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Background: The inner crust of neutron stars consists of a Coulomb lattice of neutron-rich nuclei, immersed in
a sea of superfluid neutrons with background relativistic electron gas. A proper quantum-mechanical treatment
for such a system under a periodic potential is the band theory of solids. The effect of band structure on the
effective mass of dripped neutrons, the so-called entrainment effect, is currently in a debatable situation, and it
has been highly desired to develop a microscopic nuclear band theory taking into account neutron superfluidity
in a fully self-consistent manner.
Purpose: The main purpose of the present work is twofold: (1) to develop a formalism of the time-dependent
self-consistent band theory, taking fully into account nuclear superfluidity, based on time-dependent density-
functional theory (TDDFT) extended for superfluid systems, and (2) to quantify the effects of band structure
and superfluidity on the entrainment phenomenon, applying the formalism to the slab phase of the inner crust of
neutron stars.
Methods: The fully self-consistent time-dependent band theory, proposed in a previous work [Phys. Rev. C 105,
045807 (2022)], is extended to superfluid systems. To this end, a superfluid TDDFT with a local treatment of
pairing, known as time-dependent superfluid local density approximation, is formulated in the coordinate space
with a Skyrme-type energy density functional, adopting the Bloch’s boundary condition. A real-time method is
employed to extract the collective masses of a slab and of protons, which in turn quantify the conduction neutron
number density and the neutron effective mass, i.e., the entrainment effect.
Results: Static calculations have been performed for a range of baryon number density (nb = 0.04–0.07 fm−3)
under the β-equilibrium condition with and without superfluidity, for various interslab spacings. From the results,
we find that the system gains energy through the formation of Cooper pairs for all densities examined, which
supports the existence of superfluidity in the inner crust of cold neutron stars. From a response of the system to
an external potential, we dynamically extract the collective masses of a slab and of protons immersed in neutron
superfluid. The obtained results show the collective mass of a slab is substantially reduced by 57.5%–82.5% for
nb = 0.04–0.07 fm−3, which corresponds to an enhancement of conduction neutron number density and, thus,
to a reduction of the neutron effective mass, which we call the anti-entrainment effect. A comparison of the
results with and without superfluidity reveals that superfluidity slightly enhances the anti-entrainment effects
for the slab phase of neutron-star matter. We discuss a novel phenomenon associated with superfluidity, that is,
quasiparticle resonances in the inner crust, which are absent in normal systems.
Conclusions: Our fully self-consistent, microscopic, superfluid band theory calculations based on (TD)DFT
showed that the effective mass of dripped neutrons is reduced by about 20%–40% for nb = 0.04–0.07 fm−3

because of the band-structure effects, and superfluidity slightly enhances the reduction.
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I. INTRODUCTION

The band theory of solids, with the aid of Kohn-Sham
density-functional theory (DFT) [1–3], has become a standard
tool in material science to understand and predict abundant
properties of a wide variety of matters. Its time-dependent
extension based on time-dependent DFT (TDDFT) [4–6] has
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also been extensively developed to explore electron dynam-
ics under a strong laser field (see, e.g., Refs. [7–12] and
references therein). Recently, the band theory of solids has
been applied for studying properties of the inner crust of
neutron stars [13–19], where nuclear bundles form crys-
talline structures, just in a similar way as terrestrial solids,
which coexists with neutron superfluid and relativistic elec-
tron gas. Along the line with the previous work [19],
this paper aims to develop a fully self-consistent, micro-
scopic framework to describe structure and dynamics of
the inner crust of neutron stars, taking fully into account
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TABLE I. A summary of the complicated situation concerning the band-structure effects in the inner crust of neutron stars. This work, with
future extensions to 2D and 3D systems, aims to provide conclusive values of the neutron effective mass throughout the inner crust of neutron
stars.

Author(s) (Year) Dimension Self-consistency Superfluidity m�
n/mn nb (fm−3) Ref.

Carter, Chamel, and Haensel (2005) 1D − − 1.02–1.03 0.074–0.079 [13]
2D − − 1.11–1.40 0.058–0.072

Chamel (2005) 3D − − 1.07–15.4 0.03–0.086 [14]
Chamel (2012) 3D − − 1.21–13.6 0.0003–0.08 [17]
Kashiwaba and Nakatsukasa (2019) 1D

√ − 0.65–0.75 0.07–0.08a [18]
Sekizawa, Kobayashi, and Matsuo (2022) 1D

√ − 0.59 0.04b [19]
Yoshimura and Sekizawa (2024) 1D

√ √
0.58 0.07a This work

2D, 3D
√ √

? � 0.07 Future works

aWhere appearance of the slab phase is expected.
bWith a fixed proton fraction Yp = 0.1.

both the band structure and superfluid effects on the same
footing.

The band theory of solids may not yet be a popular ap-
proach in the context of neutron-star studies. While a first
indication of necessity of such a calculation was made in 1994
[20], realistic band theory calculations were achieved in 2005
for slab and rod phases [13], followed by three-dimensional
(3D) calculations for Coulomb lattices of spherical nuclei
[14,17]. It has been shown that, based on band theory cal-
culations on top of a nuclear potential obtained with the
Thomas-Fermi-type approximation [21], the effective mass
of dripped neutrons is increased by factors of 1.02–1.03 and
1.11–1.40 in the slab and rod phases, respectively. Further-
more, the 3D calculations showed that band structure effects
always enhance the neutron effective mass and most strikingly
in a certain low-density region (0.02 fm−3 � nb � 0.04 fm−3)
it was found to be nearly 10 times or more larger than the bare
neutron mass [17]. The increase of neutron effective mass is
associated with the Brag scattering of dripped neutrons off the
periodic potential, which immobilizes those otherwise-free
neutrons. The latter effect is called the entrainment effect. The
notable change of the neutron effective mass turned out to
affect various interpretations of astrophysical phenomena of
neutron stars such as pulsar glitches [22–24] and thermal as
well as crustal properties [25–29], and it has attracted increas-
ing interests over the years. (See, Ref. [30] for a review of
band calculations of Chamel et al. and a discussion on related
topics.)

The situation regarding the band-structure effects on
dripped neutrons in the inner crust of neutron stars is still
highly controversial (see Table I). While the band theory
calculations assume a perfect crystalline structure, disorder
of crystal may reduce the band-structure effects [31,32].
Apart from the possible disorder effects, recently, fully self-
consistent, microscopic band theory calculations based on
DFT and its time-dependent extension (TDDFT) have been
achieved for the slab phase of nuclear matter [18,19]. In
Refs. [18,19], based on both static and dynamic calculations,
respectively, the neutron effective mass was found to be re-
duced for the slab phase, which is called the anti-entrainment
effects [19]. The latter observation is contradictory to the
results of Ref. [13], which may be partly due to an improper

definition of “free” neutron density for the slab and rod phases
in the work of Carter et al. [13], as pointed out in Ref. [18].
Further applications of the fully self-consistent band theory to
higher spatial dimensions have been highly desired.

However, in the aforementioned works, pairing corre-
lations were neglected and it is not at all obvious how
superfluidity affects the entrainment effect. In Ref. [33], it
was argued, within the Bardeen-Cooper-Schrieffer (BCS) ap-
proximation, that pairing correlations do not affect much the
results and the strong entrainment would remain. In later
studies, pairing effects were studied for a one-dimensional
(1D) periodic potential within the BCS as well as Hartree-
Fock-Bogoliubov (HFB) [also called Bogoliubov-de Genns
(BdG)] approximations, showing that the BCS treatment is
not enough and a self-consistent treatment of pairing cor-
relations is essentially important to correctly quantify the
entrainment effect [34,35]. However, none of those studies are
fully self-consistent. In neutron-star matter, there is no “exter-
nal” potential (except the gravitational one that is negligible
in investigating nuclear-scale microphysics) and neutrons and
protons are self-organizing to arrange a variety of crystalline
structures. Therefore, it is an imperative task to develop a
fully self-consistent microscopic framework that includes su-
perfluidity to draw a clear conclusion on the magnitude of the
entrainment effect.

In the present paper, before extending the framework of
Ref. [19] to higher spatial dimensions, we first develop a for-
malism of fully self-consistent, microscopic time-dependent
superfluid band calculations based on TDDFT for superfluid
systems. According to the Hohenberg-Kohn theorem [1] with
the Kohn-Sham scheme [2], DFT can, in principle, be an
exact approach to quantum many-body problems. Its time-
dependent extension [5,6], based on the Runge-Gross theorem
[4], allows us to describe complex nonlinear dynamics as
well as excited states. While (TD)DFT for superfluid (super-
conducting) systems was initially formulated with a nonlocal
pair potential �(r, r′) [36,37], subsequent developments of
its local treatment with a proper pairing renormalization
scheme resulted in the so-called (time-dependent) superfluid
local density approximation [(TD)SLDA] [38–42]. In the
nuclear physics context, on the other side, (TD)DFT was
originally developed as mean-field theories with effective
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nucleon-nucleon interactions, like the Skyrme (TD)HF ap-
proach [43–48]. Because of the historical reason, one may
confuse (TD)SLDA with (TD)HFB with a zero-range effec-
tive pairing interaction. We note, however, that the pairing
renormalization scheme [39,40] makes the theory cutoff in-
dependent, if it is taken to be sufficiently large, and allows
one to work with a local pairing field �(r) within a well-
defined theoretical framework. Thus, in the same way as
one regards Skyrme (TD)HF as (TD)DFT, we can regard
Skyrme (TD)HFB with a zero-range pairing interaction as
superfluid (TD)DFT, if such a proper pairing renormalization
scheme is adopted. TDSLDA [49,50] has been successfully
applied not only for nuclear systems [51–55], but also for
cold-atomic systems [56–61]. In this work, we develop a
fully self-consistent (time-dependent) superfluid band theory
based on (TD)SLDA, imposing the Bloch boundary condi-
tion to quasiparticle wave functions, which corresponds to an
extension of the previous work [19] for superfluid systems.
By applying the formalism to the slab phase of neutron-star
matter under the β-equilibrium condition, we demonstrate the
validity of our formalism and shed new light on the role of
superfluidity in the entrainment phenomenon.

The article is organized as follows: In Sec. II, we explain
detailed formalisms of the self-consistent time-dependent su-
perfluid band theory for the inner crust of neutron stars, and
provide computational details in Sec. III. In Sec. IV, we
present the results of band theory calculations for the slab
phase of nuclear matter under the β-equilibrium condition. In
Sec. V, conclusions and prospects are given.

II. FORMULATION

A. Hartree-Fock-Bogoliubov theory

1. The matrix representation

Let us first succinctly recapitulate the general framework of
the HFB theory, clarifying our notations. Here we start with a
generic Hamiltonian in the second quantization form,

Ĥ =
∑

kl

tkl â
†
k âl + 1

4

∑
klmn

v̄klmnâ†
k â†

l ânâm, (1)

where âk and â†
k are particle annihilation and creation oper-

ators, respectively, that obey the fermionic anticommutation
relations: i.e., {âk, â†

l } = δkl and {âk, âl} = {â†
k, â†

l } = 0. tkl

and v̄klmn (≡vklmn − vklnm) are usual matrix elements of a
one-body kinetic-energy operator and of a two-body interac-
tion, respectively, where the latter one is antisymmetrized for
convenience. In the HFB theory, quasiparticle annihilation and
creation operators, β̂μ and β̂†

μ, respectively, are introduced via

the Bogoliubov transformation of âk and â†
k :(

β̂

β̂
†

)
= W†

(
â
â†

)
. (2)

Here we have introduced column vectors β̂ ≡ (β̂1, β̂2,

. . . , β̂M )
T
, β̂

† ≡ (β̂†
1 , β̂

†
2 , . . . , β̂

†
M )

T
, â ≡ (â1, â2, . . . , âM )

T
,

and â† ≡ (â†
1, â†

2, . . . , â†
M )

T
to simplify the notation, where M

corresponds to the dimension of basis states. The 2M × 2M
Bogoliubov transformation matrix W can be written as

W =
(

U V ∗
V U ∗

)
, (3)

where U and V are M × M matrices. The Bogoliubov
transformation matrix is unitary, i.e., W†W = WW† = I2M ,
with I2M being a 2M-dimensional identity matrix. The latter
property ensures that β̂μ and β̂†

μ also obey the fermionic
anticommutation relations. One can write down explicitly the
quasiparticle annihilation and creation operators, respectively,
as follows:

β̂μ =
∑

i

(U ∗
iμâi + V ∗

iμâ†
i ), (4)

β̂†
μ =

∑
i

(Uiμâ†
i + Viμâi ). (5)

Note that we use Greek indices (such as μ, ν, . . . ) for label-
ing positive-energy quasiparticle states, while Roman indices
(such as i, j, . . . ) are used for labeling single-particle states,
except some obvious cases.

The HFB state, the trial many-body wave function for
a variation, is defined as a vacuum of quasiparticles, i.e.,
β̂μ|HFB〉 = 0 for all μ. Based on the variational principle, one
can derive the well-known HFB equation:(

h − λIM �

−�∗ −h∗ + λIM

)(
Uμ

Vμ

)
= Eμ

(
Uμ

Vμ

)
, (6)

where h = t + � denotes the single-particle Hamiltonian ma-
trix with a matrix for the mean-field potential �, � is a matrix
for the pair potential, λ is the chemical potential, and Uμ

and Vμ represent the μth column of the U and V matrices,
respectively. The (k, l ) component of the mean-field potential
and the pair potential matrices are defined, respectively, as
follows:

�kl =
∑
mn

v̄kmlnρnm, (7)

�kl = 1

2

∑
mn

v̄klmnκmn. (8)

Here the one-body density matrix ρ and the pairing tensor κ

are, respectively, given by

ρkl = 〈â†
l âk〉 = (V ∗V T)kl , (9)

κkl = 〈âl âk〉 = (V ∗U T)kl , (10)

where the brackets, 〈· · · 〉, represent an expectation value in
the HFB state. This is the usual matrix representation of the
HFB theory. By definition, ρ is Hermitian (ρ† = ρ) and κ is
skew symmetric (κT = −κ).

2. Treatment of a system with certain symmetries
in the coordinate-space representation

Next, let us consider a case where a system possesses
certain symmetries and introduce the coordinate-space rep-
resentation of the HFB theory. The formulas given here are
actually useful to formulate the superfluid band theory with

065804-3



KENTA YOSHIMURA AND KAZUYUKI SEKIZAWA PHYSICAL REVIEW C 109, 065804 (2024)

the Bloch boundary condition in Sec. II B. When a sys-
tem possesses symmetries, the Hamiltonian commutes with
operators associated with the corresponding symmetric trans-
formations and there are conserved quantities with which one
can classify quantum states. For instance, for a system with
the spherical symmetry, the orbital angular momentum L and
its projection m are conserved, being good quantum numbers.
In such a case, states with different values of (L, m) are not
mixed, and the Hamiltonian matrix can be arranged to have a
block-diagonal form. In the following we denote such a set of
arbitrary good quantum numbers as �.

Since single- and quasiparticle states can be classified ac-
cording to the set of quantum numbers, �, we may explicitly
indicate it as μ → {ν�} and i → { j�}. For a system with
symmetries, the quasiparticle annihilation and creation opera-
tors, Eqs. (4) and (5), respectively, can be written as

β̂ν� =
∑

j

(U ∗
j�,ν�â j� + V ∗

j�̄,ν�
â†

j�̄
), (11)

β̂
†
ν� =

∑
j

(Uj�,ν�â†
j� + Vj�̄,ν�â j�̄). (12)

Note that �̄, which appeared as a subscript of the second
term in the parentheses in Eqs. (11) and (12), stands for the
same set of quantum numbers as �, but any “countable”
quantum numbers involved in it have opposite sign [e.g., for
the case of � = (L, m), �̄ = (L,−m)]. It is simply because a
“hole” of a state with countable quantum number(s) could be
characterized like a particle which has the opposite sign for
the countable quantum number(s). In this way, the quantum
numbers on the left- and right-hand sides of Eqs. (11) and (12)
are being consistent. It should be noted that Eqs. (11) and (12)
mean the original U , V matrices are now in a block-diagonal
form. That is, U relates single- and quasiparticle states with
the same �, while V relates those with � and �̄, being
Uj�,ν�′ = Uj�,ν�δ��′ and Vj�,ν�′ = Vj�,ν�̄δ�̄�′ .

To obtain the coordinate-space representation with the spin
degree of freedom, let us introduce the field operators,

ψ̂ (rσ ) =
∑

j�

φ j�(rσ )â j�, (13)

ψ̂†(rσ ) =
∑

j�

φ∗
j�(rσ )â†

j�. (14)

Note that the summation is taken over all single-particle
states (i = { j�}) by definition. Here φ j�(rσ ) ≡ 〈rσ | j�〉 =
〈rσ |â†

j�|0〉 denotes the single-particle wave function, where

|0〉 is the vacuum state. The field operator creates a par-
ticle with spin σ (= ↑ or ↓) at a position r in the
vacuum, i.e., |rσ 〉 = ψ̂†(rσ )|0〉. Using the orthonormal
properties of the single-particle wave functions, 〈φk|φl〉 ≡∑

σ

∫
φ∗

k (rσ )φl (rσ )dr = δkl , with Eqs. (13) and (14), the par-
ticle annihilation and creation operators can be represented,
respectively, as follows:

â j� =
∑

σ

∫
φ∗

j�(rσ )ψ̂ (rσ )dr, (15)

â†
j� =

∑
σ

∫
φ j�(rσ )ψ̂†(rσ )dr. (16)

Substituting Eqs. (15) and (16) into Eqs. (11) and (12), one
finds

β̂ν� =
∑

σ

∫
(u∗

ν�(rσ )ψ̂ (rσ ) + v∗
ν�(rσ )ψ̂†(rσ ))dr, (17)

β̂
†
ν� =

∑
σ

∫
(uν�(rσ )ψ̂†(rσ ) + vν�(rσ )ψ̂ (rσ ))dr, (18)

where

uν�(rσ ) ≡
∑

j

Uj�,ν�φ j�(rσ ), (19)

vν�(rσ ) ≡
∑

j

Vj�̄,ν�φ∗
j�̄(rσ ). (20)

These are the coordinate-space representations of the u and v
components of the quasiparticle wave functions. The quasi-
particle wave functions are normalized to be∑

σ

∫
[|uν�(rσ )|2 + |vν�(rσ )|2]dr = 1. (21)

In the same way as in the matrix representation, a variational
calculation leads to the corresponding coordinate-space rep-
resentation of the HFB equation:

∫
dr′

⎛⎜⎜⎜⎜⎝
ĥ↑↑(r, r′) − λδr,r′ ĥ↑↓(r, r′) 0 �(r, r′)

ĥ↓↑(r, r′) ĥ↓↓(r, r′) − λδr,r′ −�(r, r′) 0

0 −�∗(r, r′) −ĥ∗
↑↑(r, r′) + λδr,r′ −ĥ∗

↑↓(r, r′)

�∗(r, r′) 0 −ĥ∗
↓↑(r, r′) −ĥ∗

↓↓(r, r′) + λδr,r′

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

uν�(r′ ↑)

uν�(r′ ↓)

vν�(r′ ↑)

vν�(r′ ↓)

⎞⎟⎟⎟⎠ = Eν�

⎛⎜⎜⎜⎝
uν�(r↑)

uν�(r↓)

vν�(r↑)

vν�(r↓)

⎞⎟⎟⎟⎠,

(22)

where δr,r′ ≡ δ(r − r′). In the coordinate-space representation, the number and anomalous densities are defined as n(r) ≡∑
σ n(rσ, rσ ) and κ (r, r′) ≡ κ (r↑, r′ ↓), respectively, where

n(rσ, r′σ ′) ≡ 〈ψ̂†(r′σ ′)ψ̂ (rσ )〉
=

∑
i�1 j�2ν�

φ∗
i�1

(r′σ ′)φ j�2 (rσ )V ∗
j�2,ν�V T

ν�,i�1

=
∑
ν�

v∗
ν�(rσ )vν�(r′σ ′), (23)
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κ (rσ, r′σ ′) ≡ 〈ψ̂ (r′σ ′)ψ̂ (rσ )〉
=

∑
i�1 j�2ν�

φi�1 (r′σ ′)φ j�2 (rσ )V ∗
j�2,ν�U T

ν�,i�1

=
∑
ν�

v∗
ν�(rσ )uν�(r′σ ′). (24)

When the single-particle Hamiltonian contains no terms
that mix spin states (i.e., ĥ↑↓ = ĥ↓↑ = 0), the HFB equa-
tion (22) can be decomposed into two equations with half of
the original dimension as∫

dr′
(

ĥ(r, r′) − λδr,r′ �(r, r′)
�∗(r, r′) −ĥ∗(r, r′) + λδr,r′

)(
uν�(r′ ↑)
vν�(r′ ↓)

)
= Eν�

(
uν�(r↑)
vν�(r↓)

)
, (25)

where ĥ = ĥ↑↑ = ĥ↓↓. From a diagonalization of the HFB
matrix, one obtains not only the quasiparticle states, but
also the quasihole states with negative eigenvalues, −Eν�.
Thanks to this so-called quasiparticle-quasihole symmetry,
the other spin component of quasiparticle wave functions, i.e.,
(v∗

ν�(r↑), u∗
ν�(r↓))T for −Eν�, can be found in the negative-

energy states.

B. Superfluid band theory with a Skyrme-type
energy density functional

1. The Bloch boundary condition

In this section, we formulate the band theory of solids
for superfluid systems. What one has to do is to combine
the Bloch boundary condition with the HFB framework. The
essence of the band theory is to impose the periodicity of
the crystal to the wave functions of the system. According
to the Floquet-Bloch theorem, it can be achieved, represent-
ing the single-particle wave functions by modulated plane
waves [62],

φ
(q)
jk (rσ ) = 1√V φ̃

(q)
jk (rσ )eik·r, (26)

where V stands for the volume of a unit cell and k is the Bloch
wave vector. In this section, we explicitly indicate the isospin
degree of freedom by an index q, where q = n for neutrons
and q = p for protons. The periodicity of the system is then
encoded into the function φ̃

(q)
jk (rσ ) as

φ̃
(q)
jk (r + T , σ ) = φ̃

(q)
jk (rσ ), (27)

where T is the lattice translation vector. We refer to the di-
mensionless function φ̃

(q)
jk (rσ ) as a Bloch wave function.

If the potential is local in space, there is no correlation
between unit cells and the Hamiltonian can be written in a
block-diagonal form. It is thus possible to regard the Bloch
wave vector k as a sort of quantum numbers associated with a
translational symmetry in a broad sense. That is, we can regard
the Bloch wave vectors k and k̄ (= − k) as the countable quan-
tum numbers � and �̄, respectively, which were introduced
in Sec. II A 2. We note that the form of single-particle wave
functions is the same for φ̃

(q)
jk̄

(rσ ), meaning that the sign of the

FIG. 1. Schematic picture showing the geometry of the systems
under study. The nuclear slabs extend parallel to xy plane and are
aligned with a period a along z direction, as depicted in the upper
part of the figure. In the lower part, the nuclear mean-field potential
is depicted in xz plane. Note that when dripped neutrons exist the
maximum value of the mean-field potential for neutrons (U 0

n in the
picture) is negative, even outside the slabs. The figure has been
reprinted from Ref. [18] with permission.

exponent is different for φ̃ jk̄ because of the relation, k̄ = −k.
By substituting Eq. (26) into Eqs. (19) and (20), we find that
the quasiparticle wave functions, uνk(rσ ) and vνk(rσ ), can be
written as follows:

u(q)
νk (rσ ) = 1√V ũ(q)

νk (rσ )eik·r, (28)

v
(q)
νk (rσ ) = 1√V ṽ

(q)
νk (rσ )eik·r, (29)

where ũ(q)
νk (r + T , σ ) = ũ(q)

νk (rσ ) and ṽ
(q)
νk (r + T , σ ) = ṽ

(q)
νk

(rσ ) hold. Notice that the sign of the exponent is the same
for both u and v components. It is an important key to for-
mulate the superfluid band theory as shown in the subsequent
sections.

In the present paper, we consider one-dimensional (1D)
crystalline structure, i.e., the slab (or “lasagna”) phase of
nuclear matter, where slabs are extending parallel to xy plane
and are in a periodic sequence along z direction; see Fig. 1. In
this case the lattice vector T reads

T = Tx êx + Tyêy + anzêz, (30)

where Tx and Ty are arbitrary real numbers, nz is an integer, a
denotes the period of (or distance between) the neighboring
slabs, and êi is the unit vector along the i (=x, y, or z)
direction. Since the single-particle wave functions along the
x and y directions are solely plane waves, the Bloch boundary
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condition, Eq. (27), is now reduced to

φ̃
(q)
jk (z + a, σ ) = φ̃

(q)
jk (zσ ). (31)

That is, the Bloch wave functions have 1D spatial dependence:

u(q)
νk (rσ ) = 1√V ũ(q)

νk (zσ )eik·r, (32)

v
(q)
νk (rσ ) = 1√V ṽ

(q)
νk (zσ )eik·r. (33)

The z component of the Bloch wave vector can be reduced
within the first Brillouin zone, −π/a � kz � π/a. In practical
calculations, we discretize the first Brillouin zone into Nkz

points, i.e., �kz = 2π
a

1
Nkz

. This implementation corresponds to
a calculation with a length L ≡ aNkz with the ordinary peri-
odic boundary condition. Thus, the normalization condition
(21) now reads

A
∑

σ

∫ L

0

[∣∣u(q)
νk (rσ )

∣∣2 + ∣∣v(q)
νk (rσ )

∣∣2]
dz = 1, (34)

where A stands for the normalization area such that V = LA.
Because of the periodicity of the quasiparticle wave functions,
Eq. (34) is equivalent to∑

σ

∫ a

0

[∣∣̃u(q)
νk (zσ )

∣∣2 + ∣∣̃v(q)
νk (zσ )

∣∣2]
dz = a. (35)

2. Energy density functionals

The main ingredient of DFT is the energy density func-
tional (EDF). In this work, the EDF used is almost the same
as given in the previous work [19], except the introduction of
a pairing functional. For completeness, here we briefly recall
the equations, because some of them require a caution specific
to the superfluid systems.

The total energy per nucleon of the system is given by

Etot

A
= 1

Nb

∫ a

0
[Enucl(z) + Ee(z)]dz, (36)

where Enucl denotes a nuclear part of the energy density and
Ee is the electrons one. Here, Nb = Nn + Np (the subscript “b”
stands for “baryons,” which are nucleons in the present study),
where Nq = ∫ a

0 nq(z)dz is the total number of neutrons (q =
n) or protons (q = p) per unit area within a single period a,
with nq(z) being the number density of neutrons (q = n) or
protons (q = p). The nuclear energy density is given as a sum
of kinetic, nuclear (interaction), and pairing energy densities,

Enucl(z) = Ekin(z) + ESky(z) + Epair(z), (37)

where

Ekin(z) =
∑

q=n,p

h̄2

2mq
τq(z), (38)

ESky(z) =
∑
t=0,1

[
Cρ

t [n0]n2
t (z) + C�ρ

t nt (z)∂2
z nt (z)

+Cτ
t

(
nt (z)τt (z) − j2

t (z)
)]

, (39)

Epair(z) = −
∑

q=n,p

�q(z)κ∗
q (z), (40)

where mq is the nucleon mass1 and ∂z represents a spatial
derivative with respect to the z coordinate. In this work, we
develop a formalism for a widely used Skyrme-type EDF for
the nuclear part. The kinetic and momentum densities in ESky

(39) are formally defined, respectively, by

τq(r) = (∇ · ∇′)nq(r, r′)|r=r′ , (41)

jq(r) = Im[(∇ − ∇′)nq(r, r′)]|r=r′ , (42)

where ∇ and ∇′ act on the spatial coordinates r and r′, re-
spectively. The time-odd momentum densities vanish in static
calculations, while they are, in general, finite in a dynamic
situation. The subscript t in Eq. (39) specifies isoscalar (t = 0)
and isovector (t = 1) densities, which are defined, for the
number density for instance, by n0(z) = nn(z) + np(z) and
n1(z) = nn(z) − np(z), respectively (the subscript “0” is of-
ten omitted). The detailed expressions of the coefficients by
means of Skyrme force parameters can be found in, e.g.,
Eq. (A1) in Ref. [63] (where the symbols AX

t were used instead
of CX

t here, where X stands for ρ, τ , or �ρ). Cρ
t [n0] depends

on the local number density as Cρ
t [n0] = Cρ

t + Cρ
t,Dnα

0 (z) as in
Ref. [64].

To evaluate the densities, Eqs. (23), (24), (41), and (42),
we need to take summations over all positive-energy quasi-
particle states μ = {νk}. For the slab phase under study, the
summation over kx and ky can be replaced with integrals,∑

kx,ky
→ ∫ Adkxdky/(2π )2 = ∫ Ak‖dk‖/(2π ), where k‖ ≡

(k2
x + k2

y )1/2 is the magnitude of the Bloch wave vector paral-
lel to the slabs [19]. Then, the various densities can be written
as follows:

nq(z) =
∑
νkzσ

∫
k‖dk‖
2πL

∣∣v(q)
νk (zσ )

∣∣2
, (43)

τq(z) =
∑
νkzσ

∫
k‖dk‖
2πL

[
k2
‖
∣∣v(q)

νk (zσ )
∣∣2 + ∣∣(∂z + ikz )v(q)

νk (zσ )
∣∣2]

,

(44)

jq(z) = −
∑
νkzσ

∫
k‖dk‖
2πL Im

[
v

(q)∗
νk (zσ )(∂z + ikz )v(q)

νk (zσ )
]
êz,

(45)

κq(z) =
∑
νkz

∫
k‖dk‖
2πL v

(q)∗
νk (z↑)u(q)

νk (z↓). (46)

Note that a minus sign appears in the current density (45), due
to the definition (20) that relates vν�(rσ ) and φ∗

j�̄
(rσ ).

The pairing part of EDF, Epair (40), contains the pairing
field �q(z) which is given by

�q(z) = −gq,eff(z)κq(z), (47)

where gq,eff (z) in Eq. (47) is an effective pairing coupling
constant [40], which is calculated as follows [65]:

1

gq,eff (z)
= 1

g0
− m⊕

q (z)

4π2 h̄2

π

a
K, (48)

1In this work, mn = 939.565 420 52 MeV/c2 and mp =
938.272 088 16 MeV/c2 are used, as in Ref. [19].
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where g0 is the bare coupling constant, m⊕
q (z) is a “micro-

scopic” effective mass, which will be defined in Eq. (55), and
K is a numerical constant that corresponds to the integral,

K = 12

π

∫ 4
π

0
ln(1 + 1/ cos2 θ )dθ

= 2.442 749 607 806 335 . . . . (49)

We set the bare coupling constant to g0 = 200 MeV fm3 in
the present work. This value has been used for finite nuclei in
the literature [39,66,67]. We find that this coupling constant
yields a reasonable value for the pairing field for neutron-star
matter on the order of 1 MeV [cf. Fig. 4(b)]. In the present
work, we thus employ this coupling constant for the sake
of simplicity. It is to mention that there exist several refined
treatments of the coupling constant that correctly reproduce
density dependence of the neutron pairing gap in neutron-star
matter (see, e.g., Refs. [53,68]).

The Coulomb part of the EDF reads

E (p)
Coul(z) = 1

2
np(z)VCoul(z) − 3e2

4

(
3

π

)1/3

n4/3
p (z), (50)

where VCoul(z) denotes the Coulomb potential for protons and
e is the elementary charge. The Slater approximation has
been adopted for the Coulomb exchange functional. For the
Coulomb potential, we solve the Poisson equation,

d2

dz2
VCoul(z) = −e2

ε0
nch(r), (51)

where ε0 is the vacuum permittivity. Here, nch(z) ≡ np(z) −
ne denotes the charge density, neglecting the charge form
factor of protons. Electrons are assumed to be uniformly
distributed with the density ne = n̄p, where n̄q = 1

a

∫ a
0 nq(z)dz

is the average nucleon number density. The Coulomb poten-
tial is subjected to the charge neutrality condition,

∫ a
0 VCoul

(z)dz = 0.
For the electrons EDF, Ee(z) in Eq. (36), we use formulas

for a relativistic electron gas. For explicit expressions, We
refer readers to Refs. [18,19].

3. Skyrme (TD)SLDA equations for the slab phase

From an appropriate functional derivative, one can derive
the corresponding single-particle Hamiltonian which enters
the (TD)SLDA equation. Because our working EDFs are local
in space, the resulting equation becomes also a local one. In
the same way as the normal (without pairing correlations)
self-consistent band theory [19], the point is that an operation
of a spatial derivative on a quasiparticle wave function (32)
generates an additional k-dependent term as follows:

∇u(q)
νk (rσ ) = 1√V eik·r(∂zêz + ik )̃u(q)

νk (zσ ), (52)

where the same is true also for the v component (33). Substi-
tuting Eqs. (32) and (33) into a localized version of Eq. (25),
and factoring out the common function eik·r after operations

of the spatial derivatives, we obtain(
ĥ(q)(z) + ĥ(q)

k (z) − λq �q(z)

�∗
q(z) −ĥ(q)∗(z) − ĥ(q)∗

−k (z) + λq

)

×
(

ũ(q)
νk (z↑

ṽ
(q)
νk (z↓)

)
= Eνk

(
ũ(q)

νk (z↑)

ṽ
(q)
νk (z↓)

)
. (53)

It should be noted that, while we deal with a three-dimensional
system, the equations to be solved are essentially one-
dimensional ones, significantly reducing the computational
cost.

The single-particle Hamiltonian ĥ(q)(z) is given by

ĥ(q)(z) = −∇·M (q)(z)∇ + U (q)(z)

+ 1

2i
[∇ · I(q)(z) + I(q)(z)·∇]. (54)

Note that the differential operators in Eq. (54) act on all spatial
functions located to the right side of them. Here, we have
introduced a time-even mean-field M (q)(z) defined as

M (q)(z) ≡ h̄2

2m⊕
q (z)

= h̄2

2mq
+

∑
q′=n,p

Cτ (q)
q′ nq′ (z), (55)

where m⊕
q (z) is the “microscopic” effective mass which

should be distinguished from a “macroscopic” one discussed
in Sec. IV D. U (q)(z) and I(q)(z) are time-even and time-odd
mean-field potentials, respectively, defined as

U (q)(z) =
∑

q′=n,p

[
2Cρ(q)

q′ nq′ (z) + 2C∇ρ(q)
q′ ∂2

z nq′ (z)

+ Cτ (q)
q′ τq′ (z) + 2nα

0 (z)Cρ(q)
q′D nq′ (z)

]
+ αnα−1

0 (z)
∑
t=0,1

Cρ
tDn2

t (z) + UCoul(z)δqp

+
∑

q′=n,p

∂gq′,eff

∂nq
|κq′ (z)|2, (56)

I(q)(z) = −2
∑

q′=n,p

Cτ (q)
q′ jq′ (z), (57)

where

UCoul(z) = VCoul(z) − e2

(
3

π

)1/3

n1/3
p (z). (58)

Note that there is an additional contribution to U (q)(z) arising
from the density derivative of the effective pairing coupling
constant, which is given by

∂gq′,eff

∂nq
= [gq′,eff (z)]2 K

8πa

(
h̄2

2m⊕
q′ (z)

)−2

Cτ (q′ )
q . (59)

Following the previous work [19], we have defined a short-
hand notation,

CX(q)
n ≡ CX

0 + ηqCX
1 , (60)

CX(q)
p ≡ CX

0 − ηqCX
1 , (61)
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where X stands for the superscript of the coefficients, i.e., ρ,
τ , or �ρ, and ηq = +1 (−1) for neutrons (protons). We note
that the time-odd potential vanishes in a static situation. The
single-particle Hamiltonian which depends on the Bloch wave
vector, ĥ(q)

k (z), can be represented as follows [19]:

ĥ(q)
k (z) = h̄2k2

2m⊕
q (z)

+ h̄k · v̂(q)(z), (62)

where v̂(q)(z) is the so-called velocity operator,

v̂(q)(z) = 1

ih̄
[r, ĥ(q)(z)]

= −ih̄

(
∇ 1

2m⊕
q (z)

+ 1

2m⊕
q (z)

∇
)

+ 1

h̄
Iq(z). (63)

As will be described in Sec. IV D, we apply the real-time
method, proposed in Ref. [19], where we extract the collective
masses of a slab and of protons from a dynamic response
of the system to an external force. The external force can
be introduced by means of a time-dependent, uniform vec-
tor potential Az(t ) that couples only with protons which are
localized inside slabs. Such a vector potential is equivalent to
a uniform electric field Ez(t ) = −(1/c)dAz(t )/dt . The time
evolution of the system is described by the TDSLDA equa-
tion in the velocity gauge [19]:(

ĥ(q)(z, t ) + ĥ(q)
k(t )(z, t ) �q(z, t )

�∗
q(z, t ) −ĥ(q)∗(z, t ) − ĥ(q)∗

−k(t )(z, t )

)

×
(

ũ′(q)
νk (z↑, t )

ṽ
′(q)
νk (z↓, t )

)
= ih̄

∂

∂t

(
ũ′(q)

νk (z↑, t )

ṽ
′(q)
νk (z↓, t )

)
, (64)

where the prime on the quasiparticle wave functions indicates
that they are represented in the velocity gauge,

ũ′(q)
νk (z, t ) ≡ exp

[
− ie

h̄c
Az(t )z

]̃
u(q)

νk (z, t ), (65)

and a similar formula (with the opposite sign in the exponent)
holds for the v components (33). Notice that the Bloch wave
vector in the k-dependent single-particle Hamiltonian (62) in
Eq. (64) is shifted as a function of time, according to the
following relation:

k(t ) = k + e

h̄c
Az(t )êz. (66)

All densities can be expressed in terms of the quasiparti-
cle wave functions in the velocity gauge, replacing ũ(q)

νk →
ũ′(q)

νk , ṽ(q)
νk → ṽ

′(q)
νk , and kz → kz(t ). More detailed explanations

on the expressions in the velocity gauge can be found in
Ref. [19].

III. COMPUTATIONAL DETAILS

We have newly developed a parallel computational code
from scratch that reproduces all the results presented in
Ref. [19] and extended it to include superfluidity. All the cal-
culations were carried out with Skyrme SLy4 EDF [69] as in
Ref. [19]. We consider a situation where nuclear slabs extend
along the xy directions, forming a perfect crystalline structure

along the z axis with a period a. We discretize the z coordinate
into a uniform grid with spacing �z to represent quasiparticle
wave functions. The mesh spacing is set to �z = 0.5 fm. The
spectral method with fast Fourier transformations (FFTs) are
used to evaluate the first and second spatial derivatives. The
Poisson equation for the Coulomb potential is solved also
with the FFT algorithm. We discretize the first Brillouin zone
−π/a � kz � π/a into Nkz points. We use Nkz = 80 as in
Ref. [19]. For the Bloch wave vector parallel to the slabs, k‖,
we introduce a cutoff kmax

‖ and discretize it with a �k‖ step.
For the calculations presented in this paper, kmax

‖ = 1.5 fm−1

and �k‖ = 0.01 fm−1 are adopted. We have confirmed that
these computational settings provide satisfactory convergent
results for the systems under study.

For time evolution, we use the eighth-order Taylor ex-
pansion method with a single predictor-corrector step with
�t = 0.1 fm/c. With this setting, we have confirmed that the
total number of nucleons and the total energy per nucleon are
conserved with 10−6- and 10−10-MeV accuracy, respectively,
within the simulation time of 4000 fm/c. For the extraction
of the collective mass of a slab, we dynamically introduce
an external potential for protons, Ez(t ) = S(η,w, t )Ez, as a
function of time t , where

S(η,w, t ) = 1

2
+ 1

2
tanh

[
η tan

(
πt

w
− π

2

)]
(67)

is a switching function which varies smoothly from 0 to 1
within an interval t = [0,w]. For t � w, we keep the external
potential constant, Ez(t ) = Ez. In this way we can avoid un-
necessary excitations of the system [19]. In the present paper,
η = 1 and w = 2000 fm/c were used and calculations were
continued up to t = 4000 fm/c. We set the strength of the
external potential as eEz = 10−3 MeV/fm, as in Ref. [19].

The slab period a under study is about a ≈ 30 fm and, thus,
the number of grid points along the z coordinate is Nz ≈ 60. In
such a case, the total number of quasiparticle wave functions
that need to be solved in the current computational setup is
estimated to be

Nz × Nkz × Nk‖ × 2 (isospin) × 2 (u and v)

= 60 × 80 × 150 × 4 = 2 880 000.

That is, although 1D equations look easily tractable, one has
to deal with millions of complex, nonlinear, partial differential
equations for the quasiparticle wave functions. Note that if the
single-particle Hamiltonian involves a term that mixes spins
the number increases by a factor of two, because of an explicit
treatment for the spin degree of freedom. Currently, our code
is parallelized with respect to the Bloch wave number kz using
the message passing interface (MPI).

IV. RESULTS AND DISCUSSION

A. On the convergence of self-consistent calculations

To solve the static SLDA equation, we performed
iterative diagonalizations of the Hamiltonian matrix. At
every step m, the chemical potentials for neutrons and
protons, λq, were updated to obtain correct neutron and
proton numbers satisfying the β-equilibrium condition. To
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FIG. 2. The change of the total energy per nucleon between two
successive iterations, �Etot/A = |E (m)

tot − E (m−1)
tot |/A, is plotted as a

function of the number of diagonalizations m for the system with
nb = 0.05 fm−3 under the β-equilibrium condition. The results ob-
tained with the modified Broyden’s method with M = 11, 7, and 3
are shown by solid, dashed, and dotted lines, respectively. The result
obtained with the linear mixing method with α = 0.1 is also shown
by a dash-dotted line for comparison.

this end, we adjust the chemical potential of protons as
λ(m+1)

p = λ(m)
p − αλ(N (m+1)

b − N (0)
b ) with αλ = 50, where

N (0)
b denotes the requested nucleon number, i.e., N (0)

b = anb.
The chemical potential of neutrons are determined simply
through the β-equilibrium condition μn = μp + μe. From the
calculations, we realized that a use of the modified Broyden’s
method (see, e.g., Ref. [70] and references therein) is crucial
to get a convergent result with a reasonable computational
time. The modified Broyden mixing was applied to the
mean-field, pairing, and chemical potentials so that the
unitarity of the Bogoliubov transformation matrix is always
preserved [70]. The Broyden vector thus reads V = {M (n)(z),
M (p)(z),U (n)(z),U (p)(z), Re[�n(z)], Im[�n(z)], Re[�p(z)],
Im[�p(z)], μn, μp}, i.e., with 8Nz + 2 dimensions. The
modified Broyden’s method also contains a parameter α that
controls a rate of mixing, which we set α = 0.1.

As a typical example, we show in Fig. 2 change in total
energy per nucleon, �Etot/A ≡ |E (m)

tot − E (m−1)
tot |/A, as a func-

tion of the number of diagonalizations for nb = 0.05 fm−3

under the β-equilibrium condition. In the modified Broyden’s
method, information of M previous steps is used for updating
the Broyden vector. For comparison, results with M = 11, 7,
and 3 are shown by solid, dashed, and dotted lines, respec-
tively. A result obtained with a simple linear mixing is also
presented by a dash-dotted line. In the linear mixing method,
potentials were updated simply according to X (m+1) = (1 −
α)X (m) + αX ′(m+1) with α = 0.1, where X ′(m+1) stands here
for a tentative potential obtained after the (m + 1)st di-
agonalization of the Hamiltonian matrix. From the figure,
one finds that the linear mixing may be good for the first
10–20 iterations, but its convergence is very slow, which
cannot reach �E < 10−6 MeV even after 200 diagonaliza-
tions. One may naively expect that the convergence would
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FIG. 3. Nuclear energy per nucleon, Enucl/A, is shown as a func-
tion of the slab period a. Results for nb = 0.04, 0.05, 0.06, and 0.07
fm−3 are exhibited in panels (a), (b), (c), and (d), respectively. In
each panel, results of superfluid band calculations are shown by filled
circles connected with solid lines, while those without superfluidity
are represented by open circles connected with dotted lines. The
minimum-energy locations are indicated by arrows.

be improved by increasing the rate of mixing, however, we
found that the calculation becomes unstable already for α =
0.15. In contrast, we find a good convergent behavior with
the modified Broyden’s method, where the energy change
decreases exponentially down to 10−14 MeV. In the present
paper, we use M = 7 and set a convergence criterion as
�Etot/A < 10−10 MeV.

B. On the optimal slab period

In self-consistent band theory calculations, the slab period
a is linked to the size of the computational region, Nz�z.
Therefore, to figure out the optimal slab period that minimizes
the total energy of the system, we need to repeat static calcu-
lations by changing the number of lattice points, Nz.

To show how the energy depends on the slab period a,
we show in Fig. 3 the nuclear energy per nucleon, i.e.,
Enucl ≡ 1

Nb

∫ a
0 Enucl(z)dz, as a function of the slab period a for

nb = 0.04, 0.05, 0.06, and 0.07 fm−3 under the β-equilibrium
condition. The results of superfluid band theory calculations
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TABLE II. A summary of self-consistent superfluid band theory
calculations for a range of baryon number densities nb = 0.04–0.07
fm−3 under the β-equilibrium condition. From the left to right
columns are presented the baryon number density nb in fm−3, proton
fraction Yp, optimal slab period a in fm, background neutron number
density nbg

n in fm−3, and average absolute values of the pairing field,
�q (q = n for neutrons and q = p for protons), in MeV.

nb Yp a nbg
n �n �p

0.04 3.31 × 10−2 38 3.23 × 10−2 1.20 9.34 × 10−2

0.05 3.30 × 10−2 29 4.08 × 10−2 1.34 6.88 × 10−2

0.06 3.37 × 10−2 31 4.96 × 10−2 1.49 8.33 × 10−2

0.07 3.50 × 10−2 25 5.80 × 10−2 1.55 2.25 × 10−2

are shown by solid circles connected with solid lines, while
those of normal band theory (without pairing correlations)
are shown by open circles connected with dotted lines. From
the figure, we find that the total energy is always lower with
superfluidity, gaining energy through the pairing correlations,
as expected for the inner crust of neutron stars. In addition, a
parabolic behavior is visible, which is associated with balance
between Coulomb and nuclear interactions. While a too small
slab period is energetically unfavorable due to the Coulomb
repulsion, a too large value results in loss of nuclear attraction.
In the figure, the optimal slab period that minimizes the total
energy is indicated by an arrow. It is visible from Figs. 3(c)
and 3(d) that inclusion of superfluidity could slightly affect
the period a.

It should be noted that the energy curve shows somewhat
different behavior when one includes the electrons’ contribu-
tion. Namely, the total energy per nucleon, Etot/A, exhibits a
gentle dependence on the slab period a with smaller curvature,
and the resulting optimal slab period tends to be larger than
those shown in Fig. 3 (see the Appendix for details). It is, of
course, desirable to optimize the slab period a by minimizing
the total energy of the system. In the present work, however,
we analyze the systems that minimize the nuclear energy,
following Ref. [18], because the primary purpose of this study
is to quantify the effects of band structure and superfluidity
for systems with different baryon number densities. In the
future works, where we extend the theoretical framework to
deal with two-dimensional (2D) and 3D crystalline structures
and make a quantitative prediction on the neutron effective
mass, configurations that minimize the total energy should be
investigated.

C. Static properties and band structure

The results of fully self-consistent superfluid band theory
calculations are summarized in Table II. In the table, we
show the proton fraction, Yp, which is determined by the
β-equilibrium condition, the optimal slab period, a, the back-
ground neutron number density, nbg

n , and the average absolute
value of the pairing field, �q. Clearly, the system is quite
neutron-rich, with proton fractions around 0.033–0.035. As
baryon number density increases, the optimal slab period a
decreases, as expected. In our calculations, a nuclear slab is
located at the center of the computational region, z = a/2,
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FIG. 4. Nucleon number densities nq(z) and the absolute value
of the pairing field, |�q(z)|, for the system with nb = 0.05 fm−3

under the β-equilibrium condition are shown in panels (a) and (b),
respectively, as a function of z coordinate. Solid lines show those of
neutrons, while dashed lines show those of protons.

and the background neutron number density is defined as
nbg

n = nn(0) = nn(a). The background neutron number den-
sity nbg

n increases with density, indicating that more neutrons
are dripped outside of the slab for higher densities. The aver-
age absolute values of the pairing field is defined by

�q = 1

Nq

∫ a

0
|�q(z)|nq(z)dz. (68)

In the present computational settings, both neutrons and pro-
tons are found to be in the superfluid and superconducting
phases, respectively, although the average proton pairing gap
is very small, as compared with the neutrons one.

In Figs. 4(a) and 4(b), we show a typical density distribu-
tion and the absolute value of the pairing field, respectively,
for the system with nb = 0.05 fm−3 under the β-equilibrium
condition. Because of the small proton fraction Yp = 0.033,
there is a substantial portion of dripped neutrons outside of
the slab, whose density distribution looks quite diffusive (or
“melting,” close to the uniform nuclear matter). This charac-
teristic is more pronounced in the case of distribution of the
pairing field. The absolute value of the pairing field is much
larger for neutrons, but protons are also superconducting al-
though �p is small. Since substantial amounts of neutrons are
dripped outside of the slab, we can expect the formation of
band structure. Now, a question arises: how does the superflu-
idity affect the band structure?

Figure 5 shows the quasiparticle energies E (q)
νk for the sys-

tem with nb = 0.05 fm−3 under the β-equilibrium condition,
as an illustrative example. In Fig. 5(a), the results are plotted
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FIG. 5. Quasiparticle energies of neutrons, E (n)
νk , are shown (a) as

functions of kz for k‖ = 0 and (b) as functions of k‖ for kz = 0 for the
system with nb = 0.05 fm−3 under the β-equilibrium condition. Line
color changes gradually according to the ascending order of E (n)

νk , just
to guide the eye.

as a function of the Bloch wave number kz within the first
Brillouin zone, −π/a � kz � π/a, with k‖ = 0, while quasi-
particle energies for kz > 0 are plotted as a function of k‖ in
Fig. 5(b). Line color changes gradually according to the as-
cending order of E (n)

νk , just to guide the eye. One should keep in
mind that quasiparticle energies are related to single-particle
ones in the canonical basis as

Eμ = ±
√

(εμ − λ)2 + �2. (69)

From Fig. 5(a), deep-hole states which are within the potential
well, εμ < U 0

n , can be seen as horizontal lines above 30 MeV.2

In the figure, many other lines are visible, showing kz depen-
dence, which are associated with dripped neutrons that extend
spatially outside the slabs. In Fig. 5(b), on the other hand,
we find there are parabolic curves, some of which are convex
upward and the rest is opposite. Basically, k‖ dependence orig-
inates from h̄2k2

‖/(2m⊕
q ) in Eq. (62) and, thus, those curves

which are convex upward are contributions solely from states
below the chemical potential. Clearly, quasiparticle energies
exhibit complex dependence on the Bloch wave vector k,

2U 0
n denotes the maximum value of the mean-field potential, which

takes negative values even outside of the slabs when dripped neutrons
exist (cf. Fig. 1).

which we call the band structure. We discuss the correspond-
ing single-particle energies in Sec. IV E (cf. Fig. 10).

D. Anti-entrainment effects

1. Real-time method

In this section, we present results of fully self-consistent
time-dependent simulations to quantify the entrainment ef-
fects in the slab phase of neutron-star matter in the presence
of superfluidity. We employ a real-time method that enables us
to extract the collective masses of a slab and of protons from
a dynamic response of the system to an external force—the
method proposed in Ref. [19]. Here we succinctly digest the
essence of the approach, referring readers to Ref. [19] for
details.

In the inner crust of neutron stars, where dripped superfluid
neutrons permeate a crystalline structure of nuclear bundles,
it is not at all obvious how to distinguish bound and un-
bound (free) neutrons. One may naively subtract background
uniform neutron density to define density of a cluster as a
“bump” in the whole density distribution, or compare the
depth of a mean-field potential and single-particle energies
to count the number of neutrons within the potential well
[71]. In real situations, however, due to the self-organizing
character of neutron-star matter, i.e., there is no clear-cut sep-
aration between clusters and the others, those are served only
as a naive estimation. In addition, part of dripped neutrons
are expected to be immobilized or trapped by the periodic
structure through the Bragg scattering. This is the so-called
entrainment effect and the amount of the “effectively bound”
neutrons is the matter of debate. We note, moreover, that
superfluidity may also affect the collective mass of nuclear
clusters [72]. It is thus a quite complicated problem and only
fully self-consistent superfluid band calculations developed
here can provide conclusive results.

The real-time method [19] offers an intuitive approach to
extract the collective mass of a nuclear cluster immersed in
neutron superfluid. In the latter approach, we exert an exter-
nal force Fext on protons which are well localized inside the
cluster. The protons together with effectively bound (bound
plus entrained) neutrons start moving towards the direction
of the external force. If the force is constant and there are
no redundant excitations other than the collective translational
motion, the cluster would exhibit a constant acceleration mo-
tion, Fext = Ṗ = Mclusterap, where Ṗ is the time derivative of
the total linear momentum of the system, and Mcluster and
ap are the collective mass and the acceleration of the clus-
ter, respectively. Since protons are localized in space, the
center-of-mass position of protons, Zp(t ) = 1

Np

∫ a
0 znp(z)dz, is

a well-defined quantity. Thus, we can numerically compute
the acceleration of the cluster, ap(t ) = d2Zp/dt2. Adopting
the classical relation, we can evaluate the collective mass
of the cluster as well as that of protons (per unit area) as
follows:

Mcluster = Ṗtot

ap
, (70)

Mp = Ṗp

ap
, (71)
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where Ptot = Pn + Pp is the total linear momentum and Pq

is the linear momentum of neutrons (q = n) and protons
(q = p) per unit area,

Pq(t ) = h̄
∫ a

0
j (q)
z (z, t )dz. (72)

Since we have both the collective masses of the cluster and
of protons, we can define the collective mass of effectively
bound neutrons per unit area by

Meff.bound
n = Mcluster − Mp. (73)

The number density of conduction neutrons which can freely
conduct can be quantified as follows:

nc
n = Nn − Neff.bound

n

a
, (74)

where Neff.bound
n = Meff.bound

n /m⊕
n,bg is the average number of

the effectively bound neutrons per unit area, where m⊕
n,bg =

m⊕
n [nbg

n ]. We note that the microscopic effective mass be-
comes equivalent to the bare mass for nbg

n = 0, and the
equation is valid for isolated slabs without dripped neutrons.
Having the conduction neutron number density, nc

n, we can
quantify the “macroscopic” effective mass, m�

n, as follows:

m�
n

m⊕
n,bg

= nf
n

nc
n

, (75)

where nf
n denotes the (energetically) free neutron number

density, which is the counterpart of the energetically bound
neutrons. In this way, we can extract the macroscopic effective
mass from a dynamic response of the system to the external
potential. The real-time method outlined above can be directly
applied also for the superfluid TDDFT, where all complex
effects are automatically included in the description in a fully
self-consistent manner.

2. The main results

In Figs. 6(a)–6(c), we show the obtained acceleration of
protons, ap(t ), the time-derivative of the total linear momen-
tum, Ṗtot(t ), and that of the proton linear momentum, Ṗp(t ),
respectively, as a function of time. Results obtained with
superfluidity is shown by solid lines, while those obtained
without superfluidity are shown by dotted lines. From t = 0
to 2000 fm/c, we smoothly switch on the external potential
and keep it constant for t � 2000 fm/c. As a result, we
observe that all those quantities become almost constant for
t � 2000 fm/c, as expected. It is to be mentioned that the
acceleration is more stably constant for the superfluid case
(solid lines) as compared with the normal case (dotted lines).
As shown in Fig. 6(b), the classical relation, Fext = Ṗtot holds
nicely, in both cases with and without superfluidity. From
Figs. 6(a) and 6(c), we find that both ap and Ṗp tend to be
larger when we include the superfluidity. It indicates that
the collective mass of the slab is lighter when we include
superfluidity, which means that fewer neutrons are entrained
via band-structure effects.
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FIG. 6. Results of fully self-consistent time-dependent band cal-
culations for various baryon number densities, nb = 0.04–0.07 fm−3,
under the β-equilibrium condition. Results obtained with (without)
superfluidity are shown by solid (dotted) lines. In panels (a), (b), and
(c), the acceleration of the center-of-mass position of protons, ap, the
rate of change of the total linear momentum per unit area, Ṗtot, and
the rate of change of the proton linear momentum per unit area, Ṗp,
are presented, respectively. The vertical line indicates the time up to
which the external force is turned on.

Using those quantities presented in Fig. 6, the collective
mass of the slab (70) and that of protons (71) can be deduced.
The results are shown in Fig. 7, where the ratio of Mslab

to the mass of “energetically bound” neutrons per unit area
Me.b. ≡ mpNp + mnNe.b.

n is shown in Fig. 7(a), and the ratio of
Mp to the total mass of protons per unit area mpNp is shown
in Fig. 7(b). The number of “energetically bound” neutrons
which are within the potential well is calculated as [19]

Ne.b.
n = 1

Nkz

∑
νkz

∫
k‖
π

n(n)
νk θ

(
U 0

n − e(n)
νk

)
dk‖, (76)

where θ (x) is the Heaviside step function, where θ (x) = 0 for
x < 0 and θ (x) = 1 for x � 0. e(n)

νk denotes the single-particle
energy after removal of the kinetic energy associated with
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FIG. 7. Results of fully self-consistent time-dependent super-
fluid band theory calculations for nb = 0.04 (solid line), 0.05 (dashed
line), 0.06 (dotted line), and 0.07 fm−3 (dash-dotted line) under the
β-equilibrium condition. (a) A ratio between the collective mass of
the slab and the mass of energetically bound nucleons, Mslab/Me.b., is
shown as a function of time. (b) A ratio between the collective mass
of protons and the total mass of protons, Mp/mpNp, is shown as a
function of time. The vertical line indicates the time up to which the
external force is turned on.

motion parallel to the slabs,

e(n)
νk ≡ ε

(n)
νk − 1

a

∫ a

0
v

(n)∗
νk (z)

h̄2k2
‖

2m⊕
n (z)

v
(n)
νk (z)dz. (77)

The single-particle energies ε
(n)
νk were calculated with the

method described in Sec. IV E. From Fig. 7(b), we see that
the collective mass of protons is slightly reduced by about
5%–9%. This reduction was already found in the previous
work without superfluidity [19], which can be explained by
the density-dependent microscopic effective mass. Namely,
protons behave as if they have a mass of m⊕

p,bg ≡ m⊕
p [nn,b.g.].

In stark contrast, in Fig. 7(a), we find that the collective
mass of the slab is significantly reduced by about 57.5%–
82.5% from the naive estimation of energetically bound
neutrons which are within the potential well. Apparently,
this significant reduction cannot be explained solely by the
density-dependent microscopic effective mass of neutrons.
Note that if dripped neutrons were actually entrained to the
slabs via band-structure effects, the collective mass of the
slab would be increased. Therefore, this counterintuitive phe-
nomenon is called the “anti-entrainment” effect [19].

As discussed in the previous work [19], the cause of the
reduction can be found in time evolution of current densi-
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FIG. 8. Results of fully self-consistent time-dependent super-
fluid band theory calculations for the system with nb = 0.05 fm−3

under the β-equilibrium condition. (a) Neutron current density is
shown as a function of the z coordinate at four representative in-
stances, t = 1000 (solid line), 2000 (dashed line), 3000 (dotted line),
and 4000 fm/c (dash-dotted line). (b) Current densities of neutrons
(solid line) and protons (dashed line) are shown at t = 4000 fm/c.
Results obtained without superfluidity are also shown in (b) by thin
dotted lines, for comparison.

ties. In Fig. 8(a), we show neutron current densities [i.e.,
momentum density jn(z) (45) multiplied by (h̄/mn)] obtained
by time-dependent superfluid band theory calculations as a
function of the z coordinate for the nb = 0.05 fm−3 case. The
results are shown for four representative instances at t = 1000
fm/c (solid line), 2000 fm/c (dashed line), 3000 fm/c (dotted
line), and 4000 fm/c (dash-dotted line). From Fig. 8(a), it is
visible that neutrons around the slab (which was initially z =
a/2 = 14.5 fm) move towards the direction of the external
force (+z direction), because the current density is positive.
On the other hand, the neutron current density outside the
slab becomes negative, meaning that those dripped neutrons
move towards the −z direction, opposite to the external force.
Since the presence of the “counterflow” reduces not only the
magnitude of the total linear momentum Ptot but also its rate of
increase, Ṗtot, it results in the reduction of the collective mass
of the slab. One could attribute the emergence of the coun-
terflow to the band-structure effects [19]. Namely, since the
macroscopic effective mass depends on the second derivative
of single-particle energy ε

(n)
νk with respect to the Bloch wave

number kz [18,19], it can be either positive or negative de-
pending on the curvature of the band. Dripped neutrons in the
band which is convex upward may have negative macroscopic
effective mass, and they respond towards the opposite direc-
tion to the external force. Based on the fully self-consistent
time-dependent superfluid band theory calculations, here we
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TABLE III. Results of fully self-consistent time-dependent band
theory calculations with (second to fourth columns) and without
(fifth to seventh columns) superfluidity. The baryon number den-
sity nb is indicated in the first column in fm−3. In the second and
third (fifth and sixth) columns, free neutron number density nf

n and
conduction neutron number density nc

n are shown as a ratio to the
average neutron number density n̄n, respectively. In the fourth (sev-
enth) column, macroscopic effective mass m�

n is shown as a ratio to
the microscopic effective mass at the background neutron number
density m⊕

n,bg, which is calculated with (without) superfluidity.

Superfluid (TD)DFT Normal (TD)DFT

nb nf
n/n̄n nc

n/n̄n m�
n/m⊕

n,bg nf
n/n̄n nc

n/n̄n m�
n/m⊕

n,bg

0.04 0.702 0.893 0.785 0.710 0.876 0.810
0.05 0.684 0.913 0.749 0.697 0.896 0.778
0.06 0.609 0.933 0.652 0.608 0.911 0.668
0.07 0.555 0.954 0.582 0.555 0.929 0.598

showed that the anti-entrainment effects are present even with
the inclusion of neutron superfluidity.

To examine the role of superfluidity in the anti-entrainment
phenomenon, we compare the results with and without su-
perfluidity at t = 4000 fm/c in Fig. 8(b). Normal static
and time-dependent band theory calculations were performed
for the same system, keeping all computational parameters
unchanged. Neutron (proton) current density obtained with
superfluid band theory is shown by the solid (dashed) line,
while those obtained with normal band theory are shown by
dotted lines. From Fig. 8(b), we find that the peak values
around the slab are slightly larger for the superfluid system,
consistent with the larger values of acceleration observed in
Fig. 6. In addition, looking at the neutron current density
outside of the slab, we find that the counter flow is also en-
hanced with superfluidity. Those observations suggest that the
anti-entrainment effect is slightly enhanced by the inclusion
of neutron superfluidity.

From the extracted collective masses shown in Fig. 7, we
can evaluate the conduction neutron number density, nc

n (74),
and the macroscopic effective mass, m�

n/m⊕
n,bg (75). Since

the extracted masses slightly fluctuate in time (cf. Fig. 7),
we take an average over the time interval, 2000 fm/c � t �
4000 fm/c, in which the external force is kept constant.
The results are summarized in Table III. In the second to
fourth columns, results obtained with superfluidity are shown,
while those without superfluidity are also shown in the fifth
to seventh columns, for comparison. In both cases with and
without superfluidity, the conduction neutron number density
nc

n is larger than the “free” neutron number density nf
n, for

all densities examined, nb = 0.04–0.07 fm−3. It means that
the band structure actually works like lubricant to mobilize
dripped neutrons. As a result, the macroscopic effective mass
m�

n becomes smaller than the microscopic effective mass for
background neutron number density m⊕

n,bg. By comparing the
fourth and seventh columns, we find that the inclusion of
superfluidity slightly enhances the reduction by a few percent.
It is remarkable that the inclusion of superfluidity does not

change the conclusion of Refs. [18,19], at least for the slab
phase of the inner crust of neutron stars.

3. Remarks on other calculations

In this section, we discuss relevance and difference of the
present results to other calculations.

First of all, our conclusion of the anti-entrainment in the
slab phase looks contradicting to the results of Carter et al.
[13], where ordinary entrainment effects were reported with
m�

n/mn = 1.02–1.03 for nb = 0.074–0.079 fm−3 in the slab
phase. We consider that the difference is caused by an im-
proper definition of free neutron number density, as pointed
out in Ref. [18]. That is, in the definition of Carter et al.
[13], kinetic energy associated with the motion parallel to the
slab was involved when they judge if neutrons are below or
above the nuclear potential well. Because of this fact, the free
neutron number density nf

n is substantially overestimated in
the calculations of Ref. [13], which resulted in entrainment
effects with larger values of m�

n/mn = nf
n/nc

n. We have actually
confirmed that m�

n/mn > 1 is obtained if we use the definition
of Ref. [13], in a similar way as reported in Ref. [18].

Second, Refs. [34,35] advocates that superfluidity has
a strong impact on the entrainment effects and also anti-
entrainment effects are absent, which contradict our conclu-
sion. We point out here that it is mainly caused by different
theoretical frameworks and definitions of the effective mass.
In Refs. [34,35], a simple toy model that uses a sinusoidal
external potential, which mimics a crystalline structure, was
employed. On top of that external potential, band calculations
based on BCS- and/or HFB-type theories were performed
to quantify the macroscopic effective mass via a standard
formula from the band theory of solids. In the simple model
of Refs. [34,35], the effective mass is defined with the su-
perfluid fraction, which is inevitably smaller than or equal
to the total particle number density of the system under the
external potential. It is thus by definition impossible to obtain
the anti-entrainment effect in their model. On the contrary in
our framework, the effective mass is defined as the ratio of
the number density of energetically free neutrons, which are
seemingly free from the potential, to the number density of
conduction neutrons, which can actually conduct. We note
that our fully self-consistent calculations showed that more
than 90% of neutrons actually participate in conduction (cf.
the third and sixth columns of Table III). It underlines the
importance of the self-organizing character of nuclear sys-
tems, where neutrons and protons form clusters by themselves
through the nucleon-nucleon interaction, and there is no exter-
nal periodic potential. The latter property is in stark contrast
with ordinary solids, where electrons are assumed, to a good
approximation, to feel an external periodic potential of an
ionic lattice in the sense of the Born-Oppenheimer approxi-
mation.

Lastly, it is to mention that we have also examined two
static treatments for calculating the neutron effective mass.
The first one is the method that was employed in, e.g.,
Refs. [13,14,17–19]. In the latter method, the macroscopic
effective mass is evaluated with the mobility coefficient which
is calculated as a sum of inverse effective mass tensors which
depend on curvature of each band as a function of the Bloch
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wave number. The other one is the method that was em-
ployed in Ref. [73]. In the latter case, SLDA equations are
solved in a gauge that simulates induced superflow, and the
effective mass of an impurity can be extracted from a static
response of the system. With both approaches, we have ob-
tained the results which are qualitatively consistent with our
real-time method, indicating the anti-entrainment effects.

Since there remains some room for discussion, such as the
definition of free neutrons and the relationship between the su-
perfluid fraction and the conduction neutron number density,
we leave quantitative comparisons between those different
treatments as a future work.

E. Quasiparticle Resonances

Finally, here we report our complementary finding of an
intriguing phenomenon characteristic to superfluid systems,
known as quasiparticle resonances, in the context of the in-
ner crust of neutron stars and discuss if it is relevant to the
entrainment phenomenon.

Usually, quasiparticle resonances are studied in the context
of a usual neutron-scattering process in a vacuum [74–78].
It is a resonance associated with pairing correlations, where
an incoming neutron deposits part of its kinetic energy to
the target nucleus, inducing a particle-hole excitation of a
bound neutron, and the excited neutron and the incoming one
form a Cooper pair which behaves as a resonance. Here we
show, within the fully self-consistent superfluid band theory
calculations, that quasiparticle resonances are present even
in the inner crust of neutron stars, where superfluid neutrons
permeate crystalline nuclear matter.

An intuitive way to distinguish quasiparticle resonances
from among the others is to analyze the occupation probabil-
ities as a function of single-particle energy. However, what
we obtain as a solution of the SLDA equation is a set of
quasiparticle energies, not the single-particle ones, and one
should evaluate the latter in an appropriate manner. In the
present work, instead of introducing the canonical basis, we
use an alternative method explained below.

As an effective way to link quasiparticle energies with
single-particle ones, we take the following procedure:

(1) We solve the SLDA equation self-consistently and
obtain quasiparticle energies E (q)

νk as well as a set
of densities, say, ρg.s., and the corresponding single-

particle Hamiltonian h(q)
k,g.s. ≡ h(q)[ρg.s.] + h(q)

k [ρg.s.].
(2) Next, we diagonalize the single-particle Hamiltonian

h(q)
k,g.s. and obtain “effective” single-particle energies,

say, ε̆
(q)
ν ′k. (Note that we put a breve accent to indicate

that they are not necessarily exactly equal to the true
single-particle energies ε

(q)
ν ′k.) The indices {ν ′k} label

the effective single-particle energies ε̆
(q)
ν ′k in ascending

order.
(3) We then evaluate the corresponding quasiparticle ener-

gies using the relation

Ĕ (q)
ν ′k =

√(
ε̆

(q)
ν ′k − λq

)2 + �
2
q, (78)
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FIG. 9. Occupation probabilities of neutrons, n(n)
νk , are shown as a

function of single-particle energy, ε
(n)
ν′k, for states with 0 � kz � π/a

and nb = 0.05 fm−3 under the β-equilibrium condition. In panel (a),
occupation probabilities are plotted only for states with k‖ = 0 for
better visibility, while in panel (b), results are plotted for all states.

where �q represents the average absolute value of the
pairing field, defined in Eq. (68).

(4) We reorder the obtained quasiparticle energies, Ĕ (q)
ν ′k

(78), in ascending order, Ĕ (q)
ν ′k → Ĕ (q)

νk , where we store
the correspondence between the indices, {ν ′k} ⇔
{νk}.

(5) Based on the following correspondences:

ε
(q)
ν ′k ≈ ε̆

(q)
ν ′k ⇔ Ĕ (q)

νk ≈ E (q)
νk , (79)

we regard the single-particle energies ε
(q)
ν ′k to be as-

sociated with the corresponding states {ν ′k} ⇔ {νk}
having occupation probabilities,

n(q)
νk = 1

a

∫ a

0

∣∣v(q)
νk (z)

∣∣2
dz. (80)

The estimated quasiparticle energies Ĕ (q)
νk (78) may not be

exactly equal to the true ones E (q)
νk , but in most cases we found

a good correspondence, Ĕ (q)
νk � E (q)

νk , with a correct ordering
of the quasiparticle energies.

In Fig. 9, we show neutron occupation probabilities n(n)
νk

as a function of single-particle energies ε
(n)
ν ′k calculated for a

system with nb = 0.05 fm−3 under the β-equilibrium condi-
tion, as a typical example. Since single-particle energies are
the same for ±kz, results are plotted for a half of the first
Brillouin zone, 0 � kz � π/a. The plot is restricted to k‖ = 0
in Fig. 9(a) for better visibility, while occupation probabilities
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FIG. 10. Single-particle energies of neutrons, ε
(n)
ν′k, are shown

(a) as functions of kz for k‖ = 0 and (b) as functions of k‖ for
0 � kz � π/a, for the system with nb = 0.05 fm−3 under the β-
equilibrium condition. Horizontal dashed line indicates the neutron
chemical potential λn. Occupation probabilities n(n)

νk are represented
by opacity of symbols. In both panels, states regarded as quasiparticle
resonances are highlighted in red.

for all states within the plotting range, −20 MeV � ε
(n)
ν ′k �

40 MeV, are presented in Fig. 9(b).
First, let us focus on the k‖ = 0 case, shown in Fig. 9(a).

From the figure, we see that occupation probabilities glob-
ally follow a Fermi-Dirac-type distribution, as it should be,
indicating that the above-mentioned procedure works well.
In addition to that, we find that there appear several irreg-
ular dips and peaks below and above the chemical potential
λn � 10.8 MeV, respectively. Clearly, the peaks embedded in
the continuum, paired up with the dips in the bound states,
manifest the expected characteristic of quasiparticle reso-
nances; that is, they form Cooper pairs to gain pairing energy.

To have another look at its behavior, we show in Fig. 10(a)
single-particle energies of neutrons ε

(n)
ν ′k as a function of the

Bloch wave number kz in the first Brillouin zone, −π/a �
kz � π/a, with k‖ = 0. In the figure, occupation probabilities
are indicated by the opacity of the data symbols. From the
figure, we find that the single-particle energies nicely exhibit
the expected band structure (cf. Refs. [18,19]). On top of that,
we can clearly see that there are four irregular states above

the chemical potential, which sustain noticeable occupation
probabilities. A closer look at the results reveals that hole-
like states with relatively small occupation probabilities are
present at the same kz below the chemical potential, meaning
that Cooper pairs are formed between the states with the
same Bloch wave vector k. We note that these quasiparticle
resonances could be observed, thanks to the band theory cal-
culations (i.e., they are absent for the kz = 0 case) in this
particular example. We consider that the essence is a better
treatment of the continuum states—the resonances would not
be resolved if there were no pairs of states with close val-
ues of |ε(n)

ν ′k − λn| within a resonance width. In addition, we
plot in Fig. 10(b) single-particle energies as a function of k‖
as well. The states regarded as quasiparticle resonances are
highlighted by red. From these figures, we find that pairing
is simply associated with single-particle states around the
chemical potential. If there were a large band gap (�ε >

�n) and the chemical potential were located in between the
gap, pairing would have been suppressed. In the slab phase,
however, band gaps are only a few to tens of keV [18,19],
which are much smaller than the average absolute value of the
pairing field, �n ≈ 1 MeV. Therefore, pairing properties are
insensitive to the band structure, in the slab phase under study.

In Fig. 9(b), we show occupation probabilities for all states
(kz > 0 and k‖ � 0) as a function of single-particle energies.
Intriguingly, we find that there are a number of quasiparticle
resonances for a range of single-particle energies, as can be
seen from the figure. Thus, on top of the usual entrainment
effects, where one expects that part of dripped neutrons are
effectively immobilized by the periodic potential, there could
be an additional contribution from quasiparticle resonances
which are detectable only in microscopic superfluid calcula-
tions.

To estimate the impact of quasiparticle resonances on the
entrainment phenomenon, we calculate the total number of
resonating neutrons per unit area, N res

n . N res
n is calculated

by integrating densities of states above the chemical poten-
tial, but with relatively large occupation probabilities (greater
than 0.1) that we considered as candidates of the quasi-
particle resonances. To exclude the states having n(n)

νk > 0.1
in the tail of the global Fermi-Dirac-type distribution, only
those exhibiting sudden changes of occupation probabilities
in neighboring energies were regarded as quasiparticle res-
onances. The results for various densities, nb = 0.04, 0.05,
0.06, and 0.07 fm−3, are summarized in Table IV. In the fifth
column of Table IV, we show the total number of resonating
neutrons per unit area within a single slab period a, N res

n .
These numbers should be compared with the expected number
of bound neutrons. Here we take a ratio between the number
of resonating neutrons to the number of “energetically bound”
neutrons (76), N res

n /Ne.b.
n , and it is listed in the sixth column

of Table IV. From the results, we find that the number of
resonating neutrons is only less than or around 1% of the num-
ber of energetically bound neutrons in the system. We also
find that the number of resonating neutrons decreases as the
baryon number density increases. The latter observation can
be explained by looking at the change of the potential. In the
second, third, and fourth columns of Table IV, the minimum
and the maximum values of the mean-field potential, U min

n and
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TABLE IV. Results of the SLDA calculations for baryon number
densities nb = 0.04, 0.05, 0.06, and 0.07 fm−3 under the β equilib-
rium condition are listed in the second–fifth rows, respectively. From
left to right columns, it shows baryon number density nb in fm−3,
the minimum and the maximum values of the mean-field potential
U min

n and U 0
n in MeV, the neutron chemical potential λn in MeV, the

number of resonating neutrons per unit area, N res
n , in fm−2, and its

ratio to the number of energetically bound neutrons, N res
n /N e.b

n [cf.
Eq. (76)].

nb U min
n U 0

n λn N res
n N res

n /N e.b.
n

0.04 −37.3 −13.1 9.48 1.09 × 10−2 2.49%
0.05 −37.6 −16.7 10.6 3.92 × 10−3 0.88%
0.06 −39.4 −20.3 11.6 2.54 × 10−3 0.36%
0.07 −38.7 −23.8 12.7 1.05 × 10−3 0.14%

U 0
n , respectively, and the chemical potential λn are presented.

Because more and more neutrons are dripped out of the slabs
as the baryon number density increases, the maximum value
of the mean-field potential decreases substantially, while the
minimum value is not so much affected. It means that the
depth of the potential well becomes shallower for higher
baryon number densities and, as a result, there are less bound
orbitals which can contribute to the quasiparticle resonances.
Therefore, although the phenomenon itself is physically in-
triguing, its impact on the entrainment effect is negligibly
small.

V. CONCLUSION AND PROSPECTS

In this work, we have developed a fully self-consistent
time-dependent superfluid band theory for the inner crust
of neutron stars based on time-dependent density-functional
theory (TDDFT) extended for superfluid systems, known as
time-dependent superfluid local density approximation (TD-
SLDA). It should be noted that our theoretical framework,
although it is currently restricted to a 1D slab structure, is
much more realistic than other existing models on the market.
Namely, our theory is based on the microscopic framework
of (TD)DFT, which can correctly describe properties of fi-
nite nuclei, not only static structure, but also excitations and
reaction dynamics, as well as nuclear matter properties, in
a unified way. We do not a priori assume any external po-
tential nor cluster shape, whereas nuclear pasta is formed
self-consistently through the effective nucleon-nucleon inter-
action. By applying the real-time method, where we measure
the collective mass of a nuclear cluster immersed in neutron
superfluid through a response of the system to an external
force, we have successfully extracted the conduction neu-
tron number density and the macroscopic effective mass of
dripped neutrons. From the results, we have found that the
dripped neutrons are actually mobilized by the band structure;
that is, the conduction neutron number density is enhanced
and the neutron effective mass is reduced, which we call
the anti-entrainment effects. These results are consistent with
recent self-consistent band calculations without superfluidity
[18,19], that is, no significant qualitative difference was ob-
served in the cases with and without superfluidity, at least
for the slab phase. We have demonstrated that the neutron

effective mass is substantially reduced up to about 42% in
the slab phase and superfluidity slightly enhances this anti-
entrainment effect.

As a next step, we have already extended the present
formalism to include finite temperature and magnetic-field
effects (cf. [79]). It enables us to quantify, e.g., the melting
temperature of the slabs, taking into account the band-
structure effects. We expect that such fully self-consistent
finite-temperature band theory calculations of nuclear pasta
phases in a hot environment will be useful, e.g., for studying
supernova matter or cooling of proto-neutron stars. Interesting
and useful information such as neutrino-pasta scattering, elas-
tic properties, as well as neutron-star cooling will be obtained
in our forthcoming works.

Needless to say, it is highly desired to extend the present
work to 2D and 3D geometries. We believe that the formalism
itself is unchanged and can be extended to higher dimensions
in a straightforward way. Thus, the major obstacle is the
computational cost. As we mentioned in Sec. III, we have
already dealt with millions of quasiparticle wave functions for
the 1D geometry. The extensions to 2D and 3D geometries
would require tens to thousands times larger number of quasi-
particle orbitals and the number of numerical operations for
those lattice points would be increased. To avoid diagonaliza-
tions of a matrix with such a huge dimension, we may take
advantage of shifted conjugate-orthogonal conjugate-gradient
(COCG) [80] or shifted conjugate-orthogonal conjugate-
residual (COCR) [81] methods. These methods allow us to
extract various densities by contour integrations, where a
shifted algorithm can be used to efficiently evaluate quantities
at different points in the complex plane. It has been shown that
these methods are particularly suitable to GPU parallelization,
since a huge number of operations at different coordinates r
are independent from each other. In addition, the TDSLDA
has also been shown remarkable successes with the use of
top-tier supercomputers working with GPUs [65]. The use of
GPUs would enable us to realize fully self-consistent time-
dependent superfluid band theory calculations for 2D and 3D
geometries and to resolve the controversial situation concern-
ing the entrainment effects in the inner crust of neutron stars.
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FIG. 11. Energy per nucleon is shown as a function of the slab period a. Total energy per nucleon which include electrons’ contribution,
Etot/A, is shown by solid circles connected with solid lines, while that without electrons contribution, Enucl/A, is shown by open circles
connected with dotted lines. In panels (a)–(d) are presented results obtained for different baryon number densities, nb = 0.04, 0.05, 0.06, and
0.07 fm−3, respectively, under the β-equilibrium condition. Note that left and right vertical axes correspond to Etot/A and Enucl/A, respectively.

APPENDIX: ON TOTAL ENERGY PER NUCLEON

As we mentioned in Sec. IV B, slab-period dependence
of energy of the system shows different behavior with and
without electrons’ contribution. In this Appendix, we provide
a comparison between those two cases.

In Figs. 11(a)–11(d), we present the total energy per nu-
cleon for nb = 0.04, 0.05, 0.06, and 0.07 fm−3, respectively,
under the β-equilibrium condition as a function of the slab
period a. The results with electrons’ contribution (Etot/A) are
shown by filled circles connected with solid lines, while those
without electrons’ contribution (Enucl/A) are shown by open
circles connected with dotted lines. That is, the latter results
are the same as those shown in Fig. 3 in the main text.

From the figure, we find that both energies, Etot/A and
Enucl/A, exhibit a parabolic shape which is convex downward
as a function of the slab period a. The minimum-energy
locations are shifted towards larger a values by 12, 11, 2, 2
fm for nb = 0.04, 0.05, 0.06, and 0.07 fm−3. We find that the
shift is smaller for higher-density regions where emergence of
the slab phase is actually expected (nb � 0.07–0.08 fm−3). To
obtain an equilibrium configuration of nuclear pasta phases
under the β-equilibrium condition, the total energy, rather
than the nuclear energy, should be minimized. Because the
use of larger a values (i.e., larger Nz) requires substantial
computational effort, and we expect that it will not change
the conclusion of the present article, the configurations that
minimize the nuclear energies were analyzed in this work.
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[60] B. Tüzemen, T. Zawiślak, G. Wlazłowski, and P. Magierski,
Disordered structures in ultracold spin-imbalanced Fermi gas,
New J. Phys. 25, 033013 (2023).

[61] A. Barresi, A. Boulet, P. Magierski, and G. Wlazłowski, Dis-
sipative dynamics of quantum vortices in fermionic superfluid,
Phys. Rev. Lett. 130, 043001 (2023).

[62] N. W. Ashcroft, N. D. Mermin, and D. Wei, Solid State Physics
Revised Edition (Cengage Lerning Asia Pte. Ltd, 2016).

[63] T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, and J. Meyer,
Tensor part of the Skyrme energy density functional: Spherical
nuclei, Phys. Rev. C 76, 014312 (2007).

[64] M. Kortelainen, R. J. Furnstahl, W. Nazarewicz, and M. V.
Stoitsov, Natural units for nuclear energy density functional
theory, Phys. Rev. C 82, 011304(R) (2010).

[65] S. Jin, K. J. Roche, I. Stetcu, I. Abdurrahman, and A. Bulgac,
The LISE package: Solvers for static and time-dependent super-

fluid local density approximation equations in three dimensions,
Comput. Phys. Commun. 269, 108130 (2021).

[66] Y. Yu and A. Bulgac, Energy density functional approach to
superfluid nuclei, Phys. Rev. Lett. 90, 222501 (2003).

[67] A. Bulgac, M. M. Forbes, S. Jin, R. N. Perez, and N. Schunck,
Minimal nuclear energy density functional, Phys. Rev. C 97,
044313 (2018).

[68] T. Okihashi and M. Matsuo, Proximity effect of pair correlation
in the inner crust of neutron stars, Prog. Theor. Exp. Phys. 2021,
023D03 (2021).

[69] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
A Skyrme parametrization from subnuclear to neutron star den-
sities part II. nuclei far from stabilities, Nucl. Phys. A 635, 231
(1998); E. Chabanat, ibid. 643, 441 (1998).

[70] A. Baran, A. Bulgac, M. M. Forbes, G. Hagen, W. Nazarewicz,
N. Schunck, and M. V. Stoitsov, Broyden’s method in nuclear
structure calculations, Phys. Rev. C 78, 014318 (2008).

[71] P. Papakonstantinou, J. Margueron, F. Gulminelli, and Ad. R.
Raduta, Densities and energies of nuclei in dilute matter at zero
temperature, Phys. Rev. C 88, 045805 (2013).

[72] N. Martin and M. Urban, Superfluid hydrodynamics in the inner
crust of neutron stars, Phys. Rev. C 94, 065801 (2016).

[73] P. Magierski, B. Tüzemen, and G. Wlazłowski, Dynamics of
spin-polarized impurity in ultracold Fermi gas, Phys. Rev. A
104, 033304 (2021).

[74] J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger,
C. R. Chinn, and J. Dechargé, Mean-field description of ground-
state properties of drip-line nuclei: Pairing and continuum
effects, Phys. Rev. C 53, 2809 (1996).

[75] K. Bennaceur, J. Dobaczewski, and M. Płoszajczak, Continuum
effects for the mean-field and pairing properties of weakly
bound nuclei, Phys. Rev. C 60, 034308 (1999).

[76] A. Bulgac, Hartree–Fock–Bogoliubov approximation for finite
systems, arXiv:nucl-th/9907088.

[77] Y. Kobayashi and M. Matsuo, Effects of pairing correlation
on the low-lying quasiparticle resonance in neutron drip-line
nuclei, Prog. Theor. Exp. Phys. 2016, 013D01 (2016).

[78] Y. Kobayashi and M. Matsuo, s-wave quasiparticle resonance
in neutron-rich drip-line nuclei, Prog. Theor. Exp. Phys. 2020,
013D03 (2020).

[79] K. Sekizawa and K. Yoshimura, Time-dependent superfluid
band theory for the inner crust of neutron stars: Current status
and future challenges, arXiv:2310.06411.

[80] S. Jin, A. Bulgac, K. Roche, and G. Wlazłowski, Coordinate-
space solver for superfluid many-fermion systems with the
shifted conjugate-orthogonal conjugate-gradient method, Phys.
Rev. C 95, 044302 (2017).

[81] Y. Kashiwaba and T. Nakatsukasa, Coordinate-space solver for
finite-temperature Hartree-Fock-Bogoliubov calculations using
the shifted Krylov method, Phys. Rev. C 101, 045804 (2020).

065804-20

https://doi.org/10.1002/pssb.201800592
https://doi.org/10.1103/PhysRevC.100.034615
https://doi.org/10.1103/PhysRevLett.116.122504
https://doi.org/10.1103/PhysRevLett.117.232701
https://doi.org/10.1103/PhysRevLett.119.042501
https://doi.org/10.1103/PhysRevC.105.064602
https://doi.org/10.1103/PhysRevLett.112.025301
https://doi.org/10.1103/PhysRevA.91.031602
https://doi.org/10.1103/PhysRevLett.120.253002
https://doi.org/10.1103/PhysRevA.105.013304
https://doi.org/10.1088/1367-2630/acc26b
https://doi.org/10.1103/PhysRevLett.130.043001
https://doi.org/10.1103/PhysRevC.76.014312
https://doi.org/10.1103/PhysRevC.82.011304
https://doi.org/10.1016/j.cpc.2021.108130
https://doi.org/10.1103/PhysRevLett.90.222501
https://doi.org/10.1103/PhysRevC.97.044313
https://doi.org/10.1093/ptep/ptaa174
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1016/S0375-9474(98)00570-3
https://doi.org/10.1103/PhysRevC.78.014318
https://doi.org/10.1103/PhysRevC.88.045805
https://doi.org/10.1103/PhysRevC.94.065801
https://doi.org/10.1103/PhysRevA.104.033304
https://doi.org/10.1103/PhysRevC.53.2809
https://doi.org/10.1103/PhysRevC.60.034308
https://arxiv.org/abs/nucl-th/9907088
https://doi.org/10.1093/ptep/ptv175
https://doi.org/10.1093/ptep/ptz136
https://arxiv.org/abs/2310.06411
https://doi.org/10.1103/PhysRevC.95.044302
https://doi.org/10.1103/PhysRevC.101.045804

