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Exploring the mass radius of 4He and implications for nuclear structure
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In this study, we determine the mass radius of 4He, a very light nucleus, by examining the near-threshold
φ-meson photoproduction data of the LEPS Collaboration. To assess the gravitational form factor of 4He, we
employ multiple models for the mass distribution, including Yukawa-type, exponential, Gaussian, and uniform
functions. The mass radius of 4He is measured to be 1.70 ± 0.14 fm, which is approximately equal to the charge
radius of 4He. Surprisingly, in contrast to the findings of the proton, no noticeable discrepancy between the
charge radius and the mass radius is noted for the 4He nucleus. The proton and neutron distributions within 4He
are likely to be identical, confirming its regular tetrahedral structure in a new way. We propose exploring the
difference between charge and mass radii as a new approach to examine the nuclear structure.
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Introduction. The mass radius is an important and basic
property for any composite system, from the subatomic parti-
cles of very small scale in high-energy physics to the galaxies
of very large scale in astrophysics. The trace anomaly from
the quantum corrections of quantum chromodynamics (QCD)
breaks the conformal symmetry [1–3], and it is one key mech-
anism for the nucleon mass generation [4–10] and responsible
for the most of the mass of the visible universe. The mass
of a particle can be viewed as the response of the particle to
an external gravitational field. The gravitational form factors
(GFFs) of a particle are defined as the off-forward matrix
elements of energy-momentum tensor (EMT) in the particle
state [11–13]. The GFFs contain the fundamental properties
of the particle, such as the mass and spin [12,13]. In the Breit
frame, the 00 component of the static EMT is the energy
density, and the energy density of the whole system should
be normalized to the mass [13]. Therefore the mass density
distribution and mass radius are all defined and derived from
the GFFs.

The naive way to probe GFFs is via graviton scattering,
however, it is infeasible due to the weakness of gravitational
interaction of a particle. A practical opportunity is via the
measurement of generalized parton distributions (GPDs) from
various exclusive scattering processes. The second Mellin
moments of GPDs yield the combinations of GFFs [12,13].
Recently, with some QCD analyses, it is suggested that the
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diffractive vector-meson photoproduction near the produc-
tion threshold is sensitive to the gluonic GFFs of the target
[14–24]. These QCD analyses result in three approaches for
calculating the scattering amplitude of near-threshold vector-
meson photoproduction: GPD approach [16,17], holographic
QCD approach [18–22], and the factorization based on the
vector-meson-dominance (VMD) model [14,15].

In experiment, the determination of mass radius is closely
related to the extractions of GFFs from experimental data.
Actually there are some pioneering works in determining the
mass radii and GFFs of the proton [14,15,25], the deuteron
[26], and the pion [27,28]. From these analyses, the mass
radii of the studied hadronic particles are all smaller than
the electric charge radii. With the recent experimental data of
near-threshold J/� photoproduction at Jefferson Lab (JLab),
physicists have extracted the gluonic gravitational form fac-
tors of the proton with both the GPD approach and the
holographic approach. They found that the mass radius is no-
tably smaller than the charge radius, and the proton structure
consists of three distinct regions [25].

In principle the concepts of mass radius and GFFs can
be applied to a large hadronic system. At low energy, the
nucleonic degree of freedom is valid for describing the static
properties and low-energy reactions of an atomic nucleus.
However, at high energy and a more fundamental level, the
nucleus is built with quarks and gluons. It is very interesting
to find out whether there is the difference between the mass
radius and the charge radius of a nucleus. From our previ-
ous analysis, the mass radius of the loosely bound deuteron
is slightly smaller than its charge radius [26]. However, for
the tightly bound nucleus, such as the 4He, we still lack the
information on its mass radius and the related analysis.

The charge radius of 4He is precisely measured to be
1.67824(83) fm with the technique of muon-atom spec-
troscopy [29], and the world average from electron elastic
scattering experiments is 1.681(4) fm [30]. An older com-
bined analysis gave the average charge radius of 4He to be

2469-9985/2024/109(1)/L012201(5) L012201-1 Published by the American Physical Society

https://orcid.org/0000-0003-1933-9947
https://orcid.org/0000-0002-9830-5034
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.L012201&domain=pdf&date_stamp=2024-01-04
https://doi.org/10.1103/PhysRevC.109.L012201
https://creativecommons.org/licenses/by/4.0/


RONG WANG, CHENGDONG HAN, AND XURONG CHEN PHYSICAL REVIEW C 109, L012201 (2024)

1.6755(28) fm [31]. However, the mass radius of 4He has
never been studied. In this work, we investigate the mass
radius of the helium nucleus from an analysis of the |t | de-
pendence of the differential cross section of near-threshold
φ-meson photoproduction, which could provide important in-
formation about the gravitational properties and the internal
structure of a large hadronic system, especially the transverse
spatial distributions.

Near-threshold φ-meson photoproduction and gravita-
tional form factors. The GFFs are the matrix elements of the
EMT, which encode the mechanical properties of a composite
particle. The trace anomaly of EMT sets up a mass scale of
the hadronic system, and it is one key component of the origin
of the proton mass according to the QCD analysis [4–10].
In the chiral limit, the scale anomaly is shown in the trace
of EMT of QCD in terms of scalar gluon operator [14]. The
trace anomaly in QCD is the pure quantum effect from gluon
fluctuations. In Kharzeev’s view, in the weak gravitational
field, the trace of EMT and the temporal component of EMT
T 00 coincide [14]. The scalar GFF is then defined by Kharzeev
as the form factor of the trace of the EMT. It is Lorentz
invariant and defines the mass distribution of the system. In
the chiral limit of massless quarks, the information about the
mass radius of a hadronic system is contained in the matrix
element of scalar gluon operator at a nonzero momentum
transfer, for the matrix element does not depend on the strong
coupling constant due to the scale anomaly [14].

In the nonrelativistic limit and based on the VMD model,
the amplitude of a vector meson photoproduction can be
safely factorized into a short-distance part describing the elec-
tric polarizability of the qq̄ pair, and the matrix element of the
chromoelectric operator over a hadron [14]. The scalar part
in the chromoelectric operator is the trace of the EMT, and
it dominates near the threshold of the vector-meson photo-
production as a consequence of scale anomaly. Therefore the
vector-meson photoproduction amplitude can be expressed as
[14],

Mγ p→φp′ (t ) = −Qec2
16π2M

b
〈p′|T μ

μ |p〉. (1)

The differential cross section is then computed with the square
of the scattering amplitude, which is written as,

dσγ p→φp′

dt
= 1

64πs

1

|Eγ ,c.m.|2 |Mγ p→φp′ (t )|2. (2)

With the above analysis and Eq. (1), the differential cross
section is proportional to the square of the scalar GFF of the
hadronic target, as,

dσγ p→φp′

dt
∝ |G(t )|2. (3)

In some sense and the phenomenological view, the theoretical
structures of the GFFs are similar in the processes probed by
the graviton and the V ∗V in the VMD model.

In this work, we study the |t | dependence of the differential
cross section of φ-meson photoproduction off the 4He target
with the theoretical framework in terms of the scalar GFF dis-
cussed above, in order to extract the mass radius of 4He. For
the convenience of discussions, we may define a normalized

TABLE I. Some density distributions, the corresponding form
factors, and RMS radii.

Model ρ(r) F (q)
√

〈r2〉
Pointlike 1

4πr2 δ(r) 1 0

Yukawa-type 	2

4πr e−	r 1
1+q2/	2

√
6

	2

Exponential 	3

8π
e−	r 1

(1+q2/	2 )2

√
12
	2

Gaussian ( 	2

π
)3/2e−	2r2

e−q2/(4	2 )
√

3
2	2

Uniform 3
4πR3 θ (R − r) 3 j1(qR)

qR

√
3R2

5

scalar GFF F (t ) as,

F (t ) = G(t )

M
. (4)

The mass radius then can be simply computed with the slope
of the scalar GFF at zero momentum transfer (t = 0 GeV2),
as,

〈
r2

m

〉 = −6
dF (t )

dt
= − 6

M

dG(t )

dt
, (5)

which is also discussed in the following section. To be con-
sistent with our previous analyses of the mass radii of the
proton and the deuteron [15,26], we apply the same theoretical
framework of the scalar GFF discussed above.

Various density distributions and form factors. The root-of-
mean-square (RMS) radius

√
〈r2〉 from a density distribution

ρ(r) is defined as,

〈r2〉 =
∫ ∞

0
r2ρ(r)4πr2dr. (6)

In the low-momentum elastic scattering process, the form
factor F (q) of the target is measured, and it is the Fourier
transformation of the density distribution ρ(r). For a con-
tinuous density distribution and under the small momentum
exchange, the RMS radius also can be easily computed with
the slope of the form factor at Q2 = 0 GeV2, which is written
as,

〈r2〉 = −6
dF (q2)

dq2

∣∣∣∣
q2=0

. (7)

For different hadronic systems, the density distributions
are different. The various and typical density distributions,
the corresponding form factors and RMS radii are listed in
Table I. For the light meson, such as the pion, the density
reduces quickly with the increasing radial distance, and the
density distribution is taken as the Yukawa potential form.
The corresponding form factor of the pion is monopolelike.
The dipole form factor from exponential distribution describes
well the form factor of the proton in a wide kinematical range.
For the heavy nucleus, such as the lead nucleus, the den-
sity distribution is approximately described with the uniform
distribution or the Fermi distribution due to the saturation
property of nuclear matter. The 4He is a light and compact
nucleus. The density distribution and the form factor of 4He
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FIG. 1. The measured differential cross sections of the coherent
φ-meson photoproduction off the 4He nucleus near the threshold,
compared with various models for the nuclear GFF. The experimen-
tal data are taken from LEPS Collaboration’s publication [32]. The
magenta dotted curves show the fitting results of the monopole GFF
from Yukawa-type mass distribution. The blue dash-dotted curves
show the fitting results of the dipole GFF from exponential mass
distribution. The red dashed curves show the fitting results of the
exponential GFF from Gaussian mass distribution. The black solid
curves show the fitting results of the Bessel GFF from uniform mass
distribution.

should be different from those of the proton and the heavy
nucleus.

In this work, our goal is to determine the RMS mass radius
of the 4He nucleus from the coherent and diffractive scattering
off the target. Thus the density distribution discussed above
is specifically the mass distribution, and the form factor is
the scalar GFF. To see which model of mass distribution and
scalar GFF describes well the 4He nucleus, the experimental
data of the near-threshold φ-meson photoproduction off 4He
are fitted with various function forms of the scalar GFF.

Data analysis and results. Figure 1 shows the measured
differential cross sections of the near-threshold φ-meson pho-
toproductions as a function of t at different energies from
LEPS Collaboration [32]. For the momentum transfer t̃ in the
LEPS data, |t |min is subtracted. In this analysis, we remove
the correction on the momentum transfer by calculating the
|t |min’s of the reaction γ 4He → φ 4He at different photon
energies. The differential cross sections are fitted with the
models of various function forms for the scalar GFF. We
investigated four different models: the monopole model, the
dipole model, the Gaussian mass distribution model, and the
uniform mass distribution model. In the data fitting with each
model, the scalar GFF is the same for all the experimental
data at different photon energies, and only the normalizations
are different at different energies. One sees that all the mod-
els reproduce the experimental data in the narrow |t | range.

TABLE II. The determined model parameters, the extracted mass
radii, and the fitting qualities χ 2/Ndof with various models for the
mass distribution.

Model 	 (GeV)
√

〈r2〉 (fm) χ 2/Ndof

Yukawa-type 0.045 ± 0.051 10.72 ± 12 93.80/32
Exponential 0.220 ± 0.063 3.10 ± 0.89 40.98/32
Gaussian 0.142 ± 0.011 1.70 ± 0.14 34.09/32

R (GeV−1)
Uniform 8.97 ± 0.47 1.37 ± 0.08 37.50/32

Nevertheless, the scalar GFF from Gaussian mass distribution
most agree with the differential cross sections. More and
precise experimental data in a large region of kinematic |t |
are needed to differentiate the models more clearly.

To quantify the quality of fit, the reduced χ2 are calculated
for different models, which are listed in Table II. One finds
that the Gaussian mass distribution model describes the exper-
imental data the best with the smallest χ2/Ndof quite close to
1.0. For describing a compact and small nucleus, the Gaussian
distribution of the mass is a rather good choice. The uniform
distribution of the mass also fits well the experimental data
with χ2/Ndof < 1.2. But the uniform mass distribution is just
an overideal distribution for a heavy nucleus with the perfect
nuclear saturation property.

The final results of the model fittings are summarized in
Table II, including the extracted slope parameter 	 or R in the
modeled GFFs, and the related mass radii. In the least-squares
fit of each model, the slope parameter 	 (or R) of the GFF
is the same for all the cross-section data at different photon
energies. It is clearly shown that the extracted mass radii
under different model assumptions vary significantly. There is
a strong model dependence of the extracted mass radius. The
first reason is that the |t | range covered by the experimental
data is narrow, about 0.15 GeV2. The second reason is that
the effective extrapolation of the slope to t = 0 GeV2 requires
more experimental data at small |t | close to zero. On the other
side, the model dependence is very natural in extraction of
mass radius, since any model assumption definitely introduces
the model uncertainty. Nonetheless, based on the current lim-
ited data, the exponential GFF of Gaussian mass distribution
is the most effective model tested.

In the model fittings, the normalizations at different ener-
gies are set as free parameters, for we can not precisely or
accurately compute them under the fundamental theory so far.
Thus, including the parameter for modeling the scalar GFF,
there are seven free parameters. As all the free parameters
are important and have definite physical meanings, the mul-
tiparameter confidence region is considered in the analysis.
Therefore we apply �χ2 = 8.38 for the error estimations in
multidimensional parameter space at the confidence level of
70%, suggested by the MINUIT manual.

Discussions and summary. From the analysis, we find that
the differential cross section of near-threshold φ-meson pho-
toproduction off the 4He target can be described well at small
|t | with the exponential GFF of Gaussian mass distribution.
The 4He is a light nucleus, thus the uniform distribution
is an inappropriate approximation for its mass distribution.
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Meanwhile the 4He is a compact nucleus, its density in the
center should not change fast with the radial distance increas-
ing. This is probably why the Gaussian distribution model is
most consistent with the measured differential cross sections.

For a heavy nucleus, the density is fairly a constant in the
central region due the saturation property of nuclear force,
and the density distribution can be approximately modeled
with a uniform distribution, or the Fermi model with a radius
parameter and a surface thickness [33,34]. For 12C, the best fit
of the electron elastic scattering data was found lying between
a Gaussian model and a uniform model [33]. The latter studies
found that the charge distributions of 12C and 16O can be de-
scribed well with the harmonic-shell charge distributions [34].
For the charge distribution of the very light 4He, it was found
that the Gaussian model is the best in the low momentum
transfer region (<6.2 fm−2) [33–35]. The momentum transfer
|t | is below 6.2 fm−2 for the LEPS data used in this analysis.
The pure Gaussian shape of charge distribution of 4He is also
provided by the shell model [34]. In this work, we find that the
Gaussian distribution is also the best model in explaining the
mass distribution of 4He. The shapes of the mass and charge
distributions are just alike for the nucleus.

The mass radius is obtained to be 1.70 ± 0.14 fm based
on the Gaussian mass distribution model. The mass radius of
the helium nucleus is nearly the same as its charge radius.
This conclusion is quite surprising, as it violates what has
been found for the proton [14,15,25], the deuteron [26], and
the pion [27,28]. Why the mass radius of the proton is much
smaller than its charge radius is a complicated and unan-
swered question. Why the mass radius of 4He is almost the
same of its charge radius is another astounding puzzle, which
should be further investigated in the future experiments. One
may simply assume the underlying confinement mechanisms
for the proton and the nuclei are different, which should be
carefully studied with the nonperturbative QCD theory in the
future.

Figure 2 shows the differences and ratios between mass
radius and charge radius, for some hadrons and nuclei exam-
ined recently. Based on the current analyses, the differences
between mass and charge radii are similar for the pion and
the proton, approximately 0.2 fm. Nonetheless, the difference
in the mass and charge radii appears to vanish in 4He. As
the target size increases, the ratio of mass radius to charge
radius goes up approaching one. In a picture of nucleonic
degrees of freedom, the compatibility of the mass and charge
radii of 4He supports the regular tetrahedronlike structure of
4He. Nuclear mass radius is related to both the proton and the
neutron distributions inside a nucleus, whereas nuclear charge
radius primarily connect to the proton distribution. Therefore,
the radii of the proton distribution and the neutron distribution
in 4He are closely similar.

We argue that it is a pioneering and pivotal approach to
scrutinize the nuclear structure via the examination of the
difference between the charge and mass radii of a nucleus. For
9Be of the dumbbell-like structure with a neutron at the center,
its charge radius should obviously surpass its mass radius. For
208Pb with the neutron skin on the crust, its charge radius
is anticipated to be smaller than its mass radius. Extensive
and systematical investigations on the mass and charge radii
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FIG. 2. The determined mass radii of the pion, the proton, the
deuteron, and the 4He nucleus, from various groups. The pion re-
sult is taken from Ref. [27]. The proton results are taken from
Refs. [14,15,25]. The two values by JLab Hall C Collaboration
are from the holographic QCD approach and the GPD approach.
The two values by Wang et al. are from the analysis of only
φ-photoproduction data and the combined analysis of the photopro-
ductions of ω, φ, and J/ψ mesons. The deuteron result is taken from
Ref. [26]. The helium result is from this work with the Gaussian mass
distribution model.

of nuclei from different probes are highly promoted, which
are essentially beneficial for solving the puzzles on the mass
radius of 4He and the complex structures of nuclei.

Lastly, our analysis reveals that different models produce
very different extrapolation results on the mass radius, as
shown by the disparate slopes approaching t = 0 GeV2 in
Fig. 1. To differentiate between the various forms of GFF for
the light nucleus, we recommend experimental measurements
across a wide kinematic range of |t |. In Fig. 3, we show the
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FIG. 3. The predictions of the differential cross section of φ-
meson photoproduction near threshold in a broad t range with
different models for the scalar GFF. The magenta dotted curve shows
the prediction of monopole GFF. The blue dash-dotted curve shows
the prediction of dipole GFF. The red dashed curve shows the predic-
tion of exponential GFF. The black solid curve shows the prediction
of Bessel-type GFF.
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predicted differential cross sections for φ-meson photopro-
duction over a broad range of |t | up to 0.5 GeV2, based on
the fitted scalar GFFs discussed earlier. The figures indicate
that the shapes of the differential cross sections in different
models vary significantly in the |t | range above 0.2 GeV2 or
below 0.05 GeV2. As the cross section decreases rapidly with
increasing |t |, we will require high-luminosity experiments
to collect coherent and diffractive data in the |t | range from
0.2–0.5 GeV2.

The US Electron-Ion Collider (EIC) under the ongoing
construction [36,37] and the proposed Chinese Electron-Ion
Collider (EicC) [38,39] show promises in achieving this goal
by utilizing the plentiful quasireal photon flux. These facilities
will offer an ample kinematical coverage and high statistics,
and the high center-of-mass energies of the collisions will

enable measurements of near-threshold heavy quarkonium
(J/� and ϒ) photoproductions. Therefore, we recommend the
comprehensive studies of near-threshold vector-meson photo-
productions (φ, J/�, and ϒ) off nuclear targets at EIC and
EicC. Such studies will differentiate between different scalar
GFF models and reveal the puzzling mass radii and structures
of the nuclei.
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