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First measurement of AN inelastic scattering with A from e*e~ — J/¥ — AA
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Using an e*e collision data sample of (10087 &= 44) x 10° J/v events taken at the center-of-mass energy of
3.097 GeV by the BESIII detector at the BEPCII collider, the process A + N — X% + X is studied for the first
time employing a novel method. The X" hyperons are produced by the collisions of A hyperons from J/v decays
with nuclei in the material of the BESIII detector. The total cross section of A 4+ °Be — %+ + X is measured
to be 0 = (37.3 £4.7+3.5) mb with A momenta within [1.057, 1.091] GeV/c, where the uncertainties are
statistical and systematic, respectively. This analysis is the first study of A-nucleon interactions at an ete~
collider, providing information and constraints relevant for the strong-interaction potential, the origin of color
confinement, the unified model for baryon-baryon interactions, and the internal structure of neutron stars.
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Describing baryon-baryon interactions within a unified
model has always been a challenge in both particle and nuclear
physics [1-4]. Strong constraints and well-established models
exist for nucleon-nucleon interactions [1,2], but there are still
difficulties in precisely modeling hyperon-nucleon scattering,
especially hyperon-hyperon interactions, due to the lack of
experimental measurements. Until now, there have only been
a few measurements for hyperon-nucleon scattering [5—17],
and only one for hyperon-hyperon scattering [18], leaving
theoretical models largely unconstrained [19-34].

The properties of hyperons in dense matter have attracted
much interest due to their close connection with hypernuclei
and the hyperon component in neutron stars [4]. Hyperons
may exist within the inner layer of neutron stars whose
structure strongly depends on the equation of state (EOS) of
nuclear matter at supersaturation densities [35]. The appear-
ance of hyperons in the core softens the EOS, resulting in
neutron stars with masses lower than 2M, [36], where M, is
the mass of the sun. However, studies based on observations
from the LIGO and Virgo experiments [37] indicate that the
EOS can support neutron stars with masses above 1.97M,.
This is the so-called “hyperon puzzle in neutron stars,” war-
ranting further experimental and theoretical studies.

The first attempts to measure hyperon-nucleon inter-
actions (Ap — Ap, X" p— X p/An/X%n, and Zp —
X1 p) were made during the 1960s and 1970s using hyper-
ons with momenta less than 1 GeV/c [5-9]. After a gap of
about 20 years, further studies of elastic and inelastic scatter-
ings between hyperons and nucleons were performed using
multiple kinds of hyperons with a variety of beam energies
[10-17]. The uncertainties on these measurements were, in
general, large. On the theoretical side, many models have
been proposed to describe the hyperon-nucleon and hyperon-
hyperon interactions, including the meson-exchange model
(with Jiilich [19] or Nijmegen [20] potentials), chiral effective
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field theory (xEFT) approaches [21-28], calculations on the
lattice from HALQCD [29,30] and NPLQCD [31,32], low-
momentum models [33], and quark-model approaches [34].

Experimental studies of hyperon-nucleon interactions are
challenged by the difficulty of obtaining a stable hyperon
beam. Firstly, the lifetime of ground-state hyperons is usu-
ally of order O(107'%)s due to the weak decay, which is
too short to provide a stable beam. Meanwhile, hyperons
historically used for fixed-target experiments are commonly
produced in the collisions between incident protons or K
mesons and the target material, with a high background
level. Compared with fixed-target experiments, many more
hyperons are accessible from the decay of charmonia pro-
duced at ete™ colliders, which have rarely been used to
study hyperon-nucleon scattering because of the lack of both
specialized targets and any practical experimental approach.
Furthermore, the large number of antihyperons produced in
pairs with hyperons bring exciting prospects for probing little-
studied antihyperon-nucleon interactions. In this work, the
A+ N — Tt 4+ X process is studied for the first time by
a novel method [38,39], where N denotes a certain kind
of nucleus and X refers to any possible particles produced
accompanying the £+, using AA pairs from the decay of
(10087 + 44) x 10° J /v events collected by BESIII [40,41].
This method has been applied in a recent BESIII study of 2°-
nucleus interaction [17]. Thanks to the ‘double-tag” method,
a nearly monochromatic hyperon flux of A, ¥+, ¥~, 87, 20,
27, and their antiparticles from charmonia decay are accessi-
ble that allows for the study of hyperon-nucleon interactions
ateTe™ colliders.

The BESIII detector is a magnetic spectrometer [42] lo-
cated at the Beijing Electron Positron Collider (BEPCII). The
cylindrical core of the BESIII detector consists of a helium-
based multilayer drift chamber (MDC), a plastic scintillator
time-of-flight (TOF) system, and a CsI(Tl) electromagnetic
calorimeter (EMC), which are all enclosed in a super-
conducting solenoidal magnet providing a 1.0-T magnetic
field. Before particles produced in ete™ collisions enter the
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FIG. 1. Illustration of target structure and A trajectory inside the
target. The target material, composed of the beam pipe and inner wall
of the MDC, consists of multiple layers of material, including gold,
beryllium, oil, aluminum, and carbon fiber. O is the interaction point
of the e*e™ collision. The horizontal axis is the ete™ beam line and
the vertical axis (r axis) denotes the distance away from the beam
line. The radius and the length of the inner wall of the beam pipe from
and along the z axis are 3.148 564 and 100 cm, respectively [42].
The position and the thickness of each layer are listed in the figure,
where the units are centimeters. 0 is the angle between incident A
and the z axis. H is the scattering point of A and nucleon so that
AB,BC, ...,GH are the A track lengths in each layer, where the
sum is the total track length inside the target.

spectrometer, they pass through the beam pipe and the inner
wall of the MDC, which constitute the scattering targets in
the present study. The target structure and the A trajectory are
shown in Fig. 1, where the A hyperons can scatter elastically
or inelastically with the nuclei inside these objects. The target
is made of multiple layers with different materials, with more
detailed information given in Sect. I of the Supplemental
Material [43].

Using a GEANT4-based [44] Monte Carlo (MC) package,
simulated samples are produced incorporating the geometric
description [45] of the BESIII detector and the detector re-
sponse. An inclusive MC sample containing 1 x 1010 J/v
decays is used to investigate the potential backgrounds. The
production of the J/ resonance is simulated by the MC event
generator KKMC [46], where the beam-energy spread and the
initial-state radiation in the e*e™ annihilation have been taken
into account. The known decay modes are generated by EVT-
GEN [47,48] using branching fractions taken from the Particle
Data Group (PDG) [49], while the unknown decay modes
are modeled with LUNDCHARM [50,51]. A signal MC sample
with 1 x 10® AN — ZFX, ¥+ — pr® events is generated

to estimate the detection efficiency. The angular distributions
of J/# — AA and A — pmT are described by the recently
measured decay parameters of the J/v and A hyperons [52]
and AN — X, ¥+ — pr processes are simulated by the
Bertini intranuclear cascade model [53] of the QGSP_BERT
physics list defined in GEANT4 [44].

Since A and A are produced in pairs from J/¥ — AA
decays, the detection of a single A hyperon in an event
(called “single-tag”) implies that the recoiling system is a
monochromatic A hyperon. In this analysis, the A hyperon
is reconstructed via A — pr T and the yield of single-tagged
events is obtained by fitting to the recoil-mass distribution
of the A hyperon, denoted as Nsr. The recoil mass of the
A hyperson is defined as RMpz+ = \/|pete- — pp — pr+l?,
where p.+.-, pp and py+ refer to the four-momenta of the
initial ete™, p, and & particles, respectively. The recoiling A
hyperon produced together with the reconstructed A hyperon
can scatter inelastically with the nucleons in the material and
produce a 1 hyperon. We search for such particles through
the decay ¥+ — pm® among the other tracks and showers
in the event, excluding those used to reconstruct the single-
tagged A hyperon. The number of double-tagged events (Npr)
containing both a reconstructed A hyperon and a ¥ hyperon
is given by

Npr = La -0(AN — X)) - B(Z" — pr¥) - €50, (1)

where 0 (AN — X 7X) is the cross section of the inelastic
process AN — XX, B(X* — pn®) is the branching frac-
tion of ©+ — pr® decay, and &sig denotes the efficiency of
the double-tag reconstruction. The “effective luminosity” £,
is a specially defined quantity to describe the property of the
target and the behavior of the incident A particle inside the
target, which is influenced by several other parameters [15].
Considering the target composition shown in Fig. 1, L4 is
calculated event by event as

5T ]lu

Ly =Ner— Ny Z Z & )

where N4 is Avogadro’s number [54], NSI\%C is the total number
of single-tagged events in the signal MC sample, ["/ is the path
length of the incident A particle of the iy, event inside the ji
layer, and M/ and p} are the molar mass [55] and density,
respectively, of the jy, layer. Since the contribution from each
layer and the cross section for different kinds of nuclei are
not the same, the ratio of the scattering cross section (R,)
of incident A for each category of materials is necessary for
normalization. In this Letter, we present the measured cross
section of the A + °Be — X1 + X reaction, with the cross
section of each material normalized to that of beryllium. The
choice of beryllium as the normalization reference is due to
its common use as the target in fixed-target experiments and
its significance as the main material of the beam pipe in the
BESIII detector. In the case of low and intermediate energy it
is assumed that inelastic scattering occurs with single protons
on the surface of the nucleus [56-61]. Then R, is proportional

2
t0o A3 X % = 2 where A and Z are the numbers of nucleons
3

and protons in a single nucleus, respectively. If the material
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of a certain layer contains multiple kinds of nuclei, R, must
be weighted by the ratio of the numbers of different nuclei
per unit volume of the material. The detailed derivation and
calculation of £, can be found in Sec. II of the Supplemental
Material [43].

According to Eq. (1), the cross section for interaction with
the Be nucleus can be determined as

Npr 1
€sig»cA B(EJF - PT[O).

o(Be) = 3)

Since we only reconstruct the =% on the double-tag side,
there may also be contributions from the interactions between
the A and neutrons. However, the contributions can only arise
from three-body reactions such as An — X *tnz~. The total
energy in the center-of-mass frame of A and a stationary
neutron is [2.240, 2.249] GeV, while the lowest total energy
for the final state Xtnm~ is 2.269 GeV. Therefore, this pro-
cess can only occur when the neutrons have relatively large
Fermi momenta. As a result, the cross section is suppressed
due to the limited phase space. Similar reactions such as
Ap — X prt /Xt pr~ have been studied [9], which for A
momentum within [1.057, 1.091] GeV/c are at least 1 or-
der of magnitude smaller than the measured cross section of
Ap — XTX. Therefore, we neglect the contribution from An
reactions.

We now describe the selection of signal events. Charged
tracks detected in the MDC are required to have a polar an-
gle (0) satisfying |cos 6| < 0.93 with respect to the positron
beam. The number of good charged tracks must be at least
two.

For the single-tag side, A is reconstructed from its decay
to p and w*, which are identified using the measured in-
formation in the MDC and TOF. The combined likelihoods
(£) under the proton (antiproton), pion, and kaon hypothe-
ses are calculated. The p candidates are required to satisfy
L(p) > L(K) and L(p) > L(), whereas the m T candidates
are required to satisfy L(mr) > L(K). A vertex fit is performed
to constrain all possible pm+ combinations to a common
vertex. The decay length of A is calculated as the distance
between the fitted vertex and the interaction point (IP) of the
ete™ collision. The pm* combinations with a vertex-fit x2
lower than 200 and a decay length larger than O are regarded
as A candidates. To further suppress the background, the
invariant masses of the pr ™ combinations are required to lie
within [1.111, 1.120] GeV/c? and RM,+ is required to be
within [1.071, 1.153] GeV /c?. If there are multiple candidates
passing all the selection criteria above, we select the pr™
combination with the minimum vertex-fit x 2 as the best candi-
date. The number of single-tagged events is determined to be
7207565 4 3741 by fitting to the RMp,+ distribution using
the sum of two Gaussian distributions and a second-order
Chebyshev polynomial, as shown in Fig. 2. The efficiency of
the single-tag selection is (52.16 = 0.10)%.

In the double-tag selection ¥1 candidates are recon-
structed in the pm° final state. The p is selected using the
same criteria as the single-tag selection and the m° is re-
constructed through EMC showers. The deposited energy of
each shower must be more than 25 MeV in the barrel region
(Jcos 8| < 0.80) and more than 50 MeV in the end-cap region
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FIG. 2. The RM,+ distribution with the fit result superimposed.
The black dots with error bars represent the data. The blue solid line
is the total fit. The dashed red line is the signal of the single-tag
selection and the dot-dashed green line is the background. The red
arrows indicate the signal range.

(Jcos 8] < 0.92) of the EMC. To suppress electronic noise and
showers unrelated to the event, the difference between the
EMC time and the event-start time is required to be within
[0, 700] ns. The angle between photons and all the other
charged tracks should be larger than 10° to suppress the pho-
tons from the radiation of charged tracks and other processes.
Then a kinematic fit is performed to all possible combinations
of two showers by constraining the invariant mass M,,,, to the
known 7% mass [49]. The combination with the minimum ¥
from this fit is chosen as the 7° candidate. The £* candi-
date is selected from pr® combinations with invariant mass
M0 € [1.12,1.25] GeV/c? that has the maximum value of
L(p) for the proton candidate.

If the incident A does not scatter with any nucleons, the
recoil mass of p*p, RM pz+p, should be around the known
mass of 7~ [49] according to the kinematic constraint. For
inelastic scattering events, RM;+, has a tendency to be neg-
ative, as seen with the signal MC sample and discussed in
Sec. IIT of the Supplemental Material [43]. This behavior is
explained by the additional mass and momentum contributed
by nucleons in the reaction. To further suppress the back-
ground, RM;+p, is required to be negative. In addition, the
normal event of J/y» — AA without the hyperon-nucleus
scattering can be rejected by identifying a A hyperon in the
double-tag side after the T candidate reconstruction using
all possible pr ~ combinations. The A candidate is rejected if
M- € [1.108, 1.124] GeV /%

The number of double-tagged events is found to be 795 &
101 by fitting to the distribution of M 0 using a sum of two
Gaussian distributions and a third-order Chebyshev polyno-
mial, as is shown in Fig. 3. The parameters and fraction of the
two Gaussian distributions are fixed to those obtained from the
same fit to the signal MC sample. The efficiency of the double-
tag selection is estimated to be €4, = (24.32 +0.15)% by
fitting the signal MC sample.

The cross section of A +°Be — X+ 4 X is determined
through Eq. (3) to be o(A + Be > Xt +X)= 373+
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FIG. 3. The M0 distribution with the fit result overlaid. The
black dots with error bars represent the data. The blue solid line is the
total fit. The dashed red line is the signal and the dot-dashed green
line is the background. The red arrows indicate the signal range.

4. Tgar, & 3.55y5.) mb, where Bzt —> pno) is taken from the
PDG [49]. Table I lists the inputs used in the calculation.

The systematic uncertainty for the measured cross sec-
tion is associated with the knowledge of the tracking and
particle identification (PID) efficiencies of charged particles,
the reconstruction efficiency of 70 mesons, the number of
single-tagged events, the efficiency of the requirement of
RM s+, and M- the angular distribution of J/¢ — AA
and T, the size of the signal MC sample, the measured
interaction point of the ete™ collision, the method to fit the
M, distribution, and the luminosity (L) estimation. The
assumption concerning the ratio of cross sections for different
kinds of nuclei also introduces a systematic uncertainty.

The systematic uncertainties related to the tracking and
PID efficiencies of protons are both 1.0% [62], and for n°
reconstruction the systematic uncertainty is 1.0% [63]. The
systematic uncertainty associated with the number of the
single-tagged events is determined to be 0.8% from the in-
clusive MC. The systematic uncertainties from the RMp;+,
and M,,- requirements are tested by varying the criteria
around the baseline settings to reobtain the measured cross
section. The changes of the cross section are denoted as A =
|0 — 0Ogys.|, Where o and oy refer to the baseline results and
the results after changing the criteria. Also calculated are the

uncorrelated uncertainties wy. = V|0; — @} (|, where @,
and w, sys. correspond to the fit uncertainties of the baseline
and systematic test results, respectively. Since the ratio A /wy.
does not show a trending behavior and is less than 2, these two
possible sources of systematic bias are considered to be neg-

ligible [64]. The systematic uncertainty associated with the

TABLE I. Inputs used to calculate the cross sec-
tion of A +°Be — XF + X.

Parameter Value

Npr 795 + 101

Esig 24.32%

L (17.00 & 0.01) x 10%® cm™2
Bt — pn%) (51.57 £ 0.30)%

knowledge of the angular distribution of J/v — A A produc-
tion is estimated by varying the decay parameters oy, AP,
ay, and oz within 1 standard deviation [52] and generating
new MC data sets to calculate the cross section. The system-
atic uncertainty from this source can be ignored compared
with the statistical uncertainty. The systematic uncertainty
associated with the angular distribution of X% baryons is
evaluated by reweighting the angular distribution of the signal
MC sample to that of the data and measuring the cross sec-
tion again, which is determined to be 1.3% as the difference
between the reobtained cross section and the baseline value.

The double-tag efficiency has a systematic uncertainty of
0.6% arising from the fitted number of double-tagged events
in the signal MC sample. The IP of the ete™ collision is
used to calculate the track length of A inside the target.
According to the measured result, the interaction point is
distributed around the coordinate origin with an uncertainty
of 0.2 cm. We change the IP within £0.2 cm away from
the original position and take the maximum change of the
measured cross section as the systematic uncertainty, which
is 4.6%. The systematic uncertainty from the fit method of
the M0 distribution is estimated by changing the background
shape from a third-order Chebyshev polynomial to fourth- and
fifth-order ones and assigning the uncertainty to be 3.6% as
the maximum difference from the baseline result. As well as
scattering inside the beam pipe and the inner wall of the MDC,
the A hyperons may also scatter with a nucleus inside the
cooling devices of the BESIII spectrometer. When calculating
the luminosity £,, the cooling pipe is not considered due to
its much more complex structure and having less material than
the beam pipe and the inner wall of the MDC. We assume a
conservative model of the cooling devices and measure the
cross section again. The difference from the baseline result is
assigned as the systematic uncertainty, which is 6.1%.

In order to estimate the systematic uncertainty caused by
the assumption of the ratio of the cross sections for different
kinds of nuclei, we measure the cross section again under
another assumption that the cross section is proportional to the
total number of protons in a nucleus. The difference from our
baseline result is taken as the systematic uncertainty, which is
determined to be 3.6%.

The total systematic uncertainty on the measured cross
section of A +°Be — T+ + X is computed to be 9.5% by
adding the systematic uncertainties listed above in quadrature.

In summary, the inelastic scattering A +°Be — T+ + X
is studied at BESIII using a novel method. The cross section is
measured to be 0 (A +°Be —> =t +X) = (37.3 £ 4.7 £
3.54ys.) mb for a Be nucleus struck by a A hyperon with
momentum within [1.057, 1.091] GeV/c. Taking 1.93 as the
ratio of the cross section of A +°Be — £ +X and A +
p — T + X by assuming the the signal process as a surface
reaction [56-61], the cross section of A +p — Xt + X is
determined to be 0 (A +p —> Tt +X) = (19.3 £ 2.4, +
1.8yst.) mb.

This is the first discovery and cross-section measurement
of A + p — X + n. By virtue of charge independence, the
cross sections of A+ p— Xt +n are just twice that of
A+ p — X%+ p [8]. Our results are consistent with previ-
ous experiments regarding the cross-section measurement of
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A + p — X%+ p [9]. Additionally, this study represents the
first attempt to investigate A-nucleus interactions at an ete™
collider. The result will be valuable for improving the under-
standing of the potential of strong interaction and the origin
of color confinement, as well as providing important con-
straints for the unified model for baryon-baryon interactions.
At BESIII, it is possible to measure the differential cross sec-
tions with respect to the momentum of incident hyperons us-
ing three-body decays of charmonia with at least one hyperon.

In the future, the Super 7-Charm Facility [65] will pro-
duce a J/y data set about 100 times larger than the
sample collected by BESIII, which will allow for more
detailed studies of the mechanism of hyperon-nucleon
interactions.
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