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We discuss how heavy quark dynamics is affected by the critical fluctuations near the QCD critical point
at finite temperature and density. We find that the heavy quark momentum diffusion constant scales as κ ∝
ξ z−3−η. In the model H scenario, which is widely accepted for critical dynamics, the exponents are known as
z � 3 and η ≈ 0.04 and the critical singularity of κ is not significant if present. In the model B scenario, z � 4
and κ ∝ ξ is singular near the critical point.
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Introduction. Now that the existence of the quark-gluon
plasma has been experimentally confirmed [1], the next step
is to determine the parameters in the phase diagram of QCD.
Among them of particular interest is the position of the critical
point if it exists [2]. To confirm the existence of the critical
point and determine its position on the phase diagram, Beam
Energy Scan (BES) and BES-II experiments have been carried
out at Relativistic Heavy Ion Collider and several experiments
are planned at other facilities. Several observables have been
proposed for the critical point search. One of them is char-
acteristic behavior of higher cumulants of net baryon charge
as a function of the energy of colliding nuclei. However, this
expectation is based on several unphysical assumptions such
as freeze-out of baryon number cumulants at chemical freeze-
out and no diffusion effect on them in the following hadron
phase [3]. So far, no definite observables exist as signatures
of the critical point. Thus, it would be nice to examine the
possibility to use other observables for this purpose.

In this paper, we study a possibility to use a dynamical
critical phenomenon on heavy quarks [in the following, we
understand that heavy quark means (anti)charm quark, since
(anti)bottom quarks are rarely produced in low energy heavy
ion collisions], with increase of the momentum diffusion
constant around the critical point. The elliptic flow, v2, is
monotonously increasing in time. If the momentum diffusion
constant diverges around the critical point as the drag force
on particles does in many models, the motion of the heavy
quarks would be synchronized with the motion of the bulk
matter when the system passes near the critical point. As a
result, the v2 of heavy quarks will show a peak structure at the
collision energy at which the system passes the critical point,
as the collision energy is changed.

This critical phenomenon is interesting also from the theo-
retical point of view. The pursued critical point is for the chiral
symmetry. It is believed to belong to the dynamical universal-
ity class H in the classification by Hohenberg and Halperin
[4,5]. Heavy quarks interact with gluons in completely the
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same manner as light quarks, but the concept of chiral sym-
metry is not applied to heavy quarks. In other words, heavy
quarks are outside of the chiral symmetry. Thus heavy quarks
act as impurities when the bulk system goes through the chiral
phase transition. However, it obeys the same interaction law
with light quarks that constitute the bulk. This is the unique
feature of heavy quarks as impurities. In most cases, impurity
interacts differently from the constituents of the matter that is
going through a critical phenomenon. At this point it would
be useful to imagine and compare with pollens in Brown’s
experiment [6].

In the following, we first model the coupling between
heavy quarks and soft mode. Then, we discuss the critical be-
havior of the momentum diffusion constant around the critical
point in model H and model B. Finally, we give a conclusion
and an outlook.

Coupling between heavy quarks and soft mode. It is
not well understood how heavy quarks couple to critical
fluctuations near the QCD critical point. In this paper, we
construct the interaction Lagrangian LI based on symme-
try principles of QCD. From the rotational invariance, we
consider the heavy quark coupling in the (pseudo)scalar chan-
nels ψ̄ψ, ψ̄γ0ψ, ψ̄γ5ψ, and ψ̄γ5γ0ψ . Of these, the last two
channels vanish in the heavy quark mass limit and the nonva-
nishing scalar channels are

ψ̄ψ = Q†Q + Q†
cQc, (1)

ψ̄γ0ψ = Q†Q − Q†
cQc, (2)

where ψ = (Q, Q∗
c )T in the Dirac representation. Note that the

vector channels inevitably couple to the critical mode through
derivative interaction, so it is expected to be less important in
the heavy quark momentum diffusion.

When the up and down quarks are massless and the
strange quark is somewhat heavy and does not play an es-
sential role in the phase diagram, the critical fluctuations are
�φ = (σ, πa) (a = 1, 2, 3) and form an SU(2)L × SU(2)R �
O(4) quartet [7]. A small but finite mass m for up and
down quarks breaks the SU(2)L × SU(2)R symmetry explic-
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itly, which makes πa massive near the critical point. Note
that at the critical point for finite m, σ mixes with conserved
densities of baryon number and energy and forms a soft mode.
This mixing is crucial to determine the dynamical universality
to be model H (critical fluid) à la Hohenberg and Halperin
[4,5], where this soft mode couples to transverse momentum
density nonlinearly.

Here, we construct the interaction Lagrangian for heavy
quarks when up and down quarks are massive, but we can
repeat a similar argument to discuss when they are both mass-
less. We use O(4) symmetry and its small explicit breaking
by finite m as a guiding principle to write down the inter-
action Lagrangian. We only consider the coupling between
�φ and heavy quarks. This is enough because σ contains the
soft mode. Near the critical point, the effective interaction
Lagrangian takes the form of

LI = − f ( �φ; T, μ, m)ψ̄ψ − g( �φ; T, μ, m)ψ̄γ0ψ, (3)

where O(4) symmetry constrains

f ( �φ; T, μ, m) = f0(| �φ|2; T, μ) + O(m), (4)

g( �φ; T, μ, m) = g0(| �φ|2; T, μ) + O(m). (5)

Charge conjugation symmetry also relates

f ( �φ; T, μ, m) = f ( �φC ; T,−μ, m), (6)

g( �φ; T, μ, m) = −g( �φC ; T,−μ, m), (7)

where �φC is the charge conjugation of �φ. At vanishing chem-
ical potential, Eq. (7) constrains g0(| �φ|2; T, μ = 0) = 0 using
| �φC |2 = | �φ|2. However, at finite μ, the charge conjugation
does not constrain the interaction Lagrangian (3).

Since πa becomes massive due to small explicit breaking
by finite m, we can concentrate only on the critical mode δσ ≡
σ − σc to get

f0(| �φ|2; Tc, μc) � f0((σc + δσ )2; Tc, μc), (8)

g0(| �φ|2; Tc, μc) � g0((σc + δσ )2; Tc, μc). (9)

We assume that the functions f0 and g0 are regular and can be
approximated by

f0((σc + δσ )2; Tc, μc) � f0
(
σ 2

c

) + 2 f ′
0

(
σ 2

c

)
σcδσ, (10)

g0((σc + δσ )2; Tc, μc) � g0
(
σ 2

c

) + 2g′
0

(
σ 2

c

)
σcδσ. (11)

Mean field analysis around a tricritical point shows σc ∝ m0.2

when m is small [8]. Thus the interaction Lagrangian is

LI = −δσ (λQ†Q + λcQ†
cQc) + O(m, δσ 2), (12)

where higher order fluctuations are less singular, e.g., δσ 2 is a
local composite field corresponding to energy fluctuations in
the Ising model.

The coupling between heavy quark density and δσ occurs
by the same reason that baryon number density and δσ mixes
at finite chemical potential. It can also be understood from the
hadronic interaction at finite density. In the vacuum, the heavy
quark current couples to the omega meson by ωμψ̄γ μψ .
There arises a mixing of (temporal component of) omega and

sigma mesons at finite density [9], which induces the coupling
between heavy quark density and sigma meson as we obtain
above.

When up and down quarks are massless, m = 0, the con-
densate vanishes at the critical point σc = 0 and all four
components of �φ are critical. In this case, the O(4) symmetry
constrains the leading terms in LI to be ∝ | �φ|2 [see Eqs. (4)
and (5)].

Momentum diffusion constant: Force-force correlator. In
this formulation, the heavy quark is a quantum mechanical
particle while the critical fluctuations are classical fields.
One should regard the classical critical fields as classical
approximation of the corresponding quantum fields of critical
fluctuations. Then, the effective Lagrangian for the nonrela-
tivistic heavy quark with mass M reads

LQ = Q†

(
i∂t − M + ∇2

2M
− λδσ

)
Q

+ Q†
c

(
i∂t − M + ∇2

2M
− λcδσ

)
Qc. (13)

From the heavy quark momentum operator

P̂Q =
∫

d3x

[
Q̂†

(
1

i
∇

)
Q̂ + Q̂†

c

(
1

i
∇

)
Q̂c

]
, (14)

we can get the force operator

F̂Q = d

dt
P̂Q = −

∫
d3x∇δσ̂ · (λQ̂†Q̂ + λcQ̂†

cQ̂c). (15)

The heavy quark momentum diffusion constant κ is defined
by the force-force correlator [10–12]

κ = 1

3

∫ ∞

−∞
dt〈F̂Q(t ) · F̂Q(0)〉Q, (16)

in the static limit of the heavy quark (M → ∞). Here, 〈Ô〉Q

denotes a thermal average including one heavy quark put at
x = x0 in the infinite past:

〈Ô〉Q =
∑

n e−β(En−μBn )〈n|Q̂(x0,−∞)ÔQ̂†(x0,−∞)|n〉∑
n e−β(En−μBn )

,

(17)

where En and Bn are the energy and baryon number of a QCD
eigenstate |n〉 including no heavy quarks. Drag force −γ p and
diffusion constant D are related to κ by

γ = κ

2MT
, D = 2T 2

κ
. (18)

Apart from the rapid phase e−iMt , which is absorbed by
shifting the energy by M, the heavy quark field operator is
easily solved in the static limit

Q̂(x, t ) = Û (t, 0; x)Q̂(x, 0), (19)

Û (t1, t2; x) ≡ Pe−i
∫ t1

t2
dtλδσ̂ (x,t )

, (20)

where P denotes the path-ordered product (i.e., when t1 >

t2 it is a time-ordered product and when t1 < t2 it is
an antitime-ordered product). Using the anticommutator
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{Q̂(x, t ), Q̂†(y, t )} = δ(x − y) and the property Q̂(x, t )|n〉 =
0, the force-force correlator in (16) is expressed only with δσ̂ :

〈F̂Q(t ) · F̂Q(0)〉Q

= λ2〈Û (−∞, t )∇δσ̂ (t )Û (t, 0) · ∇δσ̂ (0)Û (0,−∞)〉,
(21)

where 〈Ô〉 denotes thermal average without any heavy quarks.
Here, spatial position is dropped from all the operators be-
cause they are all at x0.

Near the critical point, the critical mode with long wave-
length is responsible for the critical behaviors. Occupation
number of bosonic fields with low energy far exceeds 1 so
that classical field approximation works excellently. In the
classical limit, δσ̂ is no longer an operator and the phases of
the transporters U s cancel out. Thus, we obtain

〈F̂Q(t ) · F̂Q(0)〉Q � λ2〈∇δσ (t ) · ∇δσ (0)〉. (22)

The two point function of the classical field δσ can be calcu-
lated using the generalized Langevin equation for the model
H [4].

Here are two technical remarks on the classical approxi-
mation. First, to be strict, it is necessary to include the back
reaction from the classical critical field to the heavy quark.
The transporters Û can be included in the Hamiltonian as
λ

∫
d3xδ(x − x0)δσ̂ (x) so that the classical equation of mo-

tion has a new source term at the position of the heavy quark.
In this sense, our result would be strictly justified when the
coupling λ is weak. Second, the amplitude of the classical
field δσ becomes smaller near the critical point. Up to a
small scaling exponent η ≈ 0.04, one can estimate it from the
susceptibility∫

d3xd3y〈δσ (x)δσ (y)〉 ∼ V T ξ 2 ∼ V

ξ 3
· (ξ 3)2 · T

ξ
, (23)

where V is the system volume and ξ is the correlation length.
On the right hand side, V/ξ 3 is the number of independent
domains, (ξ 3)2 is from the volume measure d3xd3y, and
thus

√
T/ξ is the typical amplitude of δσ with wavelength

ξ . Comparing the energy density (∇δσ )2 ∼ T/ξ 3 and the
interaction energy by the source λδσ (x0) ∼ λ

√
T/ξ , the ef-

fect of the source should be localized within a volume v �
λT −1/2ξ 5/2 � ξ 3. This observation may support that the back
reaction can be generally negligible near the critical point, but
it deserves further analysis.

Momentum diffusion constant: Scaling behavior. Scaling
behavior of (connected) correlation function

C(x, t ) ≡ 〈δσ (x, t )δσ (0, 0)〉conn =
∫

d3q

(2π )3
eiq·xC̃(q, t )

(24)

is well known. It is related to the susceptibility χ (q) and the
relaxation time τ (q) by

C̃(q, 0) = χ (q),
∫

dtC̃(q, t ) ∼ χ (q)τ (q). (25)

Therefore, we get

κ = λ2

3

∫
dt

∫
d3q

(2π )3
C̃(q, t )q2 ∼ λ2

3

∫
d3qχ (q)τ (q)q2.

(26)

The susceptibility χ (q) and relaxation time τ (q) obey the
scaling form

χ (q) ∼ q−2+η, τ (q) ∼ q−z, (27)

in the scaling regime 1/ξ � q � 1/ro, where ξ is the corre-
lation length and ro is some microscopic cutoff length scale.
Thus, the integral becomes

κ ∼ λ2

3

∫ 1/ro

1/ξ

dqq2+η−z ∼ λ2

3

(
rz−3−η

o − ξ z−3−η

3 + η − z

)
. (28)

When z − 3 − η > 0, the integral is dominated by the fluctua-
tions with long wavelength and hence κ ∝ ξ z−3−η is sensitive
to the correlation length. When z − 3 − η < 0, the inte-
gral is dominated by the fluctuations with short wavelength
and hence κ ∝ r−|z−3−η|

o does not exhibit critical scaling.
In the latter case, the critical fluctuation does not make a
dominant contribution to κ . Rather, κ is determined by micro-
scopic collisional process, which is insensitive to the critical
behavior.

It is predicted that the critical dynamics of the QCD critical
point is given by the model H in the Hohenberg-Halperin
classification [4,5], for which z � 3 and η ≈ 0.04. In this
case, we conclude that the critical behavior is not significant
and is difficult to find in the heavy-ion collisions. In the
case of model B, z � 4 and κ ∼ ξ shows singular behavior
near the critical point, but the model B scenario is somewhat
unlikely.

Conclusion. As we have seen, in the case of model H
the critical exponent is unexpectedly small and it is diffi-
cult to observe the critical phenomenon through v2 of heavy
quarks. However, it is interesting that in the case of model
B it could be observable. The difference between model B
and model H is only one additional conserved quantity (in
our case momentum density) and existence of Poissonian
dynamics. This difference makes the observability of heavy
quark v2 thus different. It would be meaningful to confirm
this difference in atomic systems in laboratory. In addition,
recently the effect of the chiral critical point at m = 0 has
been studied on the thermodynamical behavior at the physical
point and observed on the lattice [13]. This critical point
has O(4) symmetry and belongs to model G [7,14,15]. Thus,
it would be of interest to extend our analysis to model G.
Finally, there may be a possibility that the heavy quark
strongly couples with light antiquarks near the critical point
and forms a composite particle, which is no longer singlet in
the chiral symmetry. In this case, construction of the effec-
tive interaction Lagrangian would be more involved and the
force-force correlation function remains complicated even in
the classical limit because of the non-Abelian nature of chiral
symmetry.
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