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QCD-based charge symmetry breaking interaction and the Okamoto-Nolen-Schiffer anomaly
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An approach is proposed to link the charge symmetry breaking (CSB) nuclear interaction and the low-energy
constants in quantum chromodynamics (QCD) by matching the CSB effect in nuclear matter. The resulting
CSB interaction is applied to study the Okamoto-Nolen-Schiffer anomaly, still lacking a satisfactory micro-
scopic understanding, on the energy differences of mirror nuclei by taking 17F - 17O, 15O - 15N, 41Sc - 41Ca, and
39Ca - 39K as typical examples. The magnitude and sign of the QCD-based CSB interactions are found to resolve
the anomaly successfully within theoretical uncertainties.
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An anomaly in the energy differences of mirror nuclei and
isobaric analog states, not yet well understood from a micro-
scopic point of view, was found more than 50 years ago and
is called the Okamoto-Nolen-Schiffer (ONS) anomaly [1,2].
It was first reported by Okamoto for the 3He - 3H system,
and Nolen and Schiffer made a systematic study from light
to heavy nuclei within the framework of the independent-
particle model to find that the theoretical values of the energy
difference underestimate the experimental values by 3–9 %.
Extra corrections such as the finite proton size, the center-of-
mass effect, the Thomas-Ehrman effect, the isospin impurity,
the electromagnetic spin-orbit interaction, the proton-neutron
mass difference in the kinetic energy, the core polarization
effect, and the vacuum polarization, altogether explain only
about 1% of the discrepancy [3].

A possible remaining source to fill the gap is the charge
symmetry breaking (CSB) nuclear interaction [1,4–7]. Re-
cently, phenomenological CSB interactions (often taken to be
a Skyrme-type contact interaction) have been introduced to
systematically calculate the isospin symmetry breaking effect
on top of the Coulomb interaction; they provide successful re-
sults for describing the isobaric analog states, the mass differ-
ences of isodoublet and isotriplet nuclei, and also the double-β
decays [8–14]. However, both the magnitude and the sign of
the parameters in phenomenological CSB interactions have
not been well determined. Meanwhile, microscopic calcula-
tions of observables sensitive to isospin symmetry breaking
terms in the nuclear Hamiltonian have also become available
[15,16] although CSB effects have not been isolated in detail.

The aim of this Letter is to provide a quantum chromo-
dynamics (QCD)-based understanding of CSB by making
a quantitative link between the Skyrme-type CSB interac-
tions [10] and the CSB effect due to the u-d quark mass

difference in QCD [17–19]. First, we perform a matching
of the phenomenological and QCD-based calculations on the
binding-energy difference between the neutron and the pro-
ton in an infinite nuclear matter to constrain the sign and
magnitude of the phenomenological CSB interactions. Then,
the results are utilized to study the mass difference of mirror
nuclei �E of (N ± 1, Z ) and (N, Z ± 1) with the closed-shell
core (A = N + Z = 16 and 40) based on the Hartree-Fock
(HF) wave functions, aiming to see whether the ONS anomaly
can be resolved microscopically. These examples are chosen
to suitably isolate CSB effects with respect to those origi-
nating from charge independence breaking (CIB) and, thus,
robustly test our approach.

Let us start with the binding-energy difference between
the neutron and the proton �np(ρ) in infinite nuclear matter
(N = Z) with the baryon density ρ, as defined by a difference
of the momentum independent part of the Lorentz-scalar self-
energies. In the leading order of the u-d quark mass difference
and the quantum electrodynamics (QED) effect, an approx-
imate formula has been obtained from the QCD sum rules
(QSR) [18]:

�np(ρ) � C1G(ρ) − C2, (1a)

G(ρ) =
( 〈q̄q〉

〈q̄q〉0

)1/3

. (1b)

Here, 〈q̄q〉 and 〈q̄q〉0 are, respectively, the isospin averaged in-
medium and in-vacuum chiral condensate. The coefficient C1

is proportional to the u-d quark mass difference δm,1 through

1The renormalization group invariant mass difference reads δm ≡
md − mu � 3.6 MeV [20].
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TABLE I. The parameters k1 and k2 in Eq. (2) corresponding to
the adopted σπN value with mπ = 135 MeV, mN = 938 MeV, and
fπ = 92.4 MeV.

σπN (MeV) k1 k2

45 ± 15 −0.38 ± 0.13 0.0093 ± 0.0031

the isospin-breaking constant γ ≡ 〈d̄d〉0/〈ūu〉0 − 1 as C1 =
−aγ with a positive numerical constant a determined by the
Borel QSR method [18]. On the other hand, C2 is a constant
originating both from δm and the QED effect, and is written as
C2 = C1 − �np(0), where experimental neutron-proton mass
difference in the vacuum is denoted by �np(0) = mn − mp �
1.29 MeV. Equation (1) is valid at low density ρ < ρ0 =
0.17 fm−3 where the dimension-3 chiral condensate gives a
dominant contribution in the operator product expansion in
QSR. In the following, we take C1 = 5.24+2.48

−1.21 MeV, where
the central value is obtained from γ = −7.8 × 10−3 [18]
and the uncertainty is estimated from γ = −(6−11.5) × 10−3

[21]. Since the C2 term is density independent, it is canceled
out in the following analysis.

Equation (1) implies that �np(ρ) tends to decrease in the
nuclear medium associated with the partial restoration of chi-
ral symmetry G(ρ) < 1. The in-medium chiral condensate
in the leading order with the Fermi-motion correction has a
universal form [22,23]

〈q̄q〉
〈q̄q〉0

� 1 + k1
ρ

ρ0
+ k2

(
ρ

ρ0

)5/3

, (2a)

k1 = −σπNρ0

f 2
π m2

π

< 0, k2 = −k1
3k2

F0

10m2
N

> 0, (2b)

where σπN is the π -N sigma term, mπ (mN ) is the pion (nu-
cleon) mass, and fπ is the pion decay constant. The Fermi
momentum of the symmetric nuclear matter at saturation
is denoted by kF0 = (3π2ρ0/2)1/3 = 268 MeV. Systematic
calculations using the in-medium chiral perturbation theory
shows that the full chiral corrections up to next-to-next-to-
leading order over Eq. (2) is numerically small for ρ < ρ0

[24] (see Fig. S.1 in Supplemental Material [25]). Alternative
evaluation of the higher-order chiral corrections with the �-
excitation [26] does not change this conclusion (see Fig. S.2 in
Supplemental Material [25]). We note however that the values
of σπN have large uncertainty: On the basis of the present val-
ues of σπN from the scattering data and the lattice QCD data
(Nf = 2 and 2 + 1) summarized in Fig. 47 of the FLAG Re-
view 2021 [20], we employ a conservative estimation, σπN =
45 ± 15 MeV. This value and the error happen to be similar to
the old estimation in Ref. [27]. Corresponding values of k1, 2

are summarized in Table I. We note that the recent data from
the pionic atoms [28] indicate that 〈q̄q〉/〈q̄q〉0(ρ = 0.58ρ0) =
0.77 ± 0.02 which is consistent with the value obtained from
Eqs. (2a) and (2b).

We decompose the mass difference between mirror nu-
clei �E = E (Z + 1, N ) − E (Z, N + 1) into the Coulomb HF
contribution �EC and the ONS anomaly δONS as

�E = �EC + δONS. (3)

FIG. 1. The CSB effect from the partial restoration of chiral
symmetry. Blue dashed curve (LO*): the leading-order formula with
Fermi-motion correction [Eq. (2)]. Red curve: the NNLO result from
in-medium chiral perturbation [24]. The central values of C1 and σπN

are taken for these curves.

On the basis of Eq. (1), the CSB effect to δONS from the partial
restoration of chiral symmetry in the uniform and symmetric
(N = Z) nuclear matter δchiral can be estimated as [18]

δchiral ≡ �np(0) − �np(ρ) = C1[1 − G(ρ)]. (4)

Shown in Fig. 1 is δchiral as a function of the baryon density by
taking the central values of C1 and σπN mentioned above. Two
curves correspond to the LO result with the Fermi-motion
correction (LO*) in Eq. (2) and the next-to-next-to-leading
order (NNLO) result from the in-medium chiral perturbation
[24]. The figure shows that Eq. (2) is quite accurate at least
up to ρ/ρ0 � 1. It should be noted here that δchiral is around
a few hundreds keV for ρ < ρ0, which is the right sign and
magnitude to explain the ONS anomaly in finite nuclei.

Let us make an alternative evaluation of δONS in Eq. (3)
on the basis of the CSB interaction of an energy den-
sity functional (EDF). First of all, the general form of
E (Z, N ) for uniform nuclear matter up to the second order of
β = (N − Z )/A reads [14]

E

A
� ε0(ρ) + ε1(ρ)β + ε2(ρ)β2. (5)

In particular, for N = Z , we find the �E |N=Z = −2ε1(ρ)
where the effect of ε0 and ε2 disappears. Note that ε1 is a
genuinely CSB-type term coming only from the CSB EDF.
In this Letter, we take the Skyrme-type CSB interaction [10]
to evaluate its contribution to ε1(ρ):

VCSB(r) =
[
s0(1 + y0Pσ )δ(r)

+ s1

2
(1 + y1Pσ )(k†2δ(r) + δ(r)k2)

+ s2(1 + y2Pσ )k† · δ(r)k
]τ1z + τ2z

4
, (6)

where τiz = +1 (−1) for neutrons (protons) is the z direction
of isospin operator of nucleon i, k = (∇1 − ∇2)/2i, r = r1 −
r2, and Pσ = (1 + σ1 · σ2)/2 is the spin-exchange operator. In
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TABLE II. Parameters of the Skyrme-type CSB interactions con-
strained from the low-energy constants in QCD. To evaluate the CSB
effect in finite nuclei, where s̃1 and s̃2 contribute independently, two
characteristic parameter sets (Cases I and II) are introduced.

s̃0 (MeV fm3) −15.5+8.8
−12.5

s̃1 + 3s̃2 (MeV fm5) 0.52+0.42
−0.29

Case I Case II

s̃0 (MeV fm3) −15.5+8.8
−12.5 −15.5+8.8

−12.5

s̃1 (MeV fm5) 0.52+0.42
−0.29 0.00

s̃2 (MeV fm5) 0.00 0.18+0.14
−0.10

Eq. (6), s0 and y0 are the strength parameters of the contact
CSB and its spin exchange interactions, while s1 (s2) and y1

(y2) are the parameters of the momentum dependent s-wave
(p-wave) CSB and its spin exchange interactions, respectively.
Equation (6) gives contributions to ε1(ρ) and hence δONS as
[14]

δSkyrme = − s̃0

4
ρ − 1

10

(
3π2

2

)2/3

(s̃1 + 3s̃2)ρ5/3, (7)

where we have defined the effective coupling strengths,

s̃0 ≡ s0(1 − y0), s̃1 ≡ s1(1 − y1), s̃2 ≡ s2(1 + y2). (8)

Note that the Thomas-Fermi approximation is adopted to eval-
uate the kinetic energy terms in Eq. (5).

There have been attempts to extract s̃0,1,2 by using various
experimental data such as the energy of isobaric analog
states (IAS) [8] and the mass differences of mirror and
isotriplet nuclei [11]. The value of s̃0 estimated from IAS
in 208Pb is s̃0 = −52.6 ± 1.4 MeV fm3, while the mass
differences of mirror nuclei lead to two estimates: (s̃0, s̃1,2) =
(−29.2 ± 1.2 MeV fm3, 0) and (s̃0, s̃1, s̃2) = (44 ±
8 MeV fm3,−56 ± 16 MeV fm5,−31.2 ± 3.2 MeV fm5).
The parameters in Ref. [11] are related to ours as
t III
0,1,2 = s̃0,1,2/4. Since the contributions of s̃0 and s̃1,2 tend to

cancel each other in physical observables, it is rather difficult
to determine the magnitude and the sign of each term only
from the present experimental data.

On the other hand, our approach is to constrain s̃0,1,2 from
the low-energy constants in QCD, γ and σπN , by matching
δSkyrme(ρ) in Eq. (7) and δchiral(ρ) expanded up to O(ρ5/3) at
low densities. Then, we obtain

s̃0 = −4

3

C1σπN

f 2
π m2

π

, s̃1 + 3s̃2 = 1

m2
N

C1σπN

f 2
π m2

π

. (9)

The magnitudes and signs of s̃0 and s̃1 + 3s̃2 are summarized
in Table II, where the linear uncertainty estimation is used.
To evaluate the CSB effect in finite nuclei, where s̃1 and
s̃2 contribute independently, two characteristic parameter sets
(Cases I and II) are introduced.

To carry out precise calculation of the mass differences of
mirror nuclei, we consider two types of the Skyrme EDFs
for the isospin symmetric part, SGII [32] and SAMi [33];
they reproduce well, within 0.3%, the experimental radii of
the N = Z closed shell nuclei, 16O and 40Ca, as shown in
Table III. It is important for any adopted EDF to reproduce the

TABLE III. The neutron radii, the proton ones, and the charge
ones of 16O and 40Ca. Two types of Skyrme EDFs, SGII, and SAMi,
are adopted for the HF calculation. Experimental data are taken from
Refs. [29–31].

16O rn rp rc

SGII 2.601 2.626 2.744
SAMi 2.625 2.648 2.765
Expt. [29] — — 2.737

40Ca rn rp rc

SGII 3.325 3.374 3.467
SAMi 3.342 3.390 3.482
Expt. [30] 3.375 3.385 3.480
Expt. [31] — — 3.478

charge radii since the Coulomb energy part �EC is essentially
determined by the charge distribution: The change of 1% in
the charge radius of 40Ca gives rise to 20–30 keV difference
in �EC of mirror nuclei.

The contributions of the CSB interactions to the mass dif-
ference between mirror nuclei of (N ± 1, Z ) and (N, Z ± 1)
with the closed-shell core A = N + Z = 16 and 40 are calcu-
lated by using HF wave functions for SGII and SAMi. As we
can see from the Table IV, s̃0 provides a dominant contribution
(210–320 keV), more than one order of magnitude larger than
the s̃1(2) contributions. The net results are slightly different
from the sum of s̃0 and s̃1 (2) contributions due to the nonlinear
effect in the calculation using EDFs. The final results of Case
I and those of Case II are essentially identical due to the s̃0

dominance, so that we focus on Case I below.
Let us now turn to the comparison of the theoretical values

with our CSB interaction with the experimental mass differ-
ence of the mirror nuclei by including �EC and other extra

TABLE IV. Contributions from the Skyrme CSB interactions to
δONS in Cases I and II with theoretical uncertainties. The values are
given in unit of keV. The core density and the wave function of
valence orbit are calculated by HF model with Skyrme EDFs, SGII,
and SAMi. All the values are obtained self-consistently.

Nuclei 17F - 17O 15O - 15N 41Sc - 41Ca 39Ca - 39K
Orbital 1d5/2 (1p1/2)−1 1 f7/2 (1d3/2)−1

SGII s̃0 229+192
−125 269+221

−148 292+245
−160 322+264

−176

s̃1 (s̃2 = 0) −5.0+2.8
−4.0 −5.6+3.1

−4.5 −6.6+3.7
−5.3 −6.0+3.4

−4.9

s̃2 (s̃1 = 0) −6.4+3.5
−5.2 −3.3+1.8

−2.7 −5.3+2.9
−4.3 −5.0+2.8

−4.1

Case I 224+192
−125 264+221

−148 287+245
−160 315+264

−176

Case II 225+192
−125 266+221

−148 289+245
−160 316+264

−176

SAMi s̃0 211+174
−115 274+225

−152 278+230
−151 324+269

−180

s̃1 (s̃2 = 0) −5.2+2.9
−4.2 −5.4+3.0

−4.4 −7.3+4.0
−5.9 −8.4+4.6

−6.6

s̃2 (s̃1 = 0) −4.1+2.3
−3.3 −3.2+1.8

−2.6 −5.7+3.1
−4.6 −5.2+2.9

−4.2

Case I 206+174
−115 269+225

−152 271+230
−151 321+269

−180

Case II 207+174
−115 271+225

−152 272+230
−151 322+269

−180
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TABLE V. The breakdown of the mass differences of mirror nu-
clei �E into each contribution Coulomb, Extra, and CSB interaction
(CSBI) for Case I with the Skyrme EDF, SGII. Numbers are given in
units of MeV.

Nuclei 17F - 17O 15O - 15N 41Sc - 41Ca 39Ca - 39K
Orbital 1d5/2 (1p1/2)−1 1 f7/2 (1d3/2)−1

�ED (Coulomb) 3.596 3.272 7.133 6.717
�EE (Coulomb) −0.203 0.026 −0.267 0.260
Extra 0.040 0.028 0.102 0.011
CSBI (Case I) 0.224 0.264 0.287 0.315

Sum (without CSBI) 3.432 3.326 6.965 6.985
Sum (with CSBI) 3.656 3.590 7.252 7.300

Expt. [36] 3.543 3.537 7.278 7.307

contributions [6,8,34,35] (see Supplemental Material [25]).
The results are summarized in Table V for SGII and Table VI
for SAMi assuming Case I. First, we note that the core density
and the wave function of valence orbital are calculated with
the closed shell core configuration without the core polariza-
tion effect of the valence nucleon. The direct and exchange
contributions of the Coulomb interaction (�ED and �EE with
�EC = �ED + �EE) are obtained with the exact treatment of
the exchange term. The sum of extra contributions including
the finite-size effect of nucleon, the center-of-mass effect on
nuclear density, the Thomas-Ehrman effect δ1

NN , the isospin
impurity δ2

NN , the electromagnetic spin-orbit interaction, the
core polarization effect of the last nucleon, the proton and
neutron mass difference in the kinetic energy, and the vacuum
polarization, are listed as “Extra” in the Tables V and VI: Each
contribution varies from −150 keV to 150 keV, while the net
result is at most 100 keV due to a strong cancellation. See
Supplemental Material [25] for the details.

The sum of �ED, �EE, and Extra denoted by “Sum (with-
out CSBI)” in the tables is systematically smaller than the
experimental value by 3–6 %. Our CSBI contributions con-
strained by the low-energy constants in QCD fill the gap as it
can be seen by comparing the sum neglecting CSBI effects,
the sum containing CSBI effects “Sum (with CSBI)” and the
experimental (“Expt.”) rows in Tables V and VI. Shown in
Fig. 2 is δONS = �E − �EC, where it is evident the agreement
between experiment and the present theoretical estimates. The

TABLE VI. The same as Table V, but with the Skyrme EDF, SAMi.

Nuclei 17F - 17O 15O - 15N 41Sc - 41Ca 39Ca - 39K
Orbital 1d5/2 (1p1/2)−1 1 f7/2 (1d3/2)−1

�ED (Coulomb) 3.506 3.242 7.025 6.697
�EE (Coulomb) −0.193 0.022 −0.259 0.281
Extra 0.043 0.075 0.104 0.092
CSBI (Case I) 0.206 0.269 0.271 0.321

Sum (without CSBI) 3.356 3.339 6.870 7.070
Sum (with CSBI) 3.562 3.608 7.141 7.391

Expt. [36] 3.543 3.537 7.278 7.307

FIG. 2. Comparisons of the experimental ONS anomaly
�EExpt. − �EC (grey hatched bars) and the corresponding theoretical
estimates in two EDFs (SGII and SAMi). The contribution from
the QCD-based CSB interaction (CSBI) in Case I and the extra
contributions are indicated by the red bars with error bars and the
blue bars, respectively.

theoretical error bars given in Table IV are shown in the figure,
while the experimental error bars are around only 5 keV and
would not be visible in the scale of the figure.

Finally, as mentioned, there has been a recent effort in
quantifying the effects of CSB in some selected nuclear
observables [8,9,11,15,37]. However, depending on the the-
oretical method employed, the estimated central values of
the leading order term CSB parameter (s̃0) can differ by one
order of magnitude among the different approaches and could
even be of different sign (cf. Ref. [38] and Supplemental
Material [25]).

In summary, we evaluated the EDF parameters of Skyrme-
type CSB interactions, not only the contact term (s̃0) but also
the momentum-dependent terms (s̃1,2), by utilizing the low-
energy constants in QCD and the density dependence of chiral
condensation of q̄q pair in the nuclear medium for the first
time. The resulting QCD-based CSB interaction is applied to
resolve the ONS anomaly: The numerical results for the mir-
ror nuclei (A = 16 ± 1 and A = 40 ± 1 with the isosymmetric
core N = Z = A/2) with two Skyrme EDFs (SGII and SAMi)
show good agreement with experimental data both in sign and
magnitude within the theoretical error bars. Major theoretical
uncertainty of the final results originates from the values of γ

and σπN : Increasing the accuracy of these constants from the
experimental data or from the lattice QCD simulations will be
instrumental.

The QCD-based CSB interaction discussed in this Letter
would have strong impact on isospin symmetry breaking phe-
nomena such as IAS, the superallowed β decay in the context
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of Cabibbo-Kobayashi-Maskawa unitary matrix, and the mass
predictions of mirror and isotriplet nuclei near the proton drip
line. We plan to make systematic studies of these quantities.
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