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Exact solution of Boltzmann equation in a longitudinal expanding system

Shile Chen * and Shuzhe Shi †

Department of Physics, Tsinghua University, Beijing 100084, China

(Received 22 November 2023; revised 16 January 2024; accepted 17 April 2024; published 2 May 2024)

Analytical solutions to the microscopic Boltzmann equation are useful in testing the applicability and accuracy
of macroscopic hydrodynamic theory. In this work, we present exact solutions of the relativistic Boltzmann
equation, based on a new family of exact solutions of the relativistic ideal hydrodynamic equations [S. Shi, S.
Jeon, and C. Gale, Phys. Rev. C 105, L021902 (2022)]. To the best of our knowledge, this is the first exact
solution that allows longitudinal expansion with broken boost invariance.
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Introduction. Hydrodynamics is a macroscopic, long-
wavelength effective theory that describes the collective
motions in many-body systems. The commonly used frame-
work of relativistic hydrodynamic equations is derived from
the microscopic Boltzmann equations by taking different ap-
proximations, such as the relaxation time approximation [1],
Chapman–Enskog expansion [2,3], and moment expansion
based methods by Isreal and Stewart [4] and by Denicol et al.
[5–7]. In these derivations, the systems are assumed to be
close to local equilibrium, and the distribution function is the
thermal equilibrium one plus small derivations expanded in
different bases. The hydrodynamic theory only keeps lower
order moments in the Knudsen expansion, leaving the higher
order ones either truncated out or extrapolated under certain
assumptions. Therefore, it is traditionally expected to be ap-
plicable in near-equilibrium systems with a small Knudsen
number.

The success of applying hydrodynamic theory in describ-
ing the final state observables of collective motion in high
energy nucleus-nucleus, proton-nucleus, and even proton-
proton collisions (see, e.g., [8–11]) has drawn significant
interests in discussions of relieving the assumptions for the
applicability of hydrodynamics [12–30]. A crucial step is to
compare the hydro results to those of the Boltzmann equa-
tion, which describes the evolution of the microscopic particle
distribution.

Taking the general form in a curvilinear coordinates, the
Boltzmann equation for on-shell distribution function reads
(see, e.g., [31–33])(

pμ∂μ + �ρ
μν pμ pρ

∂

∂ pν

)
f (xα, pβ ) = C[ f ],

C[ f ] = pμuμ(x)

τr (x)
( f (xα, pβ ) − feq(xα, pβ )), (1)
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where we have taken the relaxation time approximation (RTA)
[1] for the collisions kernel. The Christoffel symbol is given

by �ρ
μν = gργ

2 ( ∂gγμ

∂xν + ∂gγ ν

∂xμ − ∂gμν

∂xγ ), with gμν being the metric.
Taking the conformal limit that m = 0, the relaxation time
reads τr (x̂) = 5η̄/T̂ (x̂), and η̄ is the shear viscosity to entropy
ratio [5,6,34,35]. The local equilibrium distribution function is
assumed to be of Boltzmann form, feq = exp(−p̂μûμ/T̂ ). For
the distribution functions in Eq. (1), all momentum arguments
are covariant and coordinate arguments are contravariant.
T̂ (x̂) and ûμ(x̂) are respectively the space-time dependent
temperature and velocity. The space-time profiles of T̂ and ûμ

are not arbitrary: they are constrained by continuity relations
such as hydrodynamics.

In a given coordinate system, if one makes certain assump-
tions such that the Boltzmann equation can be expressed in a
form without the derivatives with respect to the spatial coor-
dinates and momenta, there exists a formal solution [34–36].
With explicit form which will be shown later in the main text,
the formal solution depends only on the temporal coordinate
and is homogeneous with respect to the spatial one. The
nontrivial spatial expansion can be introduced if one takes a
coordinate of a comoving frame of a known solution to the
hydrodynamic equations [37–40]. A family of exact solutions
for ideal fluids, found recently in [41], is homogeneous in
the transverse plane and allows expansion—either symmetric
or asymmetric—in the longitudinal direction, which breaks
the boost invariance. In this work, we find the comoving
frame of the new solution and construct the formal solution
accordingly. We then compute the hydrodynamics quantities
and analyze how they relax to the hydro limit.

Comoving frame of the longitudinal expanding flow. Taking
the general form in a curvilinear coordinates, the hydrody-
namic equation reads

DμT μν ≡ ∂μT μν + �μ
ρμT ρν + �ν

ρμT ρμ = 0, (2)

where T μν is the energy-momentum tensor and Dμ is the
covariant derivative. In Ref. [41], a family of exact solutions
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for longitudinally expanding ideal fluids was found,

Tideal

Ti
=

(
t0
τi

+ aNNτeη

τi

) 1−c2
s

4
1

a2 − 1+c2
s

4

×
(

t0
τi

+ τe−η

aNNτi

) 1−c2
s

4 a2− 1+c2
s

4

,

uτ = 1

2

(√
t0e−η + τ a

t0eη + τ/a
+

√
t0eη + τ/a

t0e−η + τ a

)
, (3)

uη = 1

2τ

(√
t0e−η + τ a

t0eη + τ/a
−

√
t0eη + τ/a

t0e−η + τ a

)
.

In the solution, τ and η are the proper time and rapidity in
Milne coordinates, respectively. cs is the speed of sound, a is
a dimensionless parameter characterizing the asymmetry be-
tween forward and backward rapidity range, and Ti and τi are
positive constants that respectively scale the temperature and
time. The non-negative time constant t0 serves as a translation
of the Minkowski time, and it corresponds to the time needed
for the colliding nuclear pancakes to pass through each other
in relativistic heavy-ion collisions [41]. Focusing on the cen-
tral rapidity slice for a reflectional symmetric system (a = 0),

the temperature decreases as T (τ ) = Ti ( τi
τ+t0

)
1
3 , which decays

slower than the Bjorken flow at small τ and approaches the
Bjorken limit when τ � t0.

In this work, we introduce a new coordinate system which
can be transformed from the Milne coordinates

x̂0 = 2a τi

1 + a2

[(
t0 + a τeη

τi

) 1
a
(

t0
τi

+ τe−η

a τi

)a
] 1+a2

4a

,

x̂1 = 1 + a2

4a
ln

[(
t0 + a τeη

τi

) 1
a
/(

t0
τi

+ τe−η

a τi

)a
]
,

x̂x = x, x̂y = y. (4)

The corresponding metric is

ĝμν = diag[e2 1−a2

1+a2 x̂1

,−(x̂0)−2e2 1−a2

1+a2 x̂1

,−1,−1], (5)

and the nonvanishing components of the Christoffel symbol
are

�̂0
11 = x̂0, �̂1

10 = �̂1
01 = 1

x̂0
,

�̂0
01 = �̂0

10 = �̂1
11 = (x̂0)2�̂1

00 = a2 − 1

a2 + 1
. (6)

From now on, we use the “hat” (·̂) notation to denote quantities
under the new coordinate system (4). Under the comoving
frame, the solution (3) becomes “static” such that all spatial
components vanish, and the space-time profile of the solution
reads

T̂ideal =
√

ĝ00 Ti

(
τi

x̂0

)c2
s

,

û0 =
√

ĝ00, û1 = ûx = ûy = 0. (7)

Therefore, (4) is the the comoving frame of the asymmetric
expanding flow (3). We have redefined Ti to absorb a space-
time independent factor.

Taking t0 = 0 and a = 1, Eq. (4) returns to the Milne
coordinate and Eq. (7) returns to the Bjorken-Hwa solution
[42,43]. With general values for t0 and a, one may still connect
the new solution with the Bjorken-Hwa solution by rescaling
ûμ and T̂ by (ĝ00)−1/2 and replacing x̂0 by τ . x̂0 and x̂1, thus,
are respectively referred to as the hat proper time and hat
rapidity in this paper.

The Boltzmann equation in the co-moving frame. Noting the
simplicity of the solution (7) in the comoving frame (4) and
its similarity to the Bjorken-Hwa solution, we take the comov-
ing frame and solve the Boltzmann equations. Following the
property of the hydro solution, we focus on the systems that
are homogeneous in the transverse plane, and the Boltzmann
equation (1) in the comoving frame becomes(

ĝ00 p̂0
∂

∂ x̂0
+ ĝ11 p̂1

∂

∂ x̂1
+ a2 − 1

a2 + 1

(
p̂2

x + p̂2
y

) ∂

∂ p̂1

)
f (x̂α, p̂β )

= − p̂0û0T̂ (x̂0)

5η̄
( f (xα, p̂β ) − feq(xα, p̂β )). (8)

Noting that the solution (3) requires a simple relation between
the pressure and the energy density, P = c2

s ε, which corre-
sponds to the conformal limit in a kinetic theory, we therefore
focus on massless particles in this work. The nonvanishing
prefactor of the derivative with respect to p̂1 posts chal-
lenges in getting exact solution of the Boltzmann equation:
the formal solution [34–36] can no longer be applied in such
cases. One may try to simplify the coordinate and momentum
dependence of the distribution function by analyzing the sym-
metry properties of the hydro solution (7) and the Boltzmann
equation (8). We note that (8) is invariant if one performs
a pseudoboost such that x̂0 → x̂0, x̂1 → x̂1 + ηb, and x̂i →
x̂i e− 1−a2

1+a2 ηb for i ∈ {x, y}, which leads to ĝμν → e2 1−a2

1+a2 ηb ĝμν ,

and correspondingly, p̂T → p̂T e
1−a2

1+a2 ηb , T̂ → T̂ e
1−a2

1+a2 ηb , and

û0 → û0 e
1−a2

1+a2 ηb . Noting that such a transformation scales the
transverse coordinates differently than the temporal and lon-
gitudinal ones, it simplifies (8) under two special situations.
One is to eliminate the x̂x and x̂y coordinates; the other is to

let a = 1 so that the transverse scaling factor (e
1−a2

1+a2 ηb) is unity.
Both simplifications correspond to special solutions of (8) and
will be discussed in what follows sequentially.

Solution in 1 + 1D. First, we consider a coordinate system
with only x̂0 and x̂1, i.e., a 1 + 1 dimensional system. This is
equivalent to considering f ∝ δ( p̂x )δ( p̂y) so that momentum
derivative in (8) is eliminated. Under such a constraint, the
on-shell condition becomes p̂0 = | p̂1|/x̂0, and the speed of
sound for a massless free particle is cs = 1. We find that both
the homogeneous equilibrium distribution and the equivalent
relaxation time are independent of x̂1. This further allows us
to assume the solution to be independent of the hat rapidity,
and Eq. (8) becomes

∂x̂0 f (x̂0, p̂1) = − T̂ (x̂0)

5η̄

[
f (x̂0, p̂1) − exp

(
− p̂0

T̂ (x̂0)

)]
. (9)
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In 1 + 1D, η̄ has no physics meaning, but it is a dimensionless
parameter that scales the relaxation time. With arbitrary initial
distribution function given at hat proper time x̂0

i , fi(x̂0
i , p̂1),

based on Landau matching, we find the equation to the effec-
tive temperature of 1 + 1D system,

T̂ 2
eff (x̂0) = (x̂0)2(

x̂0
i

)2 e
− 1

5η̄

∫ x̂0

x̂0
i

T̂eff (x′ )dx′
T̂ 2

0

+ 1

5η̄

∫ x̂0

x̂0
i

dx′ (x̂0)2

(x̂′)2
e− 1

5η̄

∫ x̂0

x̂′ T̂eff (x′′ )dx′′
T̂ 3

eff (x̂′). (10)

When η̄ → 0, effective temperature returns to the ideal hydro
solution T̂ (x̂0) = Ti τi/x̂0.

It is worth noting that, while f (x̂0, p̂1) does not explicitly
depend on hat rapidity, the corresponding energy-momentum
stress tensor still nontrivially depends on x̂1 via the Jacobian
of the momentum integral (i.e.,

√
ĝ00). In other words, the x̂1

dependence of hydrodynamic quantities can be factored out as
scaling constants.

Symmetric solution in 3 + 1D. Compared to the afore-
mentioned 1 + 1D solution, the longitudinal distribution of
relativistic heavy-ion collisions particle production is better
described by solutions in the 3 + 1 dimensional coordinate
[41], even if the transverse profiles are assumed to be homoge-
neous. It is, thus, important to find solutions of the Boltzmann
equation in 3 + 1D coordinates for realistic studies. When
taking into account the transverse degrees of freedom, a
solution of the Boltzmann equation (8) can be found only
when a = 1, which describes systems that are symmetric
when reflecting the longitudinal direction. When a = 1, the
hydro solution (7) is equivalent to the Bjorken-Hwa flow if
one performs a mapping between the hat and Milne coordi-
nates, x̂0 ↔ τ and x̂1 ↔ η. Such a mapping is essentially a
Minkowski-time translation [41], but it corresponds to non-
trivial physics consequence as it gives the correct plateau
structure in the rapidity distribution of final state particles
which is observed in experiments. The coordinate mapping
naturally leads to a corresponding relation between solution
to the Boltzmann equation and [40]. The Boltzmann equa-
tion takes a simple form,

∂x̂0 f (x̂0, p̂μ) = − T̂ (x̂0)

5η̄
( f (x̂0, p̂μ) − e− p̂0 (x̂0 )

T̂ (x̂0 ) ), (11)

and the formal solution [34–36] is applicable,

f (x̂0, p̂1, p̂T ) = D
(
x̂0, x̂0

i

)
f0

(
x̂0

i , p̂1, p̂T
)

+ 1

5η̄

∫ x̂0

x̂0
i

d x̂′D(x̂0, x̂′)T̂ (x̂′)e− p̂0 (x̂′ )
T̂ (x̂′ ) . (12)

Here, f0(x̂0
i , p̂1, p̂T ) is the initial distribution at hat

proper time x̂0
i , D(x̂0, x̂0

i ) ≡ exp [− 1
5η̄

∫ x̂0

x̂0
i

T̂ (x̂′)dx̂′],
and the energy is given by the on-shell condition
p̂0(x̂0) =

√
( p̂1

x̂0 )2 + p̂2
T . The temperature is fixed by ensuring

energy conservation, 0 = ∫
dP̂( p̂0)2( f (x̂0, p̂μ) − e− p̂0

T̂ (x̂0 ) ),

where
∫

dP̂ ≡ ∫ d4 p̂
(2π )3

√−ĝ
2δ(( p̂0)2 − ( p̂1

x̂0 )2 − p̂2
T ) with√−ĝ = √− det ĝμν = x̂0 and d4 p̂ = d p̂0d p̂1d p̂xd p̂y. There

is no simple explicit form for the integral of the solution
(12). Nevertheless, we may solve the integral numerically,
construct the stress tensor out of the distribution function,
extract the macroscopic hydrodynamic quantities, and analyze
their “time” evolution.

Hydrodynamic quantities. Given the distribution function,
the energy momentum tensor reads

T̂ μν =
∫

dP̂ p̂μ p̂ν f (x̂, p̂). (13)

In the conformal limit, the bulk viscosity vanishes, and one
can always decompose stress tensor as

T̂ μν = ε̂(x̂)ûμûν + �̂μνP̂ (x̂) + π̂μν (x̂), (14)

where ε̂(x̂) is the energy density, P̂ (x̂) the thermodynamic
pressure, π̂μν (x̂) the shear viscous stress tensor, and �̂μν ≡
ĝμν − ûμûν the “space” projection operator. π̂μν is symmetric,
traceless (ĝμνπ̂

μν = 0), and orthogonal to the fluid velocity
(ûμπ̂μν = ûνπ̂

μν = 0). In 3 + 1D, a conformal system has
cs = 1/

√
3, and the energy density, thermodynamic pressure,

and entropy only depend on temperature:

ε̂ = 3 T̂ 4

π2
, P̂ = T̂ 4

π2
, ŝ = ε̂ + P̂

T̂
= 4 T̂ 3

π2
. (15)

Placing
∫

dP̂ p̂μ p̂ν on both side of Eq. (12), we obtain the
integration form of the stress tensor,

T̂ μν (x̂0) = D
(
x̂0, x̂0

i

)Hμν

(
x̂0

i

x̂0

)∫
p3d p

2π2
f0

(
x̂0

i , p̂1, p̂T
)

+ 1

5η̄

∫ x̂0

x̂0
i

d x̂′D(x̂0, x̂′)T̂ (x̂′)Hμν

(
x̂′

x̂0

)

×
∫

p3d p

2π2
feq(x̂′, p̂0(x̂′)), (16)

with nonvanishing elements of tensor Hμν given by

H00(ξ ) ≡ ξ

4π

∫
sin θ dθ dϕ

(sin2 θ + ξ 2 cos2 θ )−
1
2

= R(ξ ), (17)

H11(ξ ) ≡ ξ 3

4π

1

(x̂0)2

∫
cos2 θ sin θ dθ dϕ

(sin2 θ + ξ 2 cos2 θ )
1
2

= RL(ξ )

(x̂0)2
,

(18)

Hxx(ξ ) ≡ ξ

4π

∫
sin2 θ cos2 ϕ sin θ dθ dϕ

(sin2 θ + ξ 2 cos2 θ )
1
2

= RT (ξ ), (19)

where R(ξ ) = ξ

2 (ξ + arccos ξ√
1−ξ 2

), RL(ξ ) = ξ 2(R(ξ )−ξ 2 )
1−ξ 2 ,

RT (ξ ) = (1−2ξ 2 )R(ξ )+ξ 4

2(1−ξ 2 ) , and Hyy(ξ ) = Hxx(ξ ) [44]. Noting

that T̂ μν is always diagonal, the fluid is still “at rest” in
the comoving frame, i.e., ûμ in (7) remains the correct
velocity decomposition of (16). For a conformal system that
is homogeneous in the transverse plane, the stress tensor
is traceless (ĝμν T̂ μν = 0) and symmetric when exchanging
the transverse variables (T̂ xx = T̂ yy). There remain two
independent components in the stress tensor: the effective

temperature determined by T̂ 00 = 3 T̂ 4
eff

π2 , and the shear viscous

tensor π̂ xx ≡ T̂ xx − T̂ 00

3 .
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FIG. 1. Scaled temperature (upper) and scaled temperature shear
viscous stress tensor (lower) as functions of x̂0/x̂0

i obtained by differ-
ent shear viscosity to entropy ratios (η̄). Curves are respectively for
η̄ = 1/4π (purple), 3/4π (blue), 5/4π (green), 7/4π (yellow), and
9/4π (red). Dashed curves correspond to the long-time asymptotic
solutions (21).

We start the evolution from an equilibrium distribution
with temperature denoted by T̂0, and the effective temperature
and shear viscous stress tensor read

T̂ 4
eff (x̂0) = D

(
x̂0, x̂0

i

)H̃0

(
x̂0

i

x̂0

)
T̂ 4

0

+ 1

5η̄

∫ x̂0

x̂0
i

d x̂′D(x̂0, x̂′)H̃0

(
x̂′

x̂0

)
T̂ 5

eff (x̂′),

π̂ xx(x̂0) = D
(
x̂0, x̂0

i

)H̃x

(
x̂0

i

x̂0

)
T̂ 4

0

+ 1

5η̄

∫ x̂0

x̂0
i

d x̂′D(x̂0, x̂′)H̃x

(
x̂′

x̂0

)
T̂ 5

eff (x̂′), (20)

where H̃0 ≡ H00 and H̃x ≡ 3
π2 (Hxx − H00

3 ). We therefore
look into the dimensionless quantities, scaled temperature
T̂eff/T̂ideal and scaled shear viscous stress tensor x̂0π̂ xx/ŝ,
whose “evolution” with hat proper time are shown in Fig. 1 for
various η̄. The matching condition of the initial state requires
that parameters in T̂ideal shall be taken as Ti = T̂0 and τi = x̂0

i .
In making the plot, we have set T̂0 = 1/τi.

In Fig. 1, dashed curves are also shown to indicate the long
hat-proper-time asymptotic analytical results obtained from a

perturbative analysis of (20),

T̂eff

T̂ideal
= eη̄ − 2 η̄

3

(
τi

x̂0

) 2
3

+ O((x̂0)−
4
3 ),

π̂ xxx̂0

ŝ
= 2η̄

3
+ 40 η̄2

63 eη̄ Ti τi

(
τi

x̂0

) 2
3

+ O((x̂0)−
4
3 ). (21)

Details are shown in the Appendix. Starting from an initial
condition which matches the ideal temperature, the scaled
temperature first deviates from unity driven by the viscous
effect, then it approaches the ideal limit with the effective
temperature being eη̄Ti at large enough x̂0. eη̄ is a viscosity-
dependent constant that shall be obtained numerically, and it
is greater than unity due to entropy production. The scaled
shear-viscous stress tensor starts from zero and approaches the
Navier-Stokes limit. Meanwhile, the longitudinal to transverse

pressure ratio is given by PL
PT

= P̂−2π̂ xx

P̂+π̂ xx = 1 − 3 η̄

2 eη̄Tiτi
( τi

x̂0 )
2
3 +

O((x̂0)−
4
3 ).

Finally, we are ready to study the proper-time and rapidity
dependence of temperature and shear-viscosity by transform-
ing back to the Milne coordinates, T (τ, η) = T̂ (x̂0(τ, η)) and
π xx(τ, η) = π̂ xx(x̂0(τ, η)). In Fig. 2, we show the rapidity
dependence of shear viscous tensor and the difference be-
tween the temperature and the corresponding long-time ideal
hydro limit, �T ≡ |T̂ − eη̄T̂ideal|. We have set the overlap
time t0 = 0.01 fm/c as in [41]. In a particular η slice, the
solution is approaching an ideal hydro limit when proper
time increase: values of both π xx and �T are getting smaller
in τ . π xx is also approaching the Navier-Stokes solution,
π xx = 2η̄ s

3 x̂0(τ,η) , as indicated by the dashed curves. When τ is
fixed, the deviations from ideal limit are smaller at larger |η|.
Nevertheless, this does not imply faster relaxation in the larger
rapidity region. The larger rapidity region has been initialized
with smaller deviation from the long-time limit. To check the
speed of relaxation, we may take the ratio between the time
evolving values and their corresponding initial values, i.e.,
π xx(τ, η)/π xx(τi, η) and �T (τ, η)/�T (τi, η). Such ratios are
shown in the lower panels of Fig. 2. We observe that, at
large enough propertime, the ratios are smaller at midrapidity,
which indicates faster relaxation. This is consistent with the
fact that temperature is higher in the midrapidity region, which
means a smaller relaxation time.

Summary and outlook. In this work, we derive new ana-
lytical solutions to the Boltzmann equation, which take the
relaxation time approximation for the collisions kernel, as-
sociated with a newly discovered exact solution of ideal
hydrodynamics [41]. The solution assumes homogeneity in
the transverse plane, and allows nontrivial rapidity depen-
dence. This is the first analytical solution of the Boltzmann
equation that breaks the boost invariance, to the best of our
knowledge. With the distribution function, we further con-
struct the stress tensor and compute the effective temperature
and shear viscous stress tensor. We observe that both the tem-
perature and the shear viscous stress tensor relax to the limit
of hydrodynamics. We also explicitly show the proper-time
and rapidity dependence of the deviation of the temperature
and shear viscous tensor from the long-time ideal limit, and
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FIG. 2. Rapidity dependence of shear viscous tensor (left) and the difference between the scaled ideal solution the actual temperature
(right) at proper time τ/τi = 1(purple), 10(blue), 102(green), 103(yellow), and 104(red). Upper panels are the absolute values whereas lower
panels are the ratios between the value at any proper time to those at initial time τ = τi. In the upper left panel, dashed curves are added
indicating the Navier–Stokes solution that π xx = 2η̄

3
s

x̂0 .

we observe faster relaxation at midrapidity, which is higher in
temperature. Our solution is useful in testing the applicability
and accuracy of different approximations in the derivation
of hydrodynamic equations. In particular, if taking the initial
distribution in Eq. (12) to be anisotropic in momentum space,
one may compare the results with those in anisotropic hydro
[44–47]. Results will be reported in future publication.
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APPENDIX: LONG-TIME ASYMPTOTIC BEHAVIOR

Here provides Appendix that analyzes the long-time
asymptotic behavior (21) of the temperature and shear vis-
cosity self-consistent equations (20) in the main text. For
convenience, we use τ to denote the hat proper time (x̂0) in
this Appendix. For later convenience, we define that Fη̄(τ ) ≡

5η̄

eη̄Tiτi
( τi

τ
)

2
3 . We also note that, when ζ → 0,

H̃0(e−ζ ) =
(

1 + 8ζ 2

45

)
e− 4

3 ζ + O(ζ 3),

H̃x(e−ζ ) = 8ζ

15π2
e− 11

7 ζ + O(ζ 3). (A1)

As the first attempt, we start from solving the “zeroth
iteration,” putting the ideal solution on the right hand side of

the integral,

T̂ 4
eff,0(τ ) = 1

5η̄

∫ τ

τi

Dideal(τ, t )H̃0(t/τ )T̂ 5
ideal(t ) dt, (A2)

which leads to

T̂eff (τ ) = eη̄ Ti

(
τi

τ

) 1
3

[1 + φ Fη̄(τ )], (A3)

with eη̄ = 1 and φ = − 1
6 . Such coefficients do not agree with

the numerical solution of solving the complete self-consistent
equation, but the power of the time dependence is correct.
We therefore solve the self-consistent equation for the coef-
ficients. The decay kernel reads

D(τ2, τ1) = exp

[
− 3

2 Fη̄(τ2)

(
1 −

(
τ1

τ2

) 2
3

)](τ1

τ2

)φ

(A4)

and

D(τ, τ e−ζ ) = exp

[
− 3

2 Fη̄(τ )
(1 − e− 2

3 ζ )

]
e−φ ζ (A5)

=
(

1 + ζ 2

3 Fη̄(τ )
− 2 ζ 3

27 Fη̄(τ )
+ ζ 4

18 F 2
η̄ (τ )

)

× e
−( 1

Fη̄ (τ ) +φ) ζ + O(ζ 4). (A6)

We replace the integration variable t = τ e−ζ in the self-
consistent equation (20), and it becomes

[1 + φ Fη̄(τ )]4 = 1

Fη̄

∫ ∞

0
dζ

(
1 + ζ 2

3 Fη̄(τ )
− 2 ζ 3

27 Fη̄(τ )
+ ζ 4

18 F 2
η̄ (τ )

)
e
−( 1

Fη̄
+ 2

3 +φ)ζ
(

1 + 8ζ 2

45

)
[1 + φ Fη̄(τ )]5

= 1 + 4φ Fη̄(τ ) +
(

16

45
+ 8φ

3
+ 6φ2

)
F 2

η̄ (τ ) + O(
F 3

η̄

)
. (A7)
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Thus, we find φ = − 2
15 , and

T̂eff (τ ) = eη̄ Ti

(
τi

τ

) 1
3

− 2 η̄

3

τi

τ
+ O(τ− 5

3 ), (A8)

Then, computing the long-time behavior of the shear stress tensor become straightforward,

π̂ xx(τ ) = 1

5η̄

∫ τ

τi

dt D(τ, t )H̃x(t/τ )T̂ 5
eff (t )

= 8e4
η̄T 4

i

15π2

(
τi

τ

) 4
3

Fη̄(τ )

(
1 − 22 Fη̄(τ )

105

)
+ O(τ−2), (A9)

so that

π̂ xx(τ ) τ

ŝ(τ )
= 2 η̄

3
+ 40

63

η̄2

eη̄Tiτi

(
τi

τ

) 2
3

+ O(τ− 4
3 ). (A10)

As shown in the main text, such long-time asymptotic formulas are in good agreement with the numerical solution of the self
consistent equations (20).
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