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Scattering phase shifts from a quantum computer
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We calculate two-body scattering phase shifts on a quantum computer using a leading order short-range
effective field theory Hamiltonian. The algorithm combines the variational quantum eigensolver and the quantum
subspace expansion. As an example, we consider scattering in the deuteron 3S1 partial wave. We calculate
scattering phase shifts with a quantum simulator and on real hardware. We also study how noise impacts these
calculations and discuss noise mitigation required to extend our work to larger quantum processing units. With
current hardware, up to five superconducting qubits can produce acceptable results, and larger calculations will
require a significant noise reduction.
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Introduction. Decades ago, Feynman [1] proposed quan-
tum computers as the ultimate tool to simulate quantum
mechanical systems and thought their development was a
worthwhile and interesting task in itself. The recent progress
in quantum hardware regarding fidelities and qubit count [2]
and in quantum algorithms has intrigued researchers across
all fields of physics [3–5]. In a few years, the number of
qubits used in simulations has grown from a few [6] to 100
[7]. Nuclear physicists have embraced the potential of this
new technology and explored simple models [8–15], studied
entanglement [16–18], modeled neutrino physics [19–22], and
proposed algorithms for state preparations [23–27]. However,
the critical analysis by Lee et al. [28] suggests that classical
computations of molecular structure in quantum chemistry
might be harder to beat on quantum computers than originally
thought because there are powerful classical algorithms that
permit accurate computations at a cost that increases polyno-
mially (and not exponentially) with increasing system size. In
contrast, the simulation of dynamical processes in real-time
still poses formidable challenges in classical computing, and
many efforts are dedicated to exploring those in quantum
computing [29–31].

Of course, many time-dependent phenomena can be com-
puted more efficiently in the energy domain, e.g., via the
scattering matrix or response functions [19,32–34]. In elastic
scattering, the phase shifts determine the scattering matrix,
and—strictly speaking—their computation at arbitrary ener-
gies requires the solution of a continuum problem. However,
phase shifts at discrete energies can be computed within a
bound-state approach based on finite Hilbert spaces [35].
Nuclear ab initio calculations of scattering phase shifts are
challenging [36–39]. They are also challenging for simple
models on noisy hardware because energies of excited states
need to be computed accurately. In this Letter, we show how
to meet this challenge.

One important algorithm is the variational quantum eigen-
solver (VQE) [40,41]. It returns the minimum energy for a

variational ansatz provided. VQE is a hybrid algorithm that
pairs an optimizer running on a classical computer with the
evaluation of energy expectation values on a quantum device.
For many applications in physics and chemistry, VQE has
been a popular choice since it facilitates the calculation of the
ground state of a Hamiltonian if a good trial wave function is
given, see Refs. [6,8,42,43] for early examples and Ref. [44]
for a review.

Recently, a similar hybrid approach, known as the quantum
subspace expansion, was proposed to calculate the excited
state spectrum of a quantum mechanical system [45]. In this
approach, one computes the Hamiltonian matrix elements
on the quantum hardware by using excitation operators that
act on the ground state obtained from VQE. The resulting
matrix is then diagonalized on a classical computer. This
approach has been used to compute the spectra of the hydro-
gen molecule [46], to simulate spin defects [47], and for the
simulation of periodic materials [48].

Here, we extract scattering phase shifts using a quantum
computer. Our approach combines the VQE algorithm, finite
volume methods [35] developed for the harmonic oscillator
basis [38,49,50], and the quantum subspace expansion. At
the heart of this method lies that the quantum subspace ex-
pansion yields low-lying, positive-energy eigenvalues of the
Hamiltonian. In finite volume problems, these can be related
to scattering observables such as phase shifts. We start by
discussing the two-nucleon Hamiltonian and the relation be-
tween finite volume eigenvalues and phase shifts. We then
present our results obtained on real hardware and simulators
and discuss how noise impacts the calculations on larger quan-
tum processing units (QPUs). Finally, we end with a brief
summary and outlook.

Two-nucleon Hamiltonian. Throughout this work we fo-
cus entirely on the 3S1 partial wave of the nucleon-nucleon
system. This fixes the spin/isospin degrees of freedom and
we can limit the discussion to S waves in the center-of-mass
system. Thus, we deal with a one-body potential-scattering
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problem. We employ a Hamiltonian from short-range effective
field theory (EFT) [51,52] that was also used in Refs. [8,53].
This EFT is a systematic low-energy expansion in powers
of R/a, where R denotes the range of the interaction and a
the two-body scattering length. This approach has been used
successfully to calculate a number of few-nucleon observables
to high accuracy [54]. Here, we will use only the leading order
of this approach that also maps directly onto the zero-range
limit. One possible way to implement this EFT is to use a
separable interaction

V = V0|g〉〈g|, (1)

where V0 is the coupling constant adjusted to reproduce
one two-body observable for an ultraviolet cutoff � that is
encoded in the form factor |g〉, which we specify below.
The two-body problem can be solved exactly for a separa-
ble interaction, and the S-wave two-body on-shell t matrix
becomes [55]

t (p) = 4π

m

〈p|g〉〈g|p〉
1/V0 − 〈g|G0|g〉 , (2)

where G0(E )|q〉 = [E − q2

m + iε]−1|q〉 denotes the free two-
body Green’s function for identical particles with mass m. In
the finite harmonic oscillator basis with N states, the Hamil-
tonian in the center-of-mass system of the 3S1 partial wave is
written as

HN =
N−1∑

n,n′=0

〈n′|(T + V )|n〉a†
n′an. (3)

Here, operators a† (an) create (annihilate) a two-nucleon state
in the nth harmonic oscillator S-wave state. The kinetic energy
and the separable potential are

〈n′|T |n〉 = h̄ω

2
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]
,

〈n′|V |n〉 = V0δ
0
nδ

n′
n , (4)

where the coupling of the V0 = −5.68658111 MeV is ad-
justed to reproduce the deuteron binding energy in the limit
of an infinite number of harmonic oscillator states and
h̄ω = 7 MeV. The Kronecker δ functions reflect that we use
the lowest harmonic oscillator orbital for the form factor |g〉,
i.e., 〈q|g〉 = b1/2π−1/4 exp (−q2b2/2), where b is the oscilla-
tor length.

Though we are dealing technically with a one-body system,
the second-quantized form of the Hamiltonian (3) is attractive
for quantum computing. The operators a†

n and an become spin-
lowering and spin-rising operators, respectively, when acting
on qubits, and the mapping uses the Jordan-Wigner transform
[8]. Within this work, an unoccupied and occupied state |n〉
of the harmonic oscillator will correspond to the state |0〉 and
|1〉, respectively, of qubit n. We use the VQE algorithm to find
the ground state of the system. This requires an ansatz with
parameters that can be optimized to find the lowest possible
energy. We use the unitary coupled cluster (UCC) ansatz also

used in Refs. [8,53]. The ansatz circuit we implemented is
similar to the one in [53].

The quantum subspace expansion. The quantum subspace
expansion was developed by McClean et al. [45] to calculate
excited states. Like VQE, it is a hybrid algorithm that relies
on a combination of classical and quantum computing. First,
the VQE algorithm is used to generate the ground-state wave
function of the Hamiltonian under consideration. This ground-
state wave function |�〉 is used in combination with excitation
operators to generate a subspace in which the Hamiltonian can
be diagonalized with a classical computer. Here, we will use
single-particle excitation operators

eα = a†
j al , (5)

where j, l = 0, . . . , N − 1 and α is a single label that uniquely
identifies j and l (e.g., α = N j + l ). We note that this ap-
proach identifies all excitations in the Hilbert space. This
completeness of the basis is not achievable in many practi-
cal applications due to the enormous size of Hilbert spaces.
Instead, one could identify a subset of relevant excitations
and then diagonalize the Hamiltonian in that basis. This is
essentially the generator coordinate method [56].

On the quantum computer, we evaluate the matrix elements

H̃αβ = 〈�|e†
αHeβ |�〉, (6)

and the overlap matrix elements

S̃αβ = 〈�|e†
αeβ |�〉. (7)

Now, we solve the generalized eigenvalue problem

H̃ |�〉 = ES̃|�〉 (8)

on a classical computer and employ the usual techniques, see,
e.g., Ref. [56].

This overlap matrix has only N nonzero eigenvalues, and
we discard the eigenvectors corresponding to zero eigenval-
ues. In the presence of noise, we keep the N eigenvectors
with the largest eigenvalues. The resulting energy eigenvalues
are Ei, and the corresponding momenta are denoted as ki =√

2μEi. All our results from quantum subspace expansion
were obtained as described above. However, this N2 × N2

problem can be reduced to an N × N problem by setting l
to 0 in Eq. (5) and solving the resulting smaller generalized
eigenvalue problem. We have verified on the simulator for the
five- and seven-qubit systems that this approach leads to the
same results within statistical fluctuations.

Having obtained the ground state wave function |�〉 on
the quantum device, we then obtain the phase shifts from the
positive energy eigenvalues of the Hamiltonian. For this, we
follow the approach described in Ref. [50]. The key insight
is briefly described as follows: Employing a finite harmonic
oscillator basis transforms the scattering continuum into a
discrete set of states confined within a finite volume. This
effectively imposes Dirichlet boundary conditions at a specific
radial distance r = L. The hard wall radius L depends on
N , h̄ω, and the scattering energy. To compute L, one must
first diagonalize the kinetic energy operator T̂ in the finite
harmonic oscillator basis. This yields a spectrum of ener-
gies Ti and corresponding momenta pi = √

2μTi. In position
space, the corresponding eigenfunctions resemble those of
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FIG. 1. Box size L as a function of the relative momentum p
for the simulations of systems with three, four, and five qubits. The
markers are at the relative momenta of the eigenvalues of the kinetic
energy. The solid lines are interpolation curves.

a spherical cavity with a radius L. The location of the ith
zero of the spherical S-wave Bessel function j0(piLih̄) then
determines L = L(pi ) ≡ Li. From the resulting set of pi and Li

we can then generate a smooth and continuous interpolation
function L(p). Figure 1 shows box sizes L(p) as a function
of the relative momentum p for three-, four-, and five-qubit
systems. Given that the kinetic energy operator T̂ is diago-
nalized classically, the calculation of L(p) in unaffected by
quantum noise. The observed convexity and small curvature
of the resulting curves suggest that these interpolations are
very reliable, leaving therefore very little room for additional
uncertainties due to this approach of determining the effective
box size L(h̄ki ).

The phase shift for the ith momentum ki is then given by

tan δ0(ki ) = j0(kiL(h̄ki ))

η0(kiL(h̄ki ))
, (9)

where j0 and η0 denote the S-wave spherical Bessel and
Neumann functions, respectively. The above equation reflects
that the radial wave function has to be zero at L as required
by the hard wall boundary condition. When L is known,
Eq. (9) yields a result that matches exactly with the analytical
result.

Results. Our quantum computations used IBMQ machines.
Throughout this work, we employed noise mitigation of read-
out errors. We measured the complete assignment matrix to
perform readout error mitigation on the noisy counts received
from the QPU. For this, we include circuits in which we
initialize the qubits to combinations of zeros and ones. We
then multiply the inverse of this assignment matrix with the
counts to obtain the noise-mitigated counts. For three qubits,
the ground state depends on two parameters, and we compute
energy expectation values on the quantum hardware using
a two-dimensional grid. In our calculations involving more
than three qubits, we assume that the deuteron ground state
was previously determined by techniques such as VQE and
instead use the ground state from an exact diagonalization. We
pass the exact ground state to our code and then evaluate the

FIG. 2. Scattering phase shifts δ as a function of the rela-
tive momentum k. The solid line denotes the analytical results.
The circles, squares, and diamonds give the results obtained with
a three-, four-, and five-qubit simulation, respectively. Simulation
results were obtained on the ibmq_jakarta QPU.

matrix elements required for the quantum subspace expansion
on quantum hardware. The computations on N qubits yield
N − 1 excited states, and we determine the corresponding
phase shifts using Eq. (9).

In Fig. 2, we show results for three, four, and five qubits
on the ibmq_jakarta QPU as circles, squares, and diamonds,
respectively. The solid line shows the results obtained from
the analytical expression given in Eq. (2). Our results for the
three qubits agree with the analytical result. This is encourag-
ing as the corresponding bound state calculation requires error
mitigation to obtain accurate results [8]. As we increase the
number of qubits, the agreement worsens, and the five qubit
results are inaccurate.

Our method produces phase shifts at momenta determined
by the harmonic oscillator frequency. The effective field the-
ory allows us to vary the harmonic oscillator frequency (while
adjusting the potential strength V0 such that the deuteron
bound state energy is reproduced correctly in the infinite
oscillator basis). This permits us to compute phase shifts at
different momenta at a fixed number of qubits N .

We generated five additional interactions and
now consider oscillator frequencies h̄ω = 5, 6, 7, 8, 9,
10 MeV. The corresponding momentum cutoffs are
� = 128, 140, 152, 162, 172, 181 MeV, respectively. For
each frequency, we repeat the calculations of phase shifts
and show the corresponding results, obtained on three qubits,
in Fig. 3. The analytical results for our six interactions
vary slightly due to remaining regulator dependence in
the renormalization process: All interactions essentially
reproduce the scattering length (i.e., they agree on the slope
of the phase shifts at zero momentum) but differ in the
effective range. We see that the analytical results differ, as
expected, at larger momenta and that the phase shifts vanish at
momenta above the respective cutoff. In all cases, the results
from quantum computing agree with the corresponding
analytical data.

Figure 4 shows the results obtained on four qubits, using
the QPU ibm_nairobi. Here, the low-energy phase shifts are
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FIG. 3. The data points are the phase shifts obtained using six
different interactions (with the oscillator frequency and the momen-
tum cutoff increasing from left to right) using three qubits. The
dashed lines are the analytical results corresponding to the interaction
represented by the same color. The circles denote the results obtained
with the QPU ibmq_jakarta.

accurate. At higher energies, the phase shifts are still close
to the analytical results, but they essentially vanish. This sug-
gests that it will be challenging to employ more qubits in the
computations using quantum hardware.

We computed the total χ2 deviation between the phase
shifts from simulations and analytical results based on a
model space of N qubits. The simulations employ the
ibmq_guadalupe noise model. The results, shown in Fig. 5,
suggest that there is a transition at about N ≈ 5 beyond which
quantum computations become too limited by noise.

To understand this apparent limitation, we studied the im-
pact of noise on larger systems using a QPU simulator using
again the ibmq_guadalupe noise model. We are interested in
quantifying how much noise is tolerable to compute accurate
phase shifts on a fixed number of qubits. To address this point,
we modified Qiskit’s noise model source code. We introduced
a single scaling factor η � 1 that simultaneously reduces the
one-qubit gate errors, two-qubit gate errors, and the readout

FIG. 4. Phase shifts obtained using six different interactions
using four qubits. The dashed lines denote the analytical results
corresponding to the interaction represented by the same color. The
circles denote the results obtained with the QPU ibm_nairobi.

FIG. 5. χ 2 as a function of number of qubits.

error. For a given system size N we decreased η using the
ibmq_guadalupe noise model until an approximate agreement
between simulation and analytical results was achieved. The
estimated value of η obtained in this way is plotted against the
number of qubits in Fig. 6. We see that there is a jump as one
goes from four to five qubits, and an order-of-magnitude in
noise reduction is required for computations on more than six
qubits.

Summary. We computed nucleon-nucleon scattering phase
shifts on a quantum device by combining hybrid quantum
algorithms with finite-volume approaches to scattering. We
employed the quantum subspace expansion to compute dis-
crete continuum states and mapped those to scattering phase
shifts. While current superconducting hardware allows one
only to treat simple models, ab initio computations of scat-
tering phase shifts are expensive [36–39]. It is here that
error-corrected quantum computing could be advantageous in
the future.

Using noise mitigation to correct readout errors only al-
lowed us to perform accurate computations with up to four
or five superconducting qubits. Our study of this problem re-
vealed that an order-of-magnitude reduction in readout errors
and one- and two-qubit gate errors is necessary for accurate
quantum computations with significantly more qubits. We
believe that this result will also hold for other applications

FIG. 6. Estimated noise scaling factor η required to produce
acceptable results as a function of the number of qubits.
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that can be qualified as dense problems in which all qubits
need to be entangled. In the future, it would be interesting to
analyze whether additional noise mitigation techniques, such
as Richardson extrapolation or randomized compiling, can
move this boundary significantly upwards.
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