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Quantal effect on the opening angle distribution between the spins of the fission fragments

Guillaume Scamps
Department of Physics, University of Washington, Seattle, Washington 98195–1560, USA

and Laboratoire des 2 Infinis -Toulouse (L2IT-IN2P3), Université de Toulouse, CNRS, UPS, F-31062 Toulouse Cedex 9, France

(Received 13 November 2023; accepted 19 December 2023; published 9 January 2024)

Background: Several approaches are currently trying to understand the generation of angular momentum in the
fission fragments. The microscopic TDDFT and statistical FREYA lead to different predictions concerning the
opening angle distribution formed between the two spins in particular at 0 and 180 degrees.
Purpose: This Letter aims to investigate how the geometry and the quantum nature of spins impact the
distribution of opening angles to understand what leads to different model predictions.
Method: Various assumptions of K distribution (K = 0, isotropic, isotropic with total K = 0, and from TDFFT)
are investigated in a quantum approach. These distributions are then compared to the classical limit using the
Clebsch-Gordan coefficients in the limit of h̄ approaches zero.
Results: It is shown that in all the schematic scenario the quantal distribution of opening angle lead to the
expected behavior in the classical limit. The model shows that the quantal nature of the spins prevents the
population of opening angles close to 0 and 180 degrees. The difference in opening angle in the two-dimensional
and isotropic three-dimensional distribution is discussed and it is shown that the realistic TDFFT opening angle
distribution presents an intermediate behavior between the two cases.
Conclusions: The last comparison reveals two key differences between the two model’s predictions: the quantal
spins’ nature in TDDFT and the assumption of zero K values in FREYA.
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Nuclear fission, the process in which the nucleus of an
atom splits into two smaller fragments, is a fundamental phe-
nomenon in nuclear physics with far-reaching implications,
from nuclear energy generation to our understanding of the
universe’s evolution. While the basics of fission are well
known [1–3], there is an intriguing aspect that has recently
captured the attention of the theoretical community, the de-
termination of the spin opening angle ϕHL [4]. This angle
represents the angle between the angular momentum (or spin)
of the two fission fragments. It holds valuable insight into the
dynamics of the fission process since the distribution of this
opening angle is shaped by the geometrical characteristics of
the spin distributions of these fragments and their mutual cor-
relation modes: tilting, twisting, wriggling, or bending modes.

The opening angle has been introduced in Refs. [5,6] in the
framework of the FREYA model. This model uses a classical
approximation and predicts an essentially flat distribution be-
tween 0 to 180 degrees (shown in Fig. 1). This was followed
by a microscopic calculation [7] predicting a completely dif-
ferent distribution with vanishing probabilities at 0 and 180
degrees and a strong asymmetry suggesting a large population
of the bending mode (the spins are mostly in opposite direc-
tions). However, the use of a simplified projection operator led
to a significant inaccuracy in that distribution. That was cor-
rected in Ref. [8] with an exact projection operator in the same
time-dependent density function theory (TDDFT) framework.
The resulting distribution (shown in Fig. 3) does only slightly
favor the bending mode and is mostly flat, but still, with a
vanishing population at 0 and 180 degrees. A similar result

is obtained with the collective Hamiltonian model [9]. In the
recent TD-MRV model [10] the open angle distribution also
follows that type of distribution with an additional peak at 100
degrees.

While experimental data suggest that spin magnitudes are
not significantly correlated [11], the determination of the
opening angle is a more challenging task [12]. Consequently,
in the near future, we will likely depend on theoretical analy-
sis. In Ref. [13], an interesting discussion is presented about
the impact of the geometry two-dimensional (2D) or three-
dimensional (3D)] on the opening angle distribution in a
classical framework. In the present contribution, I propose a
similar analysis in a quantum framework, to understand how
the quantum nature of the spins impacts the classical picture
and to understand the reasons for the discrepancies between
the models.

Disregarding the mechanism leading to the spin of the frag-
ments, when the fragments are separated by a large distance,
the final state wave function can be written in the form

|�〉 =
∑

SH ,KH ,SL,KL

cSH ,KH ,SL,KL |SH , KH , SL, KL〉 (1)

with the probability amplitude cSH ,KH ,SL,KL associated with the
heavy (H) and light (L) fragment’s spin (SF ) and projection
(KF ) on the z axis (the fission axis) with −SF � KF � SF

for each fragment F = {H, L}. It has to be noted that the K
quantum number here is not the projection of the spin in the
intrinsic framework of each fragment but on the fission axis.
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FIG. 1. Opening angle distribution assuming a 2D geometry and
a spin cut-off distribution. The distribution in the classical limit is
also compared to FREYA [6].

In this Letter, I investigate several cases of uncorrelated limits,
assuming different geometries.

(i) 2D: Both K are zero, the spins of the fragments are
perpendicular to the fission axis.

(ii) Isotropic 3D: The orientations of both spins are fully
isotropic corresponding to a uniform and uncorrelated
distribution of KH , KL.

(iii) Isotropic 3D: with total K = 0: The spins are con-
strained with KH = −KL which is necessary to ensure
that the total spin of the system is zero.

In all cases, the total spin S0 of the system is

SH + SL + � = S0 (2)

with � the relative orbital angular momentum. Although pre-
vious contributions focus on the simpler case with a zero total
spin, considering the vector �′ = � − S0, the same triangle
rule can be established between the three vectors SH, SL, and
�′. The difference is that �′

z the projection of �′ on the fission
axis can be different than 0.

The distribution of the opening angle ϕHL is then given by

P(ϕHL )

=
∑

�′,�′
z,

SH �=0,SL �=0

δ
(
ϕHL − ϕHL(�′, SH , SL )

)
P(�′,�′

z, SH , SL ),

(3)

ϕHL = arccos

(
�′(�′ + 1) − SH (SH + 1) − SL(SL + 1)

2
√

SH (SH + 1)SL(SL + 1)

)
,

(4)

P(�′,�′
z, SH , SL ) =

∣∣∣∣∣∣
∑

KH ,KL

C
�′,�′

z
SH ,KH ,SL,KL

cSH ,KH ,SL,KL

∣∣∣∣∣∣
2

(5)

with C
�′,�′

z
SH ,KH ,SL,KL

the Clebsch-Gordan coefficients. Note that
this distribution is always discrete with a lot of contribu-
tions, in practice to visualize the overall distribution shape,
each peak is folded with a Gaussian of width 3 degrees.
As in the previous open angle calculation, the distribution
P(ϕHL ) represents directly the probability of finding the

two angles forming an angle ϕHL, and so is normalized as∫
dϕHLP(ϕHL ) = 1.
Starting with the 2D case, in which both spins are per-

pendicular to the fission axis, i.e., only the KF = 0 states are
populated, and assuming a spin cutoff distribution for the spin,

|cSH ,KH ,SL,KL |2 ∝ δKH ,0δKL,0(2SH + 1)e
−SH (SH +1)

2σ2
H

× (2SL + 1)e
−SL (SL+1)

2σ2
L . (6)

Note that the spin-cutoff expression (Bethe formulas) is the
expected behavior in statistical approach [14] but is also found
to be close to the distribution in microscopic [15] and quantum
generated angular momentum model [9,16]. Eq. (6) assumes
that the magnitudes of the spins are uncorrelated, which is
consistent with both the experimental data [11] and theory
[7,9,13]. A phase in the coefficient would not change the
resulting distribution shown in Fig. 1. The parameters of the
spin cut-off distribution are chosen to reproduce the micro-
scopic results [15] with σH = 7h̄ and σL = 10h̄. The quantal
2D distribution is not uniform as it shows a peak at 25 degrees
and a depletion at 0 and 180 degrees. To better understand
the depletion at 0 degrees, it can be determined, in a spin
distribution limited by SH and SL < Sc, the combination of
spin (SH , SL,�′) leading to the minimal angle. This one is
found for SH = SL = Sc and �′ = SL + SH and lead to a min-
imal angle ϕmin

HL = arccos( Sc
Sc+1 ). This function is very slowly

decaying to zero. Obtaining an opening angle of 5 degrees
demands a value of Sc at 262 h̄, and for a 1-degree angle,
an exceedingly large value of 6565 h̄, both are excessively
unrealistic in the present context.

To determine the classical equivalent of that distribution,
the limit h̄ → 0 can be taken using the classical limit of the
Clebsch-Gordan coefficients [17,18]. The open angle distri-
bution becomes

P(ϕHL ) =
∑

KH ,KL,
SH ,SL

|cSH ,KH ,SL,KL |2
(
C

class.�′,�′
z

SH ,KH ,SL,KL

)2
sin(ϕHL )

SH SL

�′ ,

(7)

(
C

class.�′,�′
z

SH ,KH ,SL,KL

)2 = 2�′

π

( − (
S4

H + S4
L + �′4)

+ 2
(
S2

H S2
L + S2

H�′2 + S2
L�′2)

+ 4
(−S2

H KL�′
z−S2

LKH�′
z+�′2KH KL

))−1/2
,

(8)

�′ =
√

cos(ϕHL )2SH SL + S2
H + S2

L. (9)

In the case of a 2D distribution, the distribution is found to
be uniform,

P(ϕHL ) =
∑
SL,SH

c2
SL,SH

/π, (10)

which is close to the FREYA distribution, as seen in Fig. 1.
The uniform distribution is the one that is expected in classical
physics for two independent spins in the same plane. Although
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FIG. 2. Top: Opening angle distribution assuming a 3D isotropic
geometry and a spin cut-off distribution. The distribution in the
classical limit is also shown with a dashed blue line. Bottom: Same
with the constraint that the z component of the spins are in opposite
directions. The green line shows the result of a 3D sampling.

classical physics allows two spins to be correlated in direction
and confined in a two-dimensional plane, it is not allowed
in quantum mechanics where spatial correlations require the
population of nonzero K .

Another hypothesis is a fully isotropic distribution assum-
ing all the K of each fragment to be equiprobable. In that
situation, in the classical limit, the opening angle is expected
to follow a distribution P(ϕHL ) = sin(ϕHL ))/2. In that hy-
pothesis, the fragments do not respect the KH + KL = 0 rule
that is mandatory in the S = 0 case. The coefficients of the
two-spin wave packet are assumed to be

|cSH ,KH ,SL,KL |2 ∝ e
−SH (SH +1)

2σ2
H e

−SL (SL+1)

2σ2
L . (11)

The phase of each coefficient is chosen randomly. The
fragments are then completely independent. The quantal
distribution shown in Fig. 2 follows roughly the classical
behavior with fluctuation around that curve due to its quantum
nature. Employing the classical limit of the Clebsch-Gordon
coefficients results in the same distribution as in the classical
sampling.

The previous case represents an ideal scenario where the
total spin is unconstrained. In the case of S0 = 0 like in the
spontaneous fission of 252Cf, an additional condition has to be
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FIG. 3. Opening angle distribution for the 252Cf spontaneous
fission obtained with a TDDFT calculation [8] as well as its cor-
responding distribution in the classical limit. The green curve shows
the result of a sampling statistical distribution with the same θF angle
distribution as in the TDDFT calculation.

taken into account,

|cSH ,KH ,SL,KL |2

∝ δKH −KL (2SH + 1)e
−SH (SH +1)

2σ2
H (2SL + 1)e

−SL (SL+1)

2σ2
L

2 min(SH , SL ) + 1
(12)

with the denominator a normalization factor to ensure the
same distribution P(SH , SL ) as in the two previous cases. The
three resulting distributions are shifted to the right. Indeed,
the opening angle is enlarged because the spins are required
to have opposite z components. This last scenario is equivalent
to the one of Ref. [19] assuming a uniform distribution of �

constrained to respect the triangular rule.
The previous examples showed that the 2D geometry leads

to a flat gauge angle distribution while the fully isotropic
3D gives a distribution close to the sinus function. To finish,
I consider the case of the realistic TDDFT calculation [8]
which is obtained using the projection method [20–22]. The
microscopic model shows an intermediate behavior with a K
distribution decaying quickly as a function of K . Equivalently,
the angle between the spins and the fission axis θF is contained
in a distribution at an angle close to 90 degrees [8]. This leads
to an intermediate behavior between the 2D and isotropic 3D
scenario as seen in Fig. 3. The distribution is mostly flat but
decays for angles close to 0 and 180 degrees.

The distribution in the limit of h̄ → 0 can also be obtained
with a classic sampling of the two spins. This sampling as-
sumes the same spin cutoff distribution for the magnitude
of the spins as previously, the orientations of the spins are
however constrained with a distribution of angle θH ,

P(θH ) ∝ e− |θH −90|
0.28 , (13)

and with a KH = −KL to determine the other polar angle.
The distribution P(θH ) is chosen to be close to the TDDFT
results for 252Cf [8]. This sampling of the spins produces
a distribution of opening angle that reproduces the TDDFT
distribution in the case where the Clebsch-Gordon coefficients
are replaced by their classical equivalent.
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From that last comparison, it is possible to understand the
main difference between the TDDFT and FREYA opening
angle distribution. This difference can be attributed to two
primary factors. Firstly, the quantal nature of the spins in
TDDFT prevents the population of opening angle close to
0 degrees and depletes the region around 180 degrees. The
second reason is the population of nonzero K , which also

reduces the probability distribution of the two regions at the
edge of the interval.
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