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α clustering from the formation of a pocket structure in the α-nucleus potential
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We investigate the formation of a pocket structure in the α-nucleus potential based on the dynamic double-
folding potential model. We improve the model with the density-dependent Migdal nucleon-nucleon (NN)
interaction and combine it with the nuclear medium effect. The improved potential naturally generates a pocket
structure at the nuclear surface, which physically agrees with the characteristics suggested by the microscopic
many-body calculations. The result reveals that the formation of the pocket structure is due to the strong Pauli
repulsion caused by the variation of the NN interaction when the α cluster and the daughter nucleus have large
density overlaps. The existence of the nuclear medium effect is essential to the physical self-consistency of the
pocket position. These findings highlight the importance of the medium effect on the NN interaction and provide
solid theoretical support for the understanding that α clustering occurs at the surface of heavy nuclei.
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The investigation of α-cluster formation in finite nuclei
has been a longstanding topic in nuclear physics [1–6]. The
α-clustering phenomenon arises from the α correlation which
depends on both the pairing and the neutron-proton correla-
tions. Previous research on the competition between various
nucleon correlations in homogeneous nuclear matter has re-
vealed that the α correlation becomes prominent only when
the nuclear density is below a specific value [7–9]. This criti-
cal density, identified as the Mott density associated with the
formation of the α cluster, was estimated to be about 1/5 of
the saturation density in many-body calculations [7,9,10].

In heavy nuclei, the α cluster tends to form at the nuclear
surface because the low-density condition mentioned above
is typically satisfied in this region [10–12]. As an example,
the α-formation amplitude of 212Po, calculated with the ba-
sis of a combined shell-and-cluster-model ansatz, shows a
significant peak at the surface region, indicating the location
of the formed α cluster [11]. Due to the existence of Pauli
blocking, the α cluster formed in nuclei usually exhibits a
larger spatial distribution. In the description of the quartetting
wave function approach (QWA), the combined effect of the
mean field and Pauli blocking, namely the medium effect,
leads to a pocket geometry in the effective potential for the
α-daughter system [10,13–15]. The resulting quartetting wave
function, constrained by this pocket structure, also exhibits a
peak at the nuclear surface self-consistently [14,15].

Recently, the dynamic double-folding potential (DDFP)
model for α decay was proposed [16,17]. The DDFP model
significantly improves the agreement between calculated and
experimental half-lives by incorporating the medium effect
into the double-folding α-nucleus potential. However, upon
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the surface geometries of the DDFP and the potential de-
rived from the QWA, a notable difference can be recognized:
the pocket structure, as a typical feature responsible for the
clustering phenomenon in nuclei, is absent in the DDFP.
Considering that the pocket geometry originates from the
existence of the medium effect, in this Letter, we explore
the underlying mechanism inside the formation of the pocket
structure based on the DDFP model.

In the DDFP model, the nuclear and the Coulomb poten-
tials for α-daughter system are of the following formalism
[16,17]:

VN (R) =
∫

ρ1(r1)ρ2[r2, ρ1(R)]vN (s, ρ1, ρ2) dr1dr2, (1)

VC (R) =
∫

ρ1(r1)ρ2[r2, ρ1(R)]vC (s) dr1dr2. (2)

The medium effect of the α cluster is embodied in its density
distribution

ρ2[r2, ρ1(R)] = ρ2,s(R) exp
{− β[ρ1(R)] r2

2

}
. (3)

The density-dependent width parameter β is described by
β[ρ1(R)] = 0.7024

1+ 45
16ρ1,s

ρ1(R)
, which satisfies the critical constrains

of medium effect from the microscopic calculation [10,16,17].
The nucleon-nucleon (NN) interaction vN adopts the density-
dependent M3Y-type interaction, specifically, the CDM3Y6
interaction [18]. Since the parametrized form of the M3Y
interaction is derived by reproducing the scattering data near
the nuclear surface, it provides a good description of the
NN interaction in low-density regions [19]. However, previ-
ous studies have pointed out that the M3Y interaction or its
density-dependent form is insufficient to describe the strong
repulsion in large density-overlap regions [20–22]. Realizing
that the medium effect also manifests itself in the double-
folding process through the density-dependence in the NN
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FIG. 1. Schematic of the coordinates used in the spherical
double-folding potential model. The vector between the interacting
nucleons, defined as s = R + r2 − r1, is zero in the schematic to
elucidate the zero-range Migdal interaction.

interaction, the absence of a pocket structure might be at-
tributed to the inaccuracy of the NN interaction.

Inspired by the nucleus-nucleus potential for fusion and
fission reactions [23–25], we attempt to replace the CDM3Y6
interaction with the density-dependent and zero-range Migdal
interaction [23–26],

vN (r1, r2, s) = C0{Finx(r1, r2) + Fex[1 − x(r1, r2)]}δ(s). (4)

The coordinate system used in the double-folding procedure
is shown in Fig. 1. The parameter C0 denotes the inverse
density of states at the Fermi surface, and parameters Fin,
Fex are the amplitudes of the NN interaction. These param-
eters are usually determined by fitting the experimental data
within the theory of finite Fermi systems [23]. The strength
of the interaction between the touching nucleons relates to the
density-dependent term x(r1, r2) which is given by

x(r1, r2) = ρ1(r1) + ρ2(r2)

ρ00
. (5)

Here, the denominator ρ00 = ρ1,s+ρ2,s

2 is the mean value of
the saturation densities of the interacting nuclei. The term
x(r1, r2), restricted by the δ function, represents the local
density overlap between the interacting nuclei. Therefore, the
Migdal interaction can effectively describe the variation of NN
interaction when the nuclei have different density overlaps. It
was evidenced in previous double-folding calculations to de-
scribe the nucleus-nucleus potentials for fusions, and in these
potentials, a pocket geometry was formed [23–25]. To safely
extend the Migdal interaction to α decay, we first neglect the
medium effect of the α cluster and analyze the traditional
double-folding α-nucleus potential generated with this NN
interaction. As an exploratory calculation, the α decay of the
typical nucleus 212Po is chosen as an example.

Within the cluster model, the α-nucleus potential V is the
sum of the nuclear potential VN , the Coulomb potential VC ,
and the centrifugal term VL = L(L+1)h̄2

2μR2 [27]. The traditional
double-folding potentials are derived under the frozen-density
approximation [19,28]

VN,C (R) = ∫
ρ1(r1)ρ2(r2)vN,C (s) dr1dr2. (6)

The density distributions of the daughter nucleus and α

cluster are given by ρ1(r1) = ρ1,s

1+exp(
r1−Rd

a )
and ρ2(r2) =

ρ2,s exp(−0.7024 r2
2 ), respectively. The radius Rd and the dif-

fuseness a of the daughter nucleus 208Pb are given by Rd =
1.07 A1/3

d fm and a = 0.54 fm. The saturation densities ρ1,s

and ρ2,s are determined through the normalization procedures
of these density distributions.

With the Coulomb part vC of the NN interaction being well
defined, the nuclear part vN takes the form of Eq. (4). The
interaction parameters are taken as C0 = 300 MeV fm3, Fin =
0.09, which are well justified by fitting the experimentally
measured nuclear properties [23,24]. As for the parameter
Fex, it is taken as a variable determined by reproducing the
experimental properties with the obtained α-nucleus potential.

To fix Fex, we calculate the α-decay width for the L = 0 α

transition of 212Po using the two-potential approach (TPA)
[29]. The TPA allows one to divide the tunneling problem into
a bound-state and a scattering problem. The decay width can
be expressed with the bound-state wave function φ(R) and the
scattering wave function χl (kR), Γ = 4h̄2 k̃2

μk |φ(R̄) χl (kR̄)|2.
Here, k =

√
2μQα/h̄2, k̃ =

√
2μ(V (R̄) − Qα )/h̄2, and R̄ is

the separation radius chosen as the mean value of the barrier
position and the outer classical turning point. While φ(R)
is calculated numerically by solving the Schrödinger equa-
tion within the inner potential, χl (kR) can be approximated
by the regular Coulomb wave function Fl (kR). Note that the
eigenvalue of the bound-state wave function should match
the α-decay energy Qα . In this case, the parameter Fex is
determined as −2.53 to reproduce the experimental Qα .

The derived α-nucleus potential V under the frozen-density
approximation is plotted in Fig. 2(a). As expected, the po-
tential has a strong repulsive core and a pocket geometry is
naturally formed at the nuclear surface between the repulsive
core and the Coulomb barrier. Therefore, it can be inferred
that the formation of the pocket structure is closely related to
the variation of the NN interaction in the large density-overlap
region.

According to the many-body calculation of the QWA, the
α-cluster state exists only where the medium density is below
the Mott density. This implies that the domain of the α-cluster
wave function should be predominantly located in the region
beyond the critical radius rc which denotes the Mott density.
As shown in Fig. 2(a), the obtained α-cluster bound-state
wave function φ(R) is located around the center of the pocket.
However, the domain of φ(R) is split by the rc, with half of it
entering the internal region, which contradicts the conclusion
from the microscopic calculation. From a physical viewpoint,
one can realize that the pocket position shown in Fig. 2(a) is
too much inside the core region for the decaying system.

To solve the above problem, a reasonable guess is that
the inconsistency of the α-nucleus potential might result from
the absence of medium effect in the previous double-folding
calculation. As already noted in [10,16,17], the in-medium
α cluster exhibits a wider spatial distribution than a free α

particle. Compared with the frozen-density approximation,
the medium effect influences the overlap of the α-daughter
system at different medium densities. Because both the nu-
clear repulsion and Pauli blocking are sensitive to the density
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FIG. 2. The α-nucleus potential V (R) and the α-cluster wave
function φ(R) for 212Po: (a) without medium effect, (b) with medium
effect. The α decay energy Qα and the pocket positions rp are shown.
The critical radius rc, where the medium density is 1/5 of the satu-
ration density, is marked. Note that after incorporating the medium
effect, the pocket and the domain of φ(R) shift to the surface region
specified by rc. The first classical turning point appears very close
to rc, which nicely matches the physical picture indicated by the
microscopic calculation [10].

overlap between the interacting nuclei, a subtle change in the
overlap can significantly affect the strength of these inter-
actions, and subsequently, the position of the pocket in the
α-nucleus potential.

Therefore, in the next step, we consider the medium effect
and calculate the dynamic double-folding potential for 212Po.
This potential can be obtained by using Eqs. (1) and (2). Im-
portantly, since the medium effect is embodied in the α-cluster
density distribution as illustrated in Eq. (3), corresponding
adjustments are also required for the density-dependent term
x in the Migdal interaction

x(r1, r2, R) = ρ1(r1) + ρ2(r2, R)

ρ00(R)
,

ρ00(R) = ρ1,s + ρ2,s(R)

2
. (7)

Here, we keep the value of C0 and Fin in Eq. (4) unchanged,
and Fex is refitted as −3.21 to reproduce the experimental Qα

of 212Po.
Figure 2(b) shows the DDFP generated with the Migdal

interaction for 212Po. A comparison between the pocket po-
sitions in Figs. 2(a) and 2(b) shows, as expected, that the
pocket shifts to a larger R after incorporating the medium
effect. As is known, the medium effect embodies the α-cluster
dynamics, resulting from the variation of Pauli blocking at
different medium densities. It acts on the α cluster as soon as
the medium density has a finite value. To consider an inverse

FIG. 3. The density overlap (grey patches) between the daughter
nucleus 208Pb and the α cluster at R = 7 fm: (a) without medium
effect, (b) with medium effect. The center of mass of the α cluster is
denoted by the dashed line. The strength of the α-nucleus potential
V , determined by the overlaps, is given to illustrate that the repulsion
felt by the α cluster is strengthened after incorporating the medium
effect.

process of α emission, as the α cluster approaches the core
from the tail of the daughter’s density distribution, it gradually
expands in size and becomes less bound due to the increasing
Pauli blocking. Consequently, the α cluster and the daughter
nucleus will have larger density overlaps than the case of the
frozen-density approximation, as illustrated in Fig. 3. There-
fore, the repulsive interaction felt by the α cluster will occur
at larger R. This explains how the medium effect influences
the position of the repulsive core and the pocket structure.

Apart from the pocket position, another noteworthy finding
in Fig. 2(b) is that the first classical turning point appears close
to the critical radius. It clearly indicates that once the α cluster
crosses the critical radius and enters the classical forbidden
region, the strong repulsive core will prevent the α cluster
from forming deeply inside the nucleus. As is evidenced in
Fig. 2(b), the corresponding α-cluster wave function predomi-
nantly disperses beyond the critical radius. This feature nicely
matches the physical picture that the α cluster forms at the
nuclear surface below a certain nucleon density, which is
supported by the microscopic calculation [10].

It is worth noting that the pocket-type potentials were pre-
viously studied within the Skyrme energy-density formalism
(SEDF) by Seif et al. and Denisov et al. [21,30–32]. In these
studies, the surface pocket appears due to the exchange of
intrinsic kinetic energy, as a manifestation of the Pauli re-
pulsion at small interacting distances. For the standard deep
potential without a surface pocket, this Pauli repulsion is
usually introduced by applying the Wildermuth rule to the
quasibound decaying state, which yields a multinode α-cluster
wave function. Comparatively, the internal Pauli repulsion is
already considered in the pocket-type potential. It leads to a
zero-node α-cluster wave function, reflecting the clustering
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FIG. 4. The α-nucleus potentials V for 105Te in L = 0 α tran-
sition. The DDFP with Migdal interaction is denoted by the blue
solid line. The inset at the left upper corner shows the behavior of
the DDFP at R → 0, while the inset at the right upper corner, taken
from Ref. [30] for comparison, shows the potentials constructed
with the Skyrme energy-density formalism. The DDFP is similar to
that directly derived by the SEDF (black bold line) in terms of the
location of the pocket and the height of the Coulomb potential barrier.

feature at the nuclear surface [30]. For comparison, we plot the
α-nucleus potential for 105Te with the improved DDFP model
in Fig. 4, and the potentials based on the SEDF, taken from
[30], are shown in the inset. It turns out that, in terms of the
pocket positions (≈ 6.0 fm) and the heights of the Coulomb
barrier (≈ 15.0 MeV), the DDFP with Migdal interaction
is very similar to that directly derived from the SEDF with
Skyrme-SLy4 force. The difference appears in the core region
where the repulsive interaction of the DDFP-Migdal potential
is much stronger. Despite the pocket generated in different
methods, a common physics is shared: the strong Pauli re-
pulsion emerging from the large density-overlap regions is
responsible for the formation of the pocket.

Based on the exploratory calculations above, the physics
of the formed pocket structure in the α-nucleus potential be-
comes transparent. In the next step, we extend the calculation
to the favored α decays of the nearby even-even Pb, Po, and
Rn isotopes, as a further verification for the present model.
With Fex already determined in the case of 212Po, we keep
the interaction parameters unchanged in the following calcu-
lations and adjust the diffuseness parameter a of the daughter
nucleus to reproduce the experimental Qα . Interestingly, we
find the diffuseness determined in the reproduction shows a
clear negative linear correlation with the Qα value of its corre-
sponding parent nucleus, as demonstrated in Fig. 5. Besides,
the Nd = 126 shell effect is well reproduced in the variation
of a. These features are easy to understand. Because along the
same isotopic chain, when the daughter nucleus is closer to
a shell closure, it becomes more tightly bound and exhibits a
smaller diffuseness. On the other hand, the Qα of its parent
nucleus is relatively higher than the neighboring α emitters.

FIG. 5. (a) The determined surface diffuseness of the daughter
nucleus as a function of its neutron number. (b) The experimental
α decay energy of the parent nucleus as a function of its daughter’s
neutron number. The variation of diffuseness appears as a reverse
pattern of the Qα , showing an evident shell effect at Nd = 126.

Apart from the above finding, it is well known that the shell
effect also exists in the systematics of α-preformation factors
for nuclei in this region [1,16,33,34]. In Fig. 6, α-preformation
factors, calculated using Pα = Γ exp./Γ , are shown as a func-
tion of the neutron number of parent nucleus. For comparison,
we also show the Pα recalculated in the TPA with the prior
DDFP-CDM3Y6 model [16]. As shown in Fig. 6, the Np =
126 shell effect is reproduced by both models and the Pα

variation for each isotopic chain is basically similar. Notable
differences can be found in the magnitude of these Pα factors,
in which the results at Np � 126 from the DDFP-Migdal
model are generally smaller in one order of magnitude.

FIG. 6. The extracted α-preformation factor Pα for even-even Pb,
Po, and Rn isotopes. The DDFP generated with Migdal (solid lines)
and CDM3Y6 (dotted lines) NN interactions yield a similar trend for
the Pα variation, in which the well-known neutron Np = 126 shell
effect and the proton Zp = 82 shell effect are both reproduced.
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FIG. 7. (a) The input α-preformation factor Pinp.
α (grey bold line)

in the half-life calculation and the extracted Pα (colored symbols)
are shown for comparison. (b) The logarithmic deviation between
the theoretical and experimental α decay half-lives. The range of
the deviations indicates a factor of 2–3 between the theoretical and
experimental values.

Besides, the Pα variations at Np > 130 also seem different for
the two models. The DDFP-Migdal model shows a more rapid
saturation in the preformation probability beyond Np = 130.
All these differences demonstrate the model dependence of
the present calculations in which the Pα factors are extracted
from the experimental decay widths. The magnitude and the
variation of Pα should be verified through future microscopic
calculations.

After the Pα systematics is verified, we examine the appli-
cability of the DDFP-Migdal model to half-life calculations.
The theoretical α-decay half-life is calculated by T theor.

1/2 =
h̄ ln 2
PαΓ

. The input Pα factor can be reasonably approximated by

a simple expression Pinp.
α (Np) = P0 + P1 	(Np − 128), where

	(x) is the Heaviside step function with 	(0) = 0.5. The pa-
rameters P0 = 0.0211, P1 = 0.1230 are determined by fitting
the expression to the extracted Pα from experimental decay
widths, as illustrated in Fig. 7(a).

Figure 7(b) shows the deviations between the theoretical
and experimental half-lives. The logarithmic deviations are
mostly within −0.5–0.3, indicating a factor of 2–3. A statis-
tical analysis shows an average deviation σ = 0.1689, with
the definition σ = 1

N

∑N
i=1 | log10 T theor.

1/2,i − log10 T exp.
1/2,i|. Large

deviations mainly occur at Np = 126 and Np = 112. The for-

mer corresponds to the well-known neutron shell effect, while
the latter is due to the proton shell effect at Zp = 82, which
results in a significant increase in the Pα from Zp = 82 to
84. Note that we adopt the constant Pinp.

α = 0.0211 for nu-
clei with Np � 126 to calculate their half-lives. The evident
difference between the results of 194Pb and 196Po is attributed
to the large deviation between Pinp.

α and the extracted Pα at
Np = 112. In general, the experimental α-decay half-lives are
fairly well reproduced with the improved DDFP. It is expected
that the present model still can be refined with pertinent con-
siderations on nuclear deformation and diffuseness anisotropy
[17,35,36], which might further improve its accuracy.

In summary, in this Letter, we explore the underlying
physics in the formation of a pocket structure in the α-nucleus
potential based on the DDFP model. We improve the NN
interaction in the DDFP and combine it with the medium
effect. The final potential successfully generates a pocket
in the surface region where the nucleon density is below
the Mott density. The pocket’s formation is attributed to the
strong Pauli repulsion inside the core region, which requires
the NN interaction to have proper density dependence in the
large density-overlap region. The medium effect is essential
to the position of the formed pocket structure. The resulting
α-cluster wave function exhibits a peak at the pocket center,
reproducing the α-clustering feature indicated in the micro-
scopic calculations. Besides, the improved DDFP is validated
by calculating the diffuseness, α-preformation factors, and
α-decay half-lives. The good reproduction of the shell ef-
fects and experimental half-lives confirms the reliability of
the improved potential. The result of this study brings a new
insight into the clustering phenomenon in heavy nuclei, which
might be helpful for the understanding of the microscopic
mechanism of α decay.

To go beyond the present study, it would be meaning-
ful to explore the applicability of the pocket-type DDFP in
the description of other properties, such as rotational bands,
B(E2) transition strengths, and fusion cross sections. These
properties were widely studied by using the standard deep
potentials without a surface pocket [37–40]. A comparative
analysis between the two types of potentials might help us
further the understanding of the structural effects and the
interactions in different nuclear processes.
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