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Low-energy enhancement in the magnetic dipole γ-ray strength functions of heavy nuclei
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A low-energy enhancement (LEE), which was observed experimentally in the γ -ray strength function (γ SF)
describing the decay of compound nuclei, would have profound effects on r-process nucleosynthesis if it persists
in heavy neutron-rich nuclei. The LEE was shown to be a feature of the magnetic dipole (M1) strength function in
configuration-interaction shell-model calculations in medium-mass nuclei. However, its existence in heavy open-
shell nuclei remains an open question. Here, using a combination of many-body methods, we identify a LEE in
the M1 γ SFs of heavy samarium nuclei. In particular, we use the static-path plus random-phase approximation
(SPA+RPA), which includes static and small-amplitude quantal fluctuations beyond the mean field. Using the
SPA+RPA strength as a prior, we apply the maximum-entropy method to obtain finite-temperature M1 γ SFs
from exact imaginary-time response functions calculated with the shell-model Monte Carlo method. We find
that the slope of the LEE in samarium isotopes is roughly independent of the average initial energy over a wide
range below the neutron separation energy. As the neutron number increases, strength transfers to a low-energy
excitation, which we interpret as the scissors mode built on top of excited states.

DOI: 10.1103/PhysRevC.109.L031302

Introduction. The γ -ray strength function (γ SF) [1] is an
important input to the Hauser-Feshbach theory of compound-
nucleus reactions [2] and has a significant effect on r-process
nucleosynthesis [3]. In particular, the magnetic dipole (M1)
γ SF in heavy nuclei exhibits interesting phenomenology,
characterized by a spin-flip resonance and a scissors mode
[4,5]. The inclusion of the latter in Hauser-Feshbach calcu-
lations improves predictions of neutron radiative capture rates
[6].

In recent years, a low-energy enhancement (LEE)—an
up-bend structure at low γ -ray energies—has been observed
experimentally in the γ SFs for decay in several midmass
nuclei [7–9] and a few rare-earth nuclei [10–12]. If it per-
sists in heavy neutron-rich nuclei, the LEE is likely to
have profound effects on r-process nucleosynthesis since it
would enhance significantly the radiative neutron capture
cross sections of nuclei near the neutron drip line [13]. Ex-
periments indicate that the LEE is of dipole nature [14], and
configuration-interaction (CI) shell-model studies of medium-
mass nuclei have attributed the LEE to the M1 γ SF [15–20].
A LEE was also observed in CI shell-model calculations
of the M1 strength function of A ≈ 130 nuclei [21]. How-
ever, conventional CI shell-model diagonalization methods
become intractable in heavier nuclei due to the combinatorial
increase of the many-particle model space with the numbers
of valence nucleons and/or single-particle orbitals. Conse-
quently, there has been no theoretical investigation of the
persistence of the LEE in heavy open-shell nuclei.

While most theoretical studies have focused on the
strength function built on the ground state, finite-temperature
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methods enable the study of γ SFs built on excited states. The
finite-temperature quasiparticle random-phase approximation
(QRPA) has been applied to calculate finite-temperature γ SFs
[22–25], and the zero-temperature QRPA with empirical cor-
rections has also been applied to γ SF calculations [26,27].
However, the QRPA has limitations in that it only includes
small-amplitude quantal fluctuations around the mean-field
configuration, and its finite-temperature version has been
mostly limited to spherical nuclei.

The shell-model Monte Carlo (SMMC) method [28–31]
enables exact calculations (to within statistical errors) of
finite-temperature observables within the CI shell-model
framework; see Ref. [32] for a recent review. However, the
SMMC cannot calculate the finite-temperature γ SF directly,
but only its Laplace transform, the imaginary-time response
function. The γ SF is then the inverse Laplace transform of
the imaginary-time response function, which requires the an-
alytic continuation to real time and is numerically an ill-posed
inverse problem. The standard method to carry out this an-
alytic continuation is the maximum-entropy method (MEM)
[33–35], but its success depends crucially on the choice a good
prior strength function.

Here we use the static-path plus random-phase approx-
imation (SPA+RPA) [36–38] to construct a prior strength
function. The SPA+RPA includes large-amplitude static fluc-
tuations [39] and small-amplitude time-dependent quantal
fluctuations beyond the mean field and was recently success-
fully applied to study nuclear state densities of heavy nuclei
[40]. The SPA+RPA restores the full rotational symmetry that
is broken in the mean-field approximation in deformed nuclei,
and was shown to describe correctly the rotational enhance-
ment of state densities in deformed nuclei. In the SPA+RPA,
we can calculate real-time response functions directly, and
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therefore an analytic continuation is not required to obtain its
corresponding strength function.

In this work we apply the MEM to calculate the finite-
temperature M1 γ SF from the SMMC imaginary-time
response functions using the SPA+RPA strength as a prior
in a chain of heavy even-mass samarium isotopes 148–154Sm.
Furthermore, we extract the deexcitation strength functions
from these finite-temperature strength functions and find an
enhancement at low γ -ray energies that is present over a broad
range of temperatures (i.e., average initial excitation energies),
which we interpret as the LEE. A LEE was identified ex-
perimentally in the total γ SF of several odd-mass samarium
isotopes [10,11]. The deexcitation γ SF was measured in the
even-mass samarium isotope 148Sm [41] but a LEE was not
observed.

In the finite-temperature M1 γ SFs, we also observe a
transfer of strength from the low-energy peak to a somewhat
higher-energy excitation as the neutron number increases and
the isotopes become more deformed. We interpret this higher-
lying excitation as the scissors mode [4,5] built on top of
excited states [42].

SPA+RPA γ SF. The γ SF at temperature T for an electro-
magnetic transition operator, which is a spherical tensor Oλ of
rank λ, is defined by

SOλ
(T ; ω) =

∑
αiJi
α f J f

e−βEαi Ji

Z
|(α f J f ||Ôλ||αiJi )|2

× δ(ω − Eα f J f + EαiJi ), (1)

where (αJ ) label CI shell-model eigenstates with energy and
spin (EαJ , J ), and Z = ∑

αJ (2J + 1)e−βEαJ is the canonical
partition function. Given a shell-model Hamiltonian with the
two-body interaction expressed in the separable form Ĥ2 =
−(1/2)

∑
α vαQ̂2

α , we apply the adiabatic approximation of
Ref. [38] to evaluate Eq. (1) in the SPA+RPA

SOλ
(T ; ω) ≈

∫
dσM(σ )Zη(σ )Cη(σ )SOλ,η(T, σ ; ω)∫

dσM(σ )Zη(σ )Cη(σ )
, (2)

where σ are static auxiliary fields and M(σ ) is a mea-
sure function [40]. Zη(σ ) = Tr[P̂ηe−β(ĥσ −∑

λ=p,n μλN̂λ )] is the
number-parity projected one-body partition function, where
ĥσ = Ĥ1 − ∑

α vασαQ̂α is a one-body Hamiltonian, and Pη =
(1 + ηeiπN̂ )/2 is the number-parity projection with η =
+1(−1) for even (odd) number parity. Cη(σ ) is the RPA
correction factor that accounts for the Gaussian integral
over small amplitude time-dependent auxiliary-field fluctu-
ations [36,37,40,43,44]. This correction factor is given by
(see Eq. (8) of Ref. [40])

Cη(σ ) =
∏

k>l
1

Ẽk−Ẽl
sinh(β(Ẽk − Ẽl )/2)∏

ν>0
1

�ν
sinh (β�ν/2)

, (3)

where Ẽk are the generalized quasiparticle energies of ĥσ and
±�ν are the eigenvalues of the σ -dependent RPA matrix

Mη

kl,k′l ′ = (Ẽk − Ẽl )δkk′δll ′ − 1

2

(
f̃ η

l − f̃ η

k

) ∑
α

Qα,klQα,l ′k′ .

(4)

Here f̃ η

k are the number-parity-projected generalized thermal
quasiparticle occupation numbers; see Ref. [40] for further
details.

The σ -dependent strength function SOλ,η(T, σ ; ω) in
Eq. (2) is given by [38]

SOλ,η(T, σ ; ω) = S(0)
Oλ,η

(T, σ )δ(ω)

− lim
ε→0+

Im �Oλ,η(T, σ ; ω + iε)

π (1 − e−βω )
, (5)

where

�Oλ,η(T, σ ; ω + iε) =
∑

μ

∑
kl,k′l ′

∑
ν

1
2O∗

λμ,klMη

kl,νMη,−1
ν,k′l ′

× (
f̃ η

l ′ − f̃ η

k′
)Oλμ,k′l ′

1

ω − �ν + iε
.

(6)

In Eq. (6), ν ranges over the eigenbasis of the RPA matrix
M and μ denotes the components of Oλ. The second term
on the right-hand side of Eq. (5) corresponds to the finite-
temperature QRPA strength function around the mean-field
configuration defined by the static auxiliary fields σ [45,46].
For each such static configuration we explicitly exclude all
the spurious zero-energy modes associated with broken sym-
metries. The first term on the right-hand side accounts for the
strength in the ω → 0 limit, for which we use the SPA result
[38]

S(0)
Oλ,η

(T, σ ) = 1

2

∑
μ

∑
kl,k′l ′
Ek=El

O∗
λμ,klOλμ,k′l ′ 〈a†

kala
†
k′al ′ 〉σ,η, (7)

where ak, a†
k annihilate and create quasiparticles in the eigen-

basis of ĥσ .
We express Eq. (2) in terms of the weight function

Wη(σ ) = M(σ )Zη(σ )

SOλ
(T ; ω) =

∫
dσWη(σ )Cη(σ )SOλ,η(T, σ ; ω)∫

dσWη(σ )Cη(σ )
. (8)

Following Ref. [40], we apply the Metropolis-Hastings algo-
rithm to draw uncorrelated sample configurations σk from the
weight function Wη and evaluate Eq. (8) by taking an average
over these sample configurations,

We also calculate the finite-temperature γ SF in the
static-path approximation (SPA), which neglects the quantal
fluctuations entirely. In this case, the RPA correction factor
Cη = 1, and the σ -dependent γ SF in Eq. (5) is given by its
mean-field expression.

Maximum-entropy method. We improve our SPA+RPA
calculations of the finite-temperature γ SF by combining these
results with exact SMMC calculations of the imaginary-time
response function ROλ

(T ; τ ) through the maximum-entropy
method (MEM) [34]. ROλ

(T ; τ ) is the Laplace transform of
the finite-temperature γ SF. The γ SF satisfies SOλ

(T ; −ω) =
e−βωSOλ

(T ; ω) and the Laplace transform can be rewritten as

ROλ
(T ; τ ) =

∫ ∞

0
dω K (τ, ω)SOλ

(T ; ω), (9)
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FIG. 1. The finite-temperature M1 γ SF as a function the transition energy ω for the even-mass samarium isotopes 148–154Sm. The MEM
results (green dashed lines) are compared with the SPA+RPA results (orange dots) and SPA results (blue circles). The top row shows
temperatures near the neutron separation energies in each of the isotopes, while the bottom row shows low temperatures close to the ground
state.

where K (τ, ω) = e−τω + e−(β−τ )ω is a symmetrized kernel
that decays exponentially with ω. The MEM selects the γ SF
that maximizes the objective function [34]

Q(SOλ
; α) = αS − 1

2χ2. (10)

In Eq. (10), the χ2 function is given by

χ2 = (ROλ
− ROλ

)T C−1(ROλ
− ROλ

), (11)

where R is the SMMC response function in imaginary time
and C is its covariance matrix. S is the entropy function

S = −
∫

dω
(
SOλ

(T ; ω) − Sprior
Oλ

(T ; ω)

− SOλ
(T ; ω) ln

[
SOλ

(T ; ω)/Sprior
Oλ

(T ; ω)
])

, (12)

where Sprior
Oλ

is a suitably chosen prior for the γ SF.
In this work, we apply Bryan’s method [47], in which the

MEM strength function is given by

SMEM
Oλ

=
∫

dα Sα
Oλ

P(
α|GOλ

, C, Sprior
Oλ

)
, (13)

where Sα
Oλ

maximizes the objective function (10) for a given

α, and the probability function P (α|GOλ
, C, Sprior

Oλ
) is given in

Ref. [34].
In the SMMC method, the imaginary-time response func-

tion of Oλ is expressed as [30,32]

ROλ
(T ; τ ) =

∫
D[σ ]Gσ Tr Ûσ 〈Oλ(τ ) · Oλ〉σ∫

D[σ ]Gσ Tr Ûσ

, (14)

where Oλ(τ ) = Û −1
σ (τ, 0)OλÛσ (τ, 0) with Ûσ (τ, 0) being the

propagator for a system of noninteracting nucleons moving in

external time-dependent auxiliary fields σ , Gσ is a Gaussian
weight, and the expectation value 〈. . .〉σ is taken with respect
to the propagator Ûσ ≡ Ûσ (β, 0). We sample auxiliary-field
configurations according to the weight function WSMMC

σ =
Gσ |TrÛσ | and average over these samples to determine the
response function estimate and covariance matrix. In contrast
to the SPA+RPA, the SMMC includes all fluctuations of
the time-dependent auxiliary fields σ . We will discuss our
SPA+RPA method and MEM approach in more detail else-
where.

Application to lanthanide nuclei. We calculated finite-
temperature M1 γ SFs in a chain of even-mass samarium
isotopes 148–154Sm with the SPA+RPA and used the MEM
to refine these strength functions. We used the single-particle
model space and Hamiltonian of Ref. [40] with a pairing plus
quadrupole two-body interaction. The M1 operator has the
form

ÔM1 =
√

3

4π

μN

h̄c
(gl l + gss), (15)

where l and s are the orbital and spin angular momentum
operators, respectively. In our calculations, we used the free-
nucleon g factors gl,p = 1, gl,n = 0, gs,p = 5.5857, and gs,n =
−3.8263.

In Fig. 1, we show the finite-temperature M1 γ SF. We
compare the MEM γ SF results (green dashed lines) with
the SPA+RPA results (orange dots) and SPA results (blue
circles). The top row in Fig. 1 shows temperatures at which the
average initial energy in each isotope is near the neutron sep-
aration energy, while the bottom row shows low temperatures
at which the isotopes are essentially in their ground states.
Positive values of ω correspond to the absorption of γ rays.
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FIG. 2. The deexcitation strength function fM1 as a function of emitted γ -ray energy Eγ for the even-mass samarium isotopes 148–154Sm at
an average initial energy near their neutron separation energy. The MEM results (green dashed lines) are compared with the SPA+RPA results
(orange dots). We observe the LEE in all four isotopes. For 148Sm, we also show the experimental total deexcitation γ SF (blue solid squares)
from Ref. [41].

The reliability of the MEM depends on a good choice for
the prior strength function. In Fig. 1 of the Supplemental
Material [48] we show the M1 imaginary-time response func-
tions for the SPA and the SPA+RPA in comparison with the
exact SMMC response function (which essentially coincides
with the response function of the MEM strength function).
We observe that the SPA+RPA response function is close to
the exact SMMC response function. This indicates that the
SPA+RPA strength function is a good prior and thus our
MEM results are reliable.

In Fig. 1, we replaced the δ functions in the σ -dependent
strength functions (5) with Lorentzians of fixed width ε = 0.2
MeV. This width is comparable to the bin width in final energy
used in previous CI shell-model studies [15,17–20].

For transitions starting near the neutron separation energy
(top row of Fig. 1), the main effect of the MEM is to increase
the height of the peak at ω ≈ 0. As shown in Fig. 2 below,
this ω ≈ 0 peak corresponds to the LEE. At higher ω val-
ues, the MEM is in excellent agreement with the SPA+RPA
result, which was used as a prior. As the neutron number
increases, the strength of this ω ≈ 0 peak is reduced, and a
small excitation around ω ≈ 2 MeV emerges in the γ SF. The
location of this ω ≈ 2 MeV peak corresponds roughly to the
location of the scissors mode observed in transitions from the
ground state [4,5], and we therefore tentatively interpret it as
the scissors mode built on excited states [42]. Our result that
some of the LEE strength transfers to the scissors mode in
deformed nuclei is consistent with the results of Ref. [18] in
open-shell iron isotopes. Similarly, a reduction of the LEE
peak at Eγ → 0 with increasing number of active protons or
number of active neutron holes in nuclei with A ≈ 130 was
observed in Ref. [21]. We also note in the top row of Fig. 1
an excitation at ω ≈ 6 MeV with a strength that is roughly
independent of neutron number. We note that the main low-
energy structures (including the LEE) in the magnetic dipole
strength function originate in the SPA (blue circles in Fig. 1),
namely from the large static fluctuations of the mean field and
that the QRPA alone is not sufficient to reproduce the LEE.

In the γ SF from the ground state shown in the bottom row
of Fig. 1, we observe no zero-ω peak. Instead, as neutron
number increases, strength transfers from an excitation at

ω ≈ 6 MeV, which we interpret to be the spin-flip mode, to
a multihumped low-energy excitation at ω ≈ 1–3 MeV. This
is roughly consistent with the appearance of the scissors mode
with increasing deformation in heavy even-mass nuclei [5].

To investigate the LEE, we calculate the deexcitation M1
strength function fM1 as a function of the γ -ray energy from
the finite-temperature γ SF. We estimate fM1 for an initial
excitation energy Ei and an emitted γ -ray energy Eγ using

fM1(Ei, Eγ ) ≈ 1

3
a

ρ̃(Ei )

ρ̃(Ei − Eγ )
SM1(T ; ω = −Eγ ), (16)

where a = 16π
9(h̄c)3 , T is the temperature describing an average

excitation energy of Ei and ρ̃(Ex ) is the total level density.
The latter is calculated from the total SMMC state density
plus the spin-cutoff model. The factor of 1/3 in Eq. (16) takes
into account approximately the 3 allowed values of the final
spin for a given initial spin [49]. As the LEE is a feature of
compound-nucleus decay, we focus on downward transitions.
In Fig. 2, we show the calculated fM1 versus the emitted γ -ray
energy Eγ for average initial energies Ei near the neutron
separation energy. In the MEM results (green dashed lines),
we observe a LEE structure below Eγ ≈ 2 MeV in each of the
isotopes. This LEE is also present in the SPA+RPA results
(orange dots) but is not as pronounced. We note that the
response function is not sensitive to the strength function at
high values of ω because of the exponential suppression in the
Laplace transform (9). On the other hand, the low-ω results
for the MEM strength function (for which the zero-ω peak
is observed) are expected to be reliable and thus our MEM
description of the LEE is likely to be accurate.

In the left panel of Fig. 2 we also included the experimen-
tal total deexcitation γ SF measured in Ref. [41] for 148Sm
(blue solid squares). We note that the experimental γ SF in-
cludes contributions from both E1 and M1, and a detailed
comparison with the experiment requires the calculation of
the E1 γ SF. Furthermore, since we work in a truncated
shell-model space, the free-nucleons g factors used in our cal-
culations can generally have renormalized values that might
impact the calculated M1 strength function.
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FIG. 3. The TB parameter of the exponential form Ce−Eγ /TB fit to
the fM1 results from the MEM at low Eγ for various average initial
energies Ei. Results are shown for the even-mass samarium isotopes
148–154Sm.

The experimental γ SF of 148Sm in Fig. 2 does not show
a LEE but the lowest measured γ -ray energy is ≈1.65 MeV
and our calculations indicate that it is necessary to go to
lower energies to observe the LEE. In our calculations, we
find the extrapolated LEE peak for 148Sm at Eγ → 0 to be
fM1 ≈ 1.66×10−7 MeV−3. This value is comparable to the
LEE peak observed experimentally [11] in the neighboring
odd-mass nucleus 149Sm with an extrapolated value for the
peak of ≈1.3×10−7 MeV−3; see Fig. 5(d) of Ref. [11]. In
Ref. [12], a LEE was observed in several neodymium isotopes
with a peak of ≈1.05×10−7 MeV−3 in the spherical even mass
144Nd (see Table IV in that reference).

Following Refs. [15,17], we fit an exponential form
Ce−Eγ /TB to fM1 at low Eγ for various temperatures, each
of which corresponds to an average initial energy Ei for the
transition. We find that this exponential form provides a good
description of the LEE structure. In Fig. 3, we show the fitted
values of TB for 148–154Sm as a function of Ei. We find that
the TB values in each isotope remain roughly constant over a

wide range of Ei values. This independence of the slope of
the LEE as a function of the initial energy is consistent with
conventional CI shell-model results in smaller model spaces
[17]. The TB values for the isotopes are similar on average but
are somewhat larger in the more deformed isotopes 152,154Sm,
indicating that the LEE has a gentler slope in these isotopes.
This is consistent with CI shell-model results in open-shell
iron nuclei [18].

Conclusions. In this work, we applied the SPA+RPA to
calculate finite-temperature M1 γ SFs in a chain of even-mass
samarium isotopes 148–154Sm within the CI shell-model frame-
work. We also applied the MEM to derive the M1 γ SFs from
the exact SMMC imaginary-time response functions using
our SPA+RPA results as the prior strength. We calculated
the deexcitation M1 strength function fM1 as a function of
the γ -ray decay energy for the even-mass samarium isotopes
148–154Sm and found a LEE structure. To our knowledge, this
is the first theoretical description of a LEE in the M1 γ SF of
heavy nuclei using the CI shell-model framework in very large
model spaces for which conventional diagonalization methods
are prohibited. We showed that the LEE is roughly indepen-
dent of the average initial energy, in agreement with previous
results in medium-mass nuclei. If a LEE also exists in heavy
nuclei near the neutron drip line, it is expected to enhance
the radiative neutron capture cross sections, and thus alter
considerably r-process nucleosynthesis. We also observed the
emergence of a structure consistent with the scissors mode
both near the neutron separation energy and near the ground
state as the neutron number increases. Finally, the methods we
applied here are not specific to atomic nuclei, but are generally
applicable to the calculation of strength functions in strongly
interacting many-body quantum systems.
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