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Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model
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The recent discovery of a central compact object (CCO) within the supernova remnant HESS J1731-347,
characterized by a mass of approximately 0.77+0.20

−0.17 M� and a radius of about 10.4+0.86
−0.78 km, has opened up a

new window for the study of compact objects. This CCO is particularly intriguing because it is the lightest and
smallest compact object ever observed, raising questions and challenging the existing theories. To account for
this light compact star, a mean-field model within the framework of the parity doublet structure is applied to
describe the hadron matter. Inside the model, part of the nucleon mass is associated with the chiral symmetry
breaking while the other part is from the chiral invariant mass m0 which is insensitive to the temperature and
density. The value of m0 affects the nuclear equation of state for uniform nuclear matter at low density and
exhibits strong correlations with the radii of neutron stars. We point out that HESS J1731-347 can be explained
as the lightest neutron star for m0 � 850 MeV.

DOI: 10.1103/PhysRevC.109.065807

I. INTRODUCTION

A neutron star (NS) is one of the most compact objects
in the universe with a mass of 1–2 M� and a radius of
≈10 km. The NSs with extreme conditions provide us with
a unique natural laboratory for investigating the phases of
cold, dense matter, including the possibility of exotic states
such as hyperons and even quarks appearing within these
astrophysical objects. Understanding the properties of NSs
requires information about its equation of state (EOS), which
characterizes how pressure P varies as a function of the en-
ergy density ε. This EOS cannot be directly predicted by
the quantum chromodynamics (QCD) and also the lattice
QCD simulations due to the sign problem. Thanks to the
advancements of recent multimessenger astronomy on dif-
ferent sources, especially those made by gravitational wave
laser interferometers from the LIGO-VIRGO [1–3] and x-ray
emissions observations conducted by the Neutron Star Interior
Composition Explorer (NICER), we made remarkable im-
provements to constrain the EOS of cold, dense, and strongly
interacting nuclear matter. For instance, the NS merger event
GW170817 provided insights into the mass and the radius
of NSs, with an estimation of approximately 1.4 M� and a
radius of R = 11.9+1.4

−1.4 km. This observation suggested that
the EOS should be relatively soft for uniform nuclear matter
existing in the low-density region. Additionally, NICER has
played a crucial role in advancing our understandings of NSs.
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The analyses [4–6] have focused on NSs with masses around
1.4 and ≈2.1 M�. Interestingly, the results indicated that the
radii of these NSs are rather similar for different masses,
with a radius of approximately 12.45 ± 0.65 km for a 1.4
M� NS and of 12.35 ± 0.75 km for a 2.08 M� NS. These
findings suggest that the EOS stiffens rapidly, meaning that
the pressure increases quickly as a function of energy density,
as one moves from low baryon density (� 2n0; n0: nuclear
saturation density) to high density (4n0–7n0). This stiffening
of the EOS is necessary to support the existence of massive
NSs, such as those with masses around 2 M�.

The recent report on the central compact object (CCO)
HESS J1731-347 [7], with an estimated mass and radius of
the object of M = 0.77+0.20

−0.17 M� and R = 10.4+0.86
−0.78 km, has

raised many questions and put more constraints into the EOS.
These measurements suggest that this CCO may correspond
to a neutron star with an even softer equation of state in the
low-density region than previously observed. Some studies
have considered the possibility that HESS J1731-347 may be
a quark star [8–12], an exotic theoretical object composed
of deconfined quarks rather than the usual hadronic matter
suggested in neutron stars.

In this research, we explore the possibility that HESS
J1731-347 may be the neutron star within the framework of a
quark-hadron crossover model constructed in Refs. [13–16],
in which a unified EOS is constructed by interpolating the
hadronic EOS from a hadronic model based on the parity
doublet structure [17,18] and the quark EOS from an Nambu–
Jona-Lasinio (NJL)-type quark model.

Hadronic models based on the parity doublet structure,
which we call parity doublet models (PDMs), offer a unique
perspective on the structure of hadrons by considering the

2469-9985/2024/109(6)/065807(9) 065807-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7757-246X
https://orcid.org/0000-0001-5298-9816
https://ror.org/04chrp450
https://ror.org/04ymgwq66
https://ror.org/04chrp450
https://ror.org/05nf86y53
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.065807&domain=pdf&date_stamp=2024-06-24
https://doi.org/10.1103/PhysRevC.109.065807


BIKAI GAO, YAN YAN, AND MASAYASU HARADA PHYSICAL REVIEW C 109, 065807 (2024)

existence of the chiral invariant mass, denoted by m0, in addi-
tion to the conventional chiral variant mass generated by the
spontaneous chiral symmetry breaking. The existence of the
chiral invariant mass is consistent with the lattice QCD sim-
ulation done at nonzero temperature [19–21]. The framework
of PDMs has been widely used to study the hadron structure
[22–27] and construct the EOS for nuclear and NS matter
[13–16,28–49]. We note that the constructed EOS is softer
for larger chiral invariant mass, and the resultant EOSs are
combined with the EOS constructed from an NJL-type quark
model by assuming quark-hadron crossover, which allows for
a smooth transition from hadronic matter to quark matter
[13–16,42,48]. This hybrid approach, where the PDM EOS
is employed up to densities around 2n0–3n0 and interpolates
with the quark EOS at � 5n0 via polynomial interpolation, is
used to obtain the unified EOS. In this case, the unified EOS
can be constructed with a soft EOS in the low-density part and
a sufficiently stiff EOS in the high-density part to support the
2M� constraint.

In this work, we consider a hadronic EOS constructed
from a PDM in the low-density region and interpolate with
quark EOS using an NJL-type quark model in the high-density
region. Inside the PDM, we included the ρ2ω2 interaction
term with λωρ to be its coupling constant, which is assumed
to make the EOS softer. By adjusting the two parameters λωρ

and m0, we can adjust the stiffness of the EOS in the hadronic
model. The constructed unified EOS is shown to satisfy the
constraints from HESS J1731-347 and makes it possible to be
the lightest neutron star ever observed.

This paper is organized as follows. In Sec. II, we explain
the formulation of the present model. The main results of the
analysis of the properties of the NS are shown in Sec. III.
Finally, we show the summary and discussions in Sec. IV.

II. EQUATION OF STATE

In this section, we briefly review how to construct the neu-
tron star matter EOS from a PDM in the low-density region
and from a NJL-type quark model in the high-density region.

A. Nuclear matter EOS

In Ref. [16], a hadronic PDM is constructed to describe the
NS properties in the low-density region (� 2n0). The model
includes the effects of strange quark chiral condensate through
the Kobayashi-Maskawa-’t Hooft (KMT)-type interaction in
the mesonic sector. The density dependence of the strange
quark chiral condensate 〈s̄s〉 is calculated and the results show
the impact of strange quark chiral condensate is very limited
in the low-density region. Then, in the current study, we ne-
glect the effect of strange quark in the low-density domain. In
addition, we ignore the influence of the isovector scalar meson
a0(980) in the current model, which is believed to appear
in asymmetric matter like neutron stars. As investigated in
Ref. [49], the effect of a0(980) has a negligible impact on
the properties of neutron stars. Specifically, the inclusion of
a0(980) only results in a slight increase in the radius by less
than 1 km. We would like also to note that, in these analyses, a
term of vector meson mixing, i.e., the ω2ρ2 term, is introduced

TABLE I. Physical inputs in vacuum in units of MeV.

mπ fπ mω mρ m+ m−

140 92.4 783 776 939 1535

to make the slope parameter be consistent with the recent
constraint shown in Ref. [50]. In the present analysis, we also
include the mixing contribution.

The thermodynamic potential is obtained as [14,43]

�PDM = V (σ ) − V (σ0) − 1

2
m2

ωω2 − 1

2
m2

ρρ
2

− λωρ (gωω)2(gρρ)2

− 2
∑

i=+,−

∑
α=p,n

∫ k f d3p
(2π )3

(
μ∗

α − Ei
p

)
, (1)

where i = + and − denote the parity of nucleons and Ei
p =√

p2 + m2
i is the energy of nucleons with mass mi and mo-

mentum p. In Eq. (1), the potential V (σ ) is given by

V (σ ) = − 1
2 μ̄2σ 2 + 1

4λ4σ
4 − 1

6λ6σ
6 − m2

π fπσ, (2)

and σ0 is the mean field at vacuum.
We note that the sign of λ is restricted to be positive due

to the stability of the vacuum at zero density [49]. The total
thermodynamic potential for the NS is obtained by including
the effects of leptons as

�H = �PDM +
∑

l=e,μ

�l , (3)

where �l (l = e and μ) are the thermodynamic potentials for
leptons given by

�l = −2
∫ kF d3p

(2π )3

(
μl − El

p

)
. (4)

The mean fields here are determined by following stationary
conditions:

0 = ∂�H

∂σ
, 0 = ∂�H

∂ω
, 0 = ∂�H

∂ρ
. (5)

We also need to consider the β equilibrium and the charge
neutrality conditions,

μe = μμ = −μQ, (6)

∂�H

∂μQ
= np − nl = 0, (7)

where μQ is the charge chemical potential. We then have the
pressure in hadronic matter as

PH = −�H. (8)

We then determine the parameters in the PDM by fitting
them to the pion-decay constant and hadron masses given in
Table I and the normal nuclear matter properties summarized
in Table II for a fixed value of m0. In addition, we use the
slope parameter as an input to determine the coefficient λωρ

of the ω-ρ mixing term. In the present analysis, we need to
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TABLE II. Saturation properties used to determine the model
parameters: the saturation density n0, the binding energy B0, the
incompressibility K0, and the symmetry energy S0.

n0 (fm−3) EBind (MeV) K0 (MeV) S0 (MeV)

0.16 16 240 31

use the slope parameter as an input to determine the strength
of the vector meson mixing (namely, the parameter λρω). The
estimation in Ref. [50] provides the best value of L = 57.7 ±
19 MeV.

For studying this sensitivity, we first study the EOSs for
L = 40, 57.7, 70, and 80 MeV with m0 = 800 MeV fixed.

In Table III, we summarize the values of the parameters
gρNN and λωρ for several choices of the chiral invariant mass
and the slope parameter.Since the introduction of ω-ρ mixing
does not have an impact on the normal nuclear matter con-
struction, the coupling constants of scalar mesons μ̄2, λ4, and
λ6 are exactly the same as those determined in Ref. [14], and
we only list the values for λωρ and gρNN .

The dependence on the slope parameter L for m0 = 800
MeV is plotted in Fig. 1. This shows that the smaller L leads
to a softer EOS as expected. As we show later, we need a very
soft EOS in the low-density region to reproduce the HESS
data. Then, we take L = 40 MeV as a typical choice in the
preceding analysis.

We can then calculate the EOS in the hadronic model, and
the corresponding EOS for the PDM with fixing the slope
parameter L = 40 MeV is shown in Fig. 2. From this figure,
we easily find that larger values of m0 lead to softer EOSs.
This is understood as follows: a greater m0 leads to a weaker
σ coupling to nucleons, because a nucleon does not have to
acquire its mass entirely from the σ fields. The couplings to
ω fields are also smaller because the repulsive contributions
from ω fields must be balanced with attractive σ contributions

TABLE III. Determined values of λωρ and gρNN with different
choices of the chiral invariant mass m0 and the slope parameter L.

L = 40 MeV
m0 (MeV) 500 600 700 800 900

λωρ 0.045 0.087 0.192 0.504 3.243
gρNN 7.31 7.85 8.13 8.30 8.43

L = 57.7 MeV
m0 (MeV) 500 600 700 800 900

λωρ 0.037 0.066 0.141 0.362 2.28
gρNN 7.31 7.85 8.13 8.30 8.43

L = 70 MeV
m0 (MeV) 500 600 700 800 900

λωρ 0.028 0.045 0.088 0.211 1.252
gρNN 7.31 7.85 8.13 8.30 8.43

L = 80 MeV
m0 (MeV) 500 600 700 800 900

λωρ 0.020 0.021 0.025 0.030 0.013
gρNN 7.31 7.85 8.13 8.30 8.43

FIG. 1. EOS for different values of the slope parameter L for
m0 = 800 MeV.

at the saturation density n0. At densities larger than n0, how-
ever, the σ field reduces but the ω field increases, and these
contributions are no longer balanced, affecting the stiffness of
the EOS.

B. Quark matter EOS

Following Refs. [13,51], we use an NJL-type quark model
to describe the quark matter. The model includes three-flavors
and the U(1)A anomaly effects through the quark version of
the KMT interaction. The coupling constants are chosen to
be the Hatsuda-Kunihiro parameters which successfully re-
produce the hadron phenomenology at low energy [13,52]:
G�2 = 1.835 and K�5 = 9.29, with � = 631.4 MeV, see
the definition below. The couplings gV and H characterize
the strength of the vector repulsion and the attractive diquark
correlations whose range is examined later when we discuss
the NS constraints.

We can then write down the thermodynamic potential as

�CSC = �s − �s
[
σ f = σ 0

f , d j = 0, μq = 0
]

+�c − �c
[
σ f = σ 0

f , d j = 0
]
, (9)

FIG. 2. EOS for different values of m0 for L = 40 MeV.
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where the subscript 0 is attached for the vacuum values, and

�s = −2
18∑

i=1

∫ � d3p
(2π )3

εi

2
, (10)

�c =
∑

i

(
2Gσ 2

i + Hd2
i

) − 4Kσuσdσs − gV n2
q, (11)

where σ f denotes the chiral condensates, d j denotes the
diquark condensates, and nq denotes the quark density. In
Eq. (10), εi are the energy eigenvalues obtained from the
inverse propagator in the Nambu-Gorkov bases

S−1(k) =
(

γμkμ − M̂ + γ 0μ̂ γ5
∑

i �iRi

−γ5
∑

i �
∗
i Ri γμkμ − M̂ − γ 0μ̂

)
, (12)

where

Mi = mi − 4Gσi + K|εi jk|σ jσk,

�i = −2Hdi,

μ̂ = μq − 2gV nq + μ3λ3 + μ8λ8 + μQQ,

(R1, R2, R3) = (τ7λ7, τ5λ5, τ2λ2). (13)

S−1(k) is a 72 × 72 matrix in terms of the color, flavor, spin,
and Nambu-Gorkov basis, which has 72 eigenvalues. Mu,d,s

are the constituent masses of u, d , and s quarks and �1,2,3

are the gap energies. μ3,8 are the color chemical potentials
which are tuned to achieve the color neutrality. The total
thermodynamic potential including the effect of leptons is

�Q = �CSC +
∑

l=e,μ

�l . (14)

The mean fields are determined from the gap equations,

0 = ∂�Q

∂σi
= ∂�Q

∂di
, (15)

From the conditions for electromagnetic charge neutrality and
color charge neutrality, we have

n j = −∂�Q

∂μ j
= 0, (16)

where j = 3, 8, and Q. The baryon number density nB is
determined as

nq = −∂�Q

∂μq
, (17)

where μq is 1/3 of the baryon number chemical potential.
After determining all the values, we obtain the pressure as

PQ = −�Q. (18)

III. STUDY OF PROPERTIES OF NS

In this section, following Ref. [14] we construct a unified
EOS by connecting the EOS obtained in the PDM introduced
in Sec. II A and the EOS of the NJL-type quark model given
in Sec. II B, and we solve the Tolman-Oppenheimer-Volkoff
(TOV) equation [53,54] to obtain the NS mass-radius (M-R)
relation. As for the interplay between nuclear and quark mat-
ter EOSs, see, e.g., Ref. [55] for a quick review that classifies
types of the interplay.

TABLE IV. Unified EOS composed of four parts.

0 � nB < 0.5n0 0.5n0 � nB � 2n0 2n0 < nB < 5n0 nB � 5n0

Crust PDM Interpolation NJL

A. Construction of unified EOS

In our unified equations of state as in Table IV, we use
the (Baym-Pethick-Sutherland) EOS [56] as a crust EOS for
nB � 0.5n0. From nB � 0.5n0 to 2n0 we use our PDM model
to describe nuclear matter. We limit the use of our PDM up
to 2n0 so that baryons other than ground-state nucleons, such
as the negative-parity nucleons or hyperons, do not show up in
matter. Beyond the 2n0 nuclear regime, we assume a crossover
from the nuclear matter to the quark matter, and we use a
smooth interpolation to construct the unified EOS. We expand
the pressure as a fifth-order polynomial of μB as

PI(μB) =
5∑

i=0

Ciμ
i
B, (19)

where Ci (i = 0, . . . , 5) are parameters to be determined from
boundary conditions given by

dnPI

(dμB)n

∣∣∣∣
μBL

= dnPH

(dμB)n

∣∣∣∣
μBL

,

dnPI

(dμB)n

∣∣∣∣
μBU

= dnPQ

(dμB)n

∣∣∣∣
μBU

, (n = 0, 1, 2), (20)

with μBL being the chemical potential corresponding to nB =
2n0 and μBU to nB = 5n0. We demand the matching up to the
second-order derivatives of pressure at each boundary. The
resultant interpolated EOS must satisfy the thermodynamic
stability condition,

χB = ∂2P

(∂μB)2
� 0, (21)

and the causality condition,

c2
s = dP

dε
= nB

μBχB
� 1, (22)

which means that the sound velocity is smaller than the light
velocity. These conditions restrict the range of quark model
parameters (gV , H) for a given nuclear EOS and a choice of
(nL, nU ). We exclude interpolated EOSs which do not satisfy
the abovementioned constraints. We note that the interpolation
between the hadronic (PDM) and quark (NJL) models is per-
formed over a relatively wide density range (2n0–5n0) because
there is still significant uncertainty regarding the exact density
at which the transition from hadronic to quark matter occurs
in neutron stars. By choosing a broad interpolation range, we
aim to capture a variety of possible transition scenarios.

B. Mass-radius relation

In this section, we calculate mass-radius relation of NSs by
using the unified EOS constructed in the previous section for
the PDM with different parameter choices of the chiral invari-
ant mass m0 and the slope parameter L.
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(a) m0=500 MeV (b) m0=600 MeV

(c) m0=700 MeV (d) m0=800 MeV

(e) m0=900 MeV

m
ax

m
ax

m
ax

m
ax

m
ax

FIG. 3. Allowed combination of (H, gV ) values for m0 = 500, 600, 700, 800, and 900 MeV when L = 40 MeV. A cross mark indicates
that the combination of (H , gV ) is excluded by the causality constraints. A circle indicates that the combination is allowed. The color shows
the maximum mass of NS obtained from the corresponding parameters, as indicated by a vertical bar at the right side of each figure.

First, we study whether the smooth connection is realized
depending on the parameters H and gV in the NJL-type quark
model as shown in Fig. 3 for PDM with L = 40 MeV. For
each combination of (H , gV ), the cross marks are the param-
eter choices forbidden by the causality and thermodynamic
stability conditions. For possible choices of (H , gV ), we de-
termine the maximum mass of a NS, which is indicated by the
color in Fig. 3. This shows that a larger gV or/and a smaller
H leads to a larger maximum mass. For m0 = 900 MeV, the

maximum mass for all the choices of (H , gV ) are below 2 M�,
leading to the conclusion that m0 = 900 should be excluded
when the slope parameter is chosen to be L = 40 MeV. In
Fig. 4, we fix the value of m0 with different choices of L
and calculate the corresponding mass-radius curves, where
the values of (H, gV ) are chosen to have the stiffest EOS. In
this figure, the thick part indicates that the density region is
smaller than 2n0 or larger than 5n0 and the thin line indicates
the interpolated region. From the figure, for m0 = 800 MeV,
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FIG. 4. Mass-radius relations for same m0 = 800 MeV in differ-
ent PDM sets. The black curve is connected to the NJL parameters
(H , gV )/G = (1.5, 1), the green curve to (H , gV )/G = (1.55, 1),
the red curve to (H , gV )/G = (1.55, 1), and the blue curve to (H ,
gV )/G = (1.55, 1).

the radius for L = 40 MeV, M � 1.4 M�, is about 11.5 km,
while the result of L = 80 MeV is about 12.6 km. This result
indicates that EOSs are softened by the effect of the ωρ

interaction. One can see that the M-R curve for L = 40 MeV
satisfies the constraint from the HESS J1731-347 observation.
We note that L = 40 MeV is consistent with the one obtained
in Ref. [50], due to a large ambiguity. Precise determination of
the slope parameter in future will help us to further constrain
the NS properties.

To achieve a NS with a small radius, the outer-core EOS
(density around 1n0–2n0) is extremely important, since it di-
rectly connects to the radius of a neutron star. In our model,
the chiral invariant mass m0 and the slope parameter L are two
factors which have impacts on the outer-core EOS. We then
treat them as free parameters and compare the corresponding
M-R curves with NS constraints from NICER, gravitational
wave detection, and HESS. We show the allowed region of
m0 and L satisfying all the observational constraints in the 1σ

and 2σ range as in Fig. 5. Under this parameter space favoring
large m0 and small L, HESS J1731-347 can be considered as
the lightest NS.

IV. SUMMARY AND DISCUSSIONS

In this study, we use parity doublet model together with
the NJL-type model within the framework of the relativistic
mean-field model to describe low-mass neutron stars. We
construct the EOS for NS matter by interpolating the EOS
obtained in the PDM and the one in the NJL-type model by
assuming the crossover from hadronic matter to quark matter.
In the calculation of the NS mass-radius relation, we find the
outer-core EOS is crucial to determine the radius of a NS.
Consequently, the choices of the chiral invariant mass m0 and
the slope parameter L which describe the properties of the
uniform nuclear matter are essential. We treat m0 and L as
two free parameters and find the parameter space enables us
to explain the HESS J1731-347 as a neutron star as in Fig. 5.

FIG. 5. Allowed region for m0 and L. Within the shadowed
region, the M-R curve satisfies all the constraints from the NS ob-
servation within the error of 1σ or 2σ .

We note here that the typical estimate of L falls within
the range of 40–80 MeV, as indicated by various studies
[50,57,58]. However, there are also other estimates such as
L = (109 ± 36.41) MeV derived from the analyses of neutron
skin thickness from the PREX-2 experiment. There are still
large ambiguities about the value of slope parameter. In the
present research, we follow Ref. [50] as the baseline to set L =
57.7 ± 19 MeV and study the corresponding mass-radius rela-
tion. If future experiments show the value of the slope param-
eter is large, we can come to the conclusion that HESS J1731-
347 cannot be explained as a NS within the present model.

As studied in Refs. [13,59,60], the validity of pure
hadronic descriptions at nB � 2n0 are questionable as nuclear
many-body forces are very important, implying that quark
descriptions are required even before the quark matter forma-
tion. In this study, we choose the interpolation point to be 2n0

and the ambiguity from the interpolation point is discussed in
Fig. 6. In this figure, we show the M-R curves for m0 = 850
MeV and L = 40 MeV with changing the interpolation range
from 2n0–5n0 to 1.5n0–5n0 and 2.5n0–5n0. We can easily

FIG. 6. Mass-radius relations for m0 = 850 MeV and L = 40
MeV, and corresponding curves for central density. Different colors
indicate different interpolation ranges.
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FIG. 7. Mass-radius relations for m0 = 600, 700, and 800 MeV
with L = 40 MeV. Orange curves are for (H, gV )/G = (1.55, 1.3)
and (1.45, 0.8); green curves are for (H, gV )/G = (1.6, 1.3) and
(1.5, 0.8); and red curves are for (H, gV )/G = (1.55, 1) and
(1.5, 0.8).

see that the ambiguity from the interpolation point is very
limited: at the mass about 1 M�, the radius shifts are only
about 0.1 km.

In Fig. 7, we fix the value of the slope parameter as L =
40 MeV and vary the value of m0 as m0 = 600, 700, and
800 MeV. We choose the values of (H , gV ) parameters to
produce the most stiff and the most soft EOSs satisfying the
2 M� constraint. For m0 = 700 and 800 MeV, the rather soft
hadronic EOSs are connected with rather stiff quark EOSs
satisfying the 2 M� constraint, resulting in a peak of the
density dependence of the sound velocity, as shown in Fig. 8.
However, for m0 = 600 MeV, the rather stiff hadronic EOS
is used to connect with stiff quark EOSs, resulting in just a
bumplike structure. Besides, we find that the onset density
of the sound velocity peak is larger for larger m0. Reference
[61] pointed out that the appearance of the maximum in the
speed of sound in the interior of NSs might indicate the
change of medium composition, from hadronic to quark or
quarkyonic matter. They estimate the critical density where
baryons begin to overlap as nper

c = 1.22/V0, V0 = (4/3)πR3
0

[62]. After using the experimental value of the proton radius
R0 = 0.9 ± 0.05 fm [63,64], the critical density is calculated
as nper

c = 0.57+0.12
−0.09 fm−3. When we require that the peak

FIG. 8. Sound velocity for m0 = 600, 700, and 800 MeV. The
NJL parameters are the same as those in Fig. 7.

density of the sound velocity in the present analysis should
satisfy 0.48 � npeak

B � 0.69, i.e., 3 � npeak
B /n0 � 4.3, we ob-

tain the constraint to the chiral invariant mass as 600 � m0 �
800 MeV for L = 40 MeV.

Finally, we note that in our current work we have focused
on the scenario of a smooth crossover transition between
hadronic and quark matter, as described by the interpolation
between the PDM and NJL models. This choice is motivated
by the fact that a crossover transition allows for a more gradual
change in the EOS, which can be more easily reconciled with
the observed properties of NSs, such as the LIGO-VIRGO
and NICER events, which all have a similar radius for NSs. A
strong first-order phase transition generally leads to a sudden
change of the radius which is not favored by the observation
constraints. In this case, we do not consider the first-order
phase transition in this work.
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