Schwenk, Improved nuclear matter calculations from chi-
ral low-momentum interactions, Phys. Rev. C 83, 031301(R)
(2011).

[3] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-
Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T.
Papenbrock, J. Sarich, and S. M. Wild, Optimized chiral
nucleon-nucleon interaction at next-to-next-to-leading order,
Phys. Rev. Lett. 110, 192502 (2013).

[4] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.
Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen,
P. Navrátil, and W. Nazarewicz, Accurate nuclear radii and
binding energies from a chiral interaction, Phys. Rev. C 91,
051301(R) (2015).

[5] W. G. Jiang, A. Ekström, C. Forssén, G. Hagen, G. R. Jansen,
and T. Papenbrock, Accurate bulk properties of nuclei from

A = 2 to ∞ from potentials with � isobars, Phys. Rev. C 102,
054301 (2020).

[6] V. Somà, P. Navrátil, F. Raimondi, C. Barbieri, and T. Duguet,
Novel chiral Hamiltonian and observables in light and medium-
mass nuclei, Phys. Rev. C 101, 014318 (2020).

[7] B. S. Hu, W. G. Jiang, T. Miyagi, Z. H. Sun, A. Ekström,
C. Forssén, G. Hagen, J. D. Holt, T. Papenbrock, S. R.
Stroberg, and I. Vernon, Ab initio predictions link the neu-
tron skin of 208Pb to nuclear forces, Nat. Phys. 18, 1196
(2022).

[8] P. Maris et al. (LENPIC Collaboration), Nuclear properties
with semilocal momentum-space regularized chiral interactions
beyond N2LO, Phys. Rev. C 106, 064002 (2022).

[9] S. Elhatisari, L. Bovermann, E. Epelbaum, D. Frame, F.
Hildenbrand, H. Krebs, T. A. Lähde, D. Lee, N. Li, B.-N. Lu,
M. Kim, Y. Kim, Y. Ma, U.-G. Meißner, G. Rupak, S. Shen,
Y.-H. Song, and G. Stellin, Wavefunction matching for solving
quantum many-body problems, Nature 630, 59 (2024).

L061302-5

https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevLett.110.192502
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.102.054301
https://doi.org/10.1103/PhysRevC.101.014318
https://doi.org/10.1038/s41567-022-01715-8
https://doi.org/10.1103/PhysRevC.106.064002
https://doi.org/10.1038/s41586-024-07422-z


JIANG, FORSSÉN, DJÄRV, AND HAGEN PHYSICAL REVIEW C 109, L061302 (2024)

[10] T. Dietrich, M. W. Coughlin, P. T. H. Pang, M. Bulla, J. Heinzel,
L. Issa, I. Tews, and S. Antier, Multimessenger constraints
on the neutron-star equation of state and the Hubble constant,
Science 370, 1450 (2020).

[11] S. Huth et al., Constraining neutron-star matter with micro-
scopic and macroscopic collisions, Nature (London) 606, 276
(2022).

[12] J. M. Lattimer, Constraints on nuclear symmetry energy param-
eters, Particles 6, 30 (2023).

[13] E. Khan, J. Margueron, and I. Vidaña, Constraining the nuclear
equation of state at subsaturation densities, Phys. Rev. Lett. 109,
092501 (2012).

[14] G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W.
Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N. Barnea,
B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-Jensen, M.
Miorelli, G. Orlandini, A. Schwenk, and J. Simonis, Neutron
and weak-charge distributions of the 48Ca nucleus, Nat. Phys.
12, 186 (2016).

[15] A. Kievsky, M. Viviani, D. Logoteta, I. Bombaci, and L.
Girlanda, Correlations imposed by the unitary limit between
few-nucleon systems, nuclear matter and neutron stars, Phys.
Rev. Lett. 121, 072701 (2018).

[16] C. Drischler, K. Hebeler, and A. Schwenk, Chiral interactions
up to next-to-next-to-next-to-leading order and nuclear satura-
tion, Phys. Rev. Lett. 122, 042501 (2019).

[17] P. G. Reinhard and W. Nazarewicz, Nuclear charge and neutron
radii and nuclear matter: Trend analysis in Skyrme density-
functional-theory approach, Phys. Rev. C 93, 051303(R)
(2016).

[18] Z. Carson, A. W. Steiner, and K. Yagi, Constraining nuclear
matter parameters with GW170817, Phys. Rev. D 99, 043010
(2019).

[19] C. Drischler, R. J. Furnstahl, J. A. Melendez, and D. R. Phillips,
How well do we know the neutron-matter equation of state
at the densities inside neutron stars? A Bayesian approach
with correlated uncertainties, Phys. Rev. Lett. 125, 202702
(2020).

[20] C. Drischler, J. A. Melendez, R. J. Furnstahl, and D. R. Phillips,
Quantifying uncertainties and correlations in the nuclear-matter
equation of state, Phys. Rev. C 102, 054315 (2020).

[21] U. von Toussaint, Bayesian inference in physics, Rev. Mod.
Phys. 83, 943 (2011).

[22] I. Vernon, M. Goldstein, and R. G. Bower, Galaxy formation: A
Bayesian uncertainty analysis, Bayesian Anal. 5, 619 (2010).

[23] I. Vernon, M. Goldstein, and R. Bower, Galaxy formation:
Bayesian history matching for the observable universe, Stat.
Sci. 29, 81 (2014).

[24] I. Vernon, J. Liu, M. Goldstein, J. Rowe, J. Topping, and K.
Lindsey, Bayesian uncertainty analysis for complex systems
biology models: Emulation, global parameter searches and eval-
uation of gene functions, BMC Syst. Biol. 12, 1 (2018).

[25] A. Ekström and G. Hagen, Global sensitivity analysis of bulk
properties of an atomic nucleus, Phys. Rev. Lett. 123, 252501
(2019).

[26] S. König, A. Ekström, K. Hebeler, D. Lee, and A. Schwenk,
Eigenvector continuation as an efficient and accurate emula-
tor for uncertainty quantification, Phys. Lett. B 810, 135814
(2020).

[27] S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R. J.
Furnstahl, J. A. Melendez, and D. R. Phillips, Rigorous con-
straints on three-nucleon forces in chiral effective field theory

from fast and accurate calculations of few-body observables,
Phys. Rev. C 104, 064001 (2021).

[28] T. Djärv, A. Ekström, C. Forssén, and H. T. Johansson,
Bayesian predictions for A = 6 nuclei using eigenvector con-
tinuation emulators, Phys. Rev. C 105, 014005 (2022).

[29] G. Baardsen, A. Ekström, G. Hagen, and M. Hjorth-Jensen,
Coupled-cluster studies of infinite nuclear matter, Phys. Rev. C
88, 054312 (2013).

[30] G. Hagen, T. Papenbrock, A. Ekström, K. A. Wendt, G.
Baardsen, S. Gandolfi, M. Hjorth-Jensen, and C. J. Horowitz,
Coupled-cluster calculations of nucleonic matter, Phys. Rev. C
89, 014319 (2014).

[31] U. van Kolck, Few-nucleon forces from chiral Lagrangians,
Phys. Rev. C 49, 2932 (1994).

[32] T. R. Hemmert, B. R. Holstein, and J. Kambor, Heavy baryon
chiral perturbation theory with light deltas, J. Phys. G 24, 1831
(1998).

[33] N. Kaiser, S. Gerstendörfer, and W. Weise, Peripheral
NN-scattering: Role of delta-excitation, correlated two-pion
and vector meson exchange, Nucl. Phys. A 637, 395
(1998).

[34] H. Krebs, E. Epelbaum, and U. G. Meißner, Nuclear forces
with � excitations up to next-to-next-to-leading order, part I:
Peripheral nucleon-nucleon waves, Eur. Phys. J. A 32, 127
(2007).

[35] E. Epelbaum, H. Krebs, and U.-G. Meißner, �-excitations and
the three-nucleon force, Nucl. Phys. A 806, 65 (2008).

[36] A. Ekström, G. Hagen, T. D. Morris, T. Papenbrock, and P. D.
Schwartz, � isobars and nuclear saturation, Phys. Rev. C 97,
024332 (2018).

[37] W. G. Jiang, C. Forssén, T. Djärv, and G. Hagen, companion
paper, Emulating ab initio computations of infinite nucleonic
matter, Phys. Rev. C 109, 064314 (2024).

[38] I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry
and Physics (Cambridge University Press, Cambridge, 2009).

[39] A. F. M. Smith and A. E. Gelfand, Bayesian statistics without
tears: A sampling-resampling perspective, Am. Stat. 46, 84
(1992).

[40] W. Jiang and C. Forssén, Bayesian probability updates using
sampling/importance resampling: Applications in nuclear the-
ory, Front. Phys. 10, 1058809 (2022).

[41] J. A. Melendez, C. Drischler, R. J. Furnstahl, A. J. Garcia,
and X. Zhang, Model reduction methods for nuclear emulators,
J. Phys. G 49, 102001 (2022).

[42] D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, and E. Rrapaj,
Eigenvector continuation with subspace learning, Phys. Rev.
Lett. 121, 032501 (2018).

[43] A. Sarkar and D. Lee, Convergence of eigenvector continuation,
Phys. Rev. Lett. 126, 032501 (2021).

[44] J. A. Melendez, C. Drischler, A. J. Garcia, R. J. Furnstahl, and
X. Zhang, Fast & accurate emulation of two-body scattering
observables without wave functions, Phys. Lett. B 821, 136608
(2021).

[45] X. Zhang and R. J. Furnstahl, Fast emulation of quantum three-
body scattering, Phys. Rev. C 105, 064004 (2022).

[46] P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, S.
König, D. Lee, A. Schwenk, V. Somà, and A. Tichai, Improved
many-body expansions from eigenvector continuation, Phys.
Rev. C 101, 041302(R) (2020).

[47] T. Djärv, JupiterNCSM: A Pantheon of Nuclear Physics, Ph.D.
thesis, Chalmers University of Technology, 2021.

L061302-6

https://doi.org/10.1126/science.abb4317
https://doi.org/10.1038/s41586-022-04750-w
https://doi.org/10.3390/particles6010003
https://doi.org/10.1103/PhysRevLett.109.092501
https://doi.org/10.1038/nphys3529
https://doi.org/10.1103/PhysRevLett.121.072701
https://doi.org/10.1103/PhysRevLett.122.042501
https://doi.org/10.1103/PhysRevC.93.051303
https://doi.org/10.1103/PhysRevD.99.043010
https://doi.org/10.1103/PhysRevLett.125.202702
https://doi.org/10.1103/PhysRevC.102.054315
https://doi.org/10.1103/RevModPhys.83.943
https://doi.org/10.1214/10-BA524
https://doi.org/10.1214/12-STS412
https://doi.org/10.1186/s12918-017-0484-3
https://doi.org/10.1103/PhysRevLett.123.252501
https://doi.org/10.1016/j.physletb.2020.135814
https://doi.org/10.1103/PhysRevC.104.064001
https://doi.org/10.1103/PhysRevC.105.014005
https://doi.org/10.1103/PhysRevC.88.054312
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1088/0954-3899/24/10/003
https://doi.org/10.1016/S0375-9474(98)00234-6
https://doi.org/10.1140/epja/i2007-10372-y
https://doi.org/10.1016/j.nuclphysa.2008.02.305
https://doi.org/10.1103/PhysRevC.97.024332
https://doi.org/10.1103/PhysRevC.109.064314
https://doi.org/10.2307/2684170
https://doi.org/10.3389/fphy.2022.1058809
https://doi.org/10.1088/1361-6471/ac83dd
https://doi.org/10.1103/PhysRevLett.121.032501
https://doi.org/10.1103/PhysRevLett.126.032501
https://doi.org/10.1016/j.physletb.2021.136608
https://doi.org/10.1103/PhysRevC.105.064004
https://doi.org/10.1103/PhysRevC.101.041302


NUCLEAR-MATTER SATURATION AND SYMMETRY ENERGY … PHYSICAL REVIEW C 109, L061302 (2024)

[48] F. Coester, Bound states of a many-particle system, Nucl. Phys.
7, 421 (1958).

[49] F. Coester and H. Kümmel, Short-range correlations in nuclear
wave functions, Nucl. Phys. 17, 477 (1960).
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