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From the observation of both heavy neutron stars and light ones with small radii, one anticipates a steep rise
in the speed of sound of nuclear matter as a function of baryon density up to values close to the causal limit.
A question follows whether such behavior of the speed of sound in neutron-rich matter is compatible with the
equation of state extracted from low-energy heavy-ion collisions. In this work, we consider a family of neutron-
star equations of state characterized by a steep rise in the speed of sound, and use the symmetry energy expansion
to obtain equations of state applicable to the almost-symmetric nuclear matter created in heavy-ion collisions. We
then compare collective flow data from low-energy heavy-ion experiments with results of simulations obtained
using the hadronic transport code SMASH with the mean-field potential reproducing the density-dependence of
the speed of sound. We show that equations of state featuring a peak in the speed of sound squared occurring at
densities between 2–3 times the saturation density of normal nuclear matter, producing neutron stars of nearly
Mmax ≈ 2.5M�, are consistent with heavy-ion collision data.
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I. INTRODUCTION

The theoretical description of the strong interactions, quan-
tum chromodynamics (QCD), presents a rich phase structure
when one varies temperature T and baryon density nB [1–5].
Lattice QCD calculations show that at large T and vanishing
nB there is a crossover transition from deconfined, color-
carrying quarks and gluons into colorless hadrons [6]. Using
relativistic heavy-ion collisions (HICs) one can explore this
phase transition experimentally, and it has been confirmed that
the equation of state (EOS) extracted from a Bayesian analysis
at high center-of-mass collision energies,

√
sNN = 200 GeV

and
√

sNN = 2.76 TeV, reproduces the lattice QCD results [7].
At lower collision energies,

√
sNN < 200 GeV, baryon stop-

ping becomes more relevant, leading to finite values of nB (and
consequently finite values of the baryon chemical potential
μB) characterizing the matter produced in the collisions. First-
principle lattice QCD calculations cannot directly calculate
the EOS in this regime; however, there are various expansion
schemes, using, e.g., the Taylor series, that can extend the lat-
tice QCD results into the finite-μB region [8–11]. Thus, up to
approximately μB/T ≈ 3, the EOS can be calculated directly
from QCD. At moderate T and low nB, the hadron resonance
gas (HRG) model can be used to reasonably describe the QCD
phase diagram [12–16]. When additional interaction terms
are incorporated in the HRG, it can also reasonably describe
larger nB [17]. However, as one approaches larger and larger
nB, theoretical models become significantly less constrained
and more uncertainties arise. Here, the exception is the region
of the phase diagram relevant to the ordinary nuclear matter,
both around the saturation density and around the nuclear

liquid-gas phase transition, where nuclear matter properties
are relatively well known (see Fig. 1 of Ref. [18]).

In this regime, one approach to extracting the EOS is based
on comparisons of measurements from low-energy heavy-ion
collisions to simulations using hadronic transport models (see,
e.g., Ref. [19]); here, the approximate collision energy range
considered is 0.15 GeV/nucleon � Ekin � 10 GeV/nucleon,
or equivalently 1.95 GeV � √

sNN � 4.7 GeV, where Ekin is
the incident kinetic energy per nucleon (excluding the rest
mass) in the fixed-target frame and

√
sNN is the center-of-mass

collision energy.1 This approach, of course, implicitly as-
sumes that hadrons are the correct degrees of freedom, which
may be questioned given the high values of T recently mea-
sured by the HADES experiment at

√
sNN = 2.4 GeV [20].

Additionally, the heavy-ion EOS extracted in Ref. [19] (in the
T = 0 limit) appears to be in tension with the significantly
stiffer EOS that may be required to support heavy neutron
stars (NSs) [21]. In a different approach, ideal hydrodynamic
simulations using an EOS derived from a model with a tran-
sition between hadronic and quark degrees of freedom also
appears to reasonably describe low-energy (1 AGeV � Ekin �
10 AGeV, or equivalently 2.3 GeV � √

sNN � 4.7 GeV) flow
measurements [22].

Recent x-ray observations of isolated neutron stars and
posteriors of the tidal deformability obtained from neutron
star inspirals have led to significantly tighter constraints on

1Explicitly, Ekin and
√

sNN are related to each other through Ekin =
Elab − mN = (

√
sNN )2/(2mN ) − 2mN , where Elab is the (total, i.e.,

including mass) energy of an incident nucleon.
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the EOS at T = 0 (see Ref. [18] for an in-depth discus-
sion). Specifically, the requirement that neutron stars reach
a maximum mass of at least Mmax � 2M� [23–25] leads
to a speed of sound squared c2

s that surpasses the con-
formal limit of 1/3 [26–30]. This picture may be further
strengthened by the GW190814 binary merger observation
featuring a mysterious secondary compact object of mass
M ≈ 2.6M� [31], which falls into the mass gap between the
heaviest known neutron stars and the lightest known black
holes [32–36]. Unfortunately, it was not possible to mea-
sure the tidal deformability � for GW190814, which would
have been a clear signature of a neutron star (� > 0) or a
black hole (� = 0). In fact, for extremely massive neutron
stars, the tidal deformability is anticipated to be likewise
extremely small, � ≈ 2–20 [37,38], which will only be pos-
sible to determine with next generation gravitational wave
detectors [39].

There are additional constraints relevant for the T = 0
EOS of neutron stars. Using measurements of x-ray pulses
and comparing them to models of x-ray emission, NASA’s
NICER has extracted the neutron-star radius posteriors from
two separate pulsars, J0030 and J0740, yielding the values
of the equatorial radius Req = 11.52–14.26 km and Req =
11.41–16.30 km, respectively [40–43], with more observa-
tions on the way. The LIGO-Virgo Collaboration (LVC) has
measured gravitational waves from a variety of compact ob-
jects [44], however, the only one with a tidal deformability
posterior is GW170817 [45] which limits the stiffness of the
low density EOS [46]. Together, the constraints from NICER
and LIGO-Virgo do not allow for an EOS that is consistently
too stiff (it would not pass the low-mass–radius or tidal de-
formability constraints) or too soft (it would not reproduce
2M� stars); instead, EOSs which are soft at low densities
and stiff at high densities appear to be preferred. A good
example of such an EOS is a quarkyonic matter EOS [47–51]
which is soft at low densities and features a large peak in c2

s ,
nearly approaching the causal limit, at intermediate densities.
If neutron stars with masses up to M ≈ 2.6M� are observed,
then one can anticipate that the speed of sound approaches
the speed of light [37,38], i.e., c2

s = d p/dε → 1, where p is
the pressure and ε is the energy density. Moreover, it may
be possible to measure such a steep rise in c2

s directly from
the binary Love relations [52]. Interestingly, there are also
nuclear physics motivations for rises and falls in c2

s , including
certain hyperon interactions, quarkyonic matter, quark-hadron
crossovers, and approach to asymptotic freedom at very large
densities [47–50,53–88].

Although neutron-star mergers and heavy-ion collisions
have been simulated with the same EOS [83], a large peak
in c2

s has not been explored much in heavy-ion collision
studies, where most of the focus so far [2–4] has been
on EOSs with the QCD critical point followed by a first-
order phase transition, producing a valley in c2

s (or, if one
considers the spinodal region, even negative c2

s ). Thus, the
vast majority of efforts have considered a small c2

s that
approaches zero, not one that approaches the causal limit,
c2

s ≈ 1. The one recent exception is Ref. [89], where a large
peak in c2

s was considered within the hadronic transport code
SMASH [90] and, in fact, a preference was seen for the location

of the peak to be around 2–3nsat, where nsat is the nuclear
saturation density. In that work, the connection to the neutron-
star EOS was not thoroughly explored, which we address
here.

To better understand the interplay between heavy-ion col-
lision and neutron-star studies, it is important to understand
how direct comparisons can be made between these fields
(see Refs. [91–93] for further discussion). Heavy-ion colli-
sions involve matter probing different regions of the QCD
phase diagram than neutron stars. While neutron stars are
electrically neutral to remain stable, nQ = 0, heavy-ion col-
lisions have a finite net charge density nQ, which in terms
of the fraction of protons to nucleons in the initial state can
be expressed as YQ = Z/NB = nQ/nB; here, the charge frac-
tion YQ is constant throughout the collision. More generally,
Y const

Q,QCD = nQ,QCD/nB, where nQ,QCD is the net charge ratio of
hadrons. Note that while YQ,QCD = YQ and

nQ = nQ,QCD (1)

holds in heavy-ion collisions, it is not true for neutron stars
due to a nonzero net lepton number,

nQ = nQ,QCD + nQ,lep. (2)

Because heavy-ion collisions are performed with ordinary
heavy nuclei, the initial conditions involve only protons and
neutrons and one can write YQ,QCD = np/(np + nn), where np

and nn are proton and neutron density, respectively. Similarly,
the same approximate formula holds for neutron stars as long
as one does not include hyperons and/or deconfined quarks
within the star.

Lighter nuclei tend to be closer to symmetric nuclear
matter (SNM) for which Y const

Q,QCD ≈ 0.5, while heavier nuclei
must be more neutron-rich for stability such that, e.g., ura-
nium (A = 238) is characterized by Y const

Q,QCD ≈ 0.38. On the
other hand, most theoretical calculations find Y NS

Q,QCD � 0.1 for
neutron-star cores [94], and the neutron-star matter is referred
to as asymmetric nuclear matter (ANM). We stress here that
while the number of positively charged particles (e.g., pro-
tons) in neutron stars is not zero, it is exactly balanced by
negatively charged particles; for example, assuming neutron,
proton, and electron degrees of freedom (also known as npe
matter), one has nQ = np + ne = 0, where ne < 0 is the elec-
tron charge density. Further differences between symmetric
and asymmetric matter arise from strange degrees of freedom,
but we leave the study of strangeness-related effects for a
future work.

The energy per baryon for ANM can be written as [95]

EANM

NB
= ESNM

NB
+ Esymδ2 + O(δ4), (3)

where E is the energy, NB is the baryon number, Esym is known
as the symmetry energy, and

δ ≡ (nn − np)/(nn + np) = 1 − 2YQ,QCD (4)

is known as the asymmetry parameter such that for SNM
δ = 0 and for pure neutron matter δ = 1. Note that the second
equality in Eq. (4) only holds for nonstrange, e.g., npe matter
(see Appendix A). It is common to use a Taylor expansion
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of the symmetry energy around SNM, characterized by δ = 0
or equivalently Y const

Q,QCD = 0.5, to obtain a description of the
ANM present in neutron stars, characterized by Y NS

Q,QCD ≈
0.1. Moreover, nuclear experiments only provide information
about the symmetry energy around nsat [18,92]. Thus, the
symmetry energy Esym at a given baryon number density
nB �= nsat is obtained based on another expansion around its
value at nsat [96] using its first few derivatives with respect
to nB. Many of such approaches have studied EOSs that do
not include exotic degrees of freedom such as hyperons and
quarks (although there are exceptions [97,98]) nor do they
describe phase transitions. Consequently, these studies deal
with rather smooth EOSs that are likely to be easily expanded
using a Taylor series. In the case of an EOS including a large
peak in c2

s or other sharp features, we want to test both the
applicability of the symmetry energy expansion as well as
its influence on the magnitude and location of a peak in c2

s .
For instance, one can certainly wonder whether a peak in c2

s
occurring, e.g., for YQ,QCD ≈ 0.1 may disappear entirely for
YQ,QCD ≈ 0.5 (see, for instance, Fig. 3 of Ref. [99]).

We can also reconsider Eq. (3) in the limit where ANM
becomes pure neutron matter (PNM). In this limit, δ = 1 and
the equation simplifies to

EPNM

NB
= ESNM

NB
+ Esym, (5)

such that Esym is the difference between energy per baryon in
PNM and SNM.

In this paper, we consider EOSs from Refs. [37,38] that
have been shown to support extremely heavy neutron stars
with maximum masses in the range Mmax ≈ 2M�–3M� while
satisfying all known astrophysical constraints. To convert
these EOSs to EOSs for SNM or nearly SNM, we subtract
the lepton contributions and then, using the symmetry energy
expansion (and applying known bounds for the coefficients
of the expansion), we construct new EOSs characterized by
Y const

Q,QCD ≈ 0.5 which can be used in heavy-ion collision sim-
ulations. We find that large peaks in the c2

s of a NS EOS
can significantly limit the parameter space of the coefficients
in the symmetry energy expansion due to the fact that many
parameter sets lead to acausal speeds of sound when YQ,QCD is
increased. We find bounds on the symmetry energy expansion
coefficients by ensuring causality, c2

s � 1, as well stability,
c2

s (nB � 0.9nsat ) � 0, of the SNM EOS for densities larger
than those corresponding to the spinodal region of the nuclear-
liquid gas phase transition. We also explore a more accurate
symmetry energy expansion that does not assume exact SNM
(Y const

Q,QCD = 0.5), but rather allows one to freely choose Y const
Q,QCD

and thus to adjust the EOS for different species of the colliding
ions.

Finally, using the hadronic transport code SMASH [90]
(version 2.1 [100]) with relativistic vector density functional
mean-field potentials [101] parametrized to reproduce an ar-
bitrary behavior of c2

s as a function of nB (as described in
Ref. [89]), we use the obtained set of SNM EOSs to compute
flow observables from simulations of heavy-ion collisions and
compare them with experimental data. Through that, we pro-
vide a proof-of-principle demonstration of a way to confront

the ever-better constrained neutron star EOSs with heavy-
ion collision measurements, which in the future may lead
to setting meaningful bounds on the EOS of dense nuclear
matter based on combined information from neutron star and
heavy-ion collision studies.

In this work, we find a number of key takeaways which
lead us to conclude that future studies on the connection
between neutron stars and heavy-ion collisions are not only
well-motivated, but possible within the currently existing or
soon-to-be-developed approaches:

(1) Methodology for converting from a neutron star (NS)
EOS into a heavy-ion collision (HIC) EOS. We de-
lineate the multistep process needed when translating
a neutron star (NS) EOS into one that can be used
as input for hadronic transport codes. The steps (in
order) are determine the charge fraction, remove the
lepton contribution from the EOS, apply the symmetry
energy expansion, and finally calculate all remaining
thermodynamic observables.

(2) Consistency of ultramassive neutron stars and heavy-
ion data. In a recent work [21] it was argued that
massive neutron stars are excluded because their EOSs
are inconsistent with the “heavy-ion data.”2 However,
here we find a counterexample: we show that a NS
EOS with a large peak in the speed of sound squared
occurring between nB ≈ 2nsat–3nsat, which leads to a
very heavy neutron star (nearly M ≈ 2.5M�), is in fact
consistent with an SNM EOS describing heavy-ion
observables from modern measurements [102–104].

(3) Probability distributions for the coefficients of the
symmetry energy expansion. Using only causality and
stability constraints for the speed of sound, we find
preferences for small values of Lsym, Ksym < 0, and
Jsym > 0. While some variations exist between the
different NS EOSs considered, these generic features
remain the same.

(4) Applicability of the symmetry energy expansion. Us-
ing a test case of the CMF EOS [105], we find that
if YQ,QCD and the symmetry energy coefficients are
known, the symmetry energy expansion can reason-
ably convert a NS EOS into a SNM EOS. However,
without the knowledge of YQ,QCD more uncertainty
appears when converting between SNM and β equi-
librium. While it is possible to apply an expansion
scheme for YQ,QCD, which we do here, uncertainties in
the symmetry energy coefficients lead to large uncer-
tainties in the converted EOS at high baryon densities.
Our finding emphasizes the need for developing new
methods to extract YQ,QCD from astrophysical obser-
vations as well as determining the precise symmetry
energy expansion coefficients.

2To be precise, the result obtained in Ref. [19] is not data, but rather
it is an EOS extracted from a comparison to data using a specific
model under certain assumptions.
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FIG. 1. (left) The speed of sound squared vs. normalized baryon density for three NS EOSs exhibiting a very steep rise (peak) in the speed
sound at different densities. The symbols mark the central density of the most massive stable star for each of the EOSs. (middle) Pressure vs.
energy density for the same EOSs. The upper limit of the energy density range shown is set at the maximum central density for eos3. (right)
Mass-radius curves corresponding to the three NS EOSs compared with 90% confidence regions of the LIGO-Virgo [46] and NICER [40–43]
posteriors.

II. EQUATION OF STATE

The primary probes of the QCD phase diagram are heavy-
ion collisions, reaching large temperatures T ≈ 50–600 MeV
and a range of baryon densities (depending on the beam
kinetic energy in the fixed-target frame Ekin), and neutron
stars (either isolated, accreting matter from a companion, or
those in merging binaries), reaching lower temperatures T ≈
0–70 MeV, high densities, and very high isospin asymmetries.
In heavy-ion collisions at high beam energies, quarks and
gluons become deconfined producing a strongly interacting
quark gluon plasma (QGP), described by relativistic hydro-
dynamics, followed by a phase transition into an interacting
hadron gas, described by hadronic transport models. As the
beam energy is lowered, the lifetime of the hydrodynamics
phase shrinks relative to the hadron gas phase [106]. Eventu-
ally, at low enough beam energies, one expects a regime in
which the dynamics can be described exclusively by hadronic
degrees of freedom. The majority of hadron transport codes
that model this low-beam-energy regime use mean-field po-
tentials dependent on vector baryon density; such potentials
do not have a complex temperature dependence (that is, a
dependence beyond the basic, even if nontrivial, effects due
to increasing particle momenta at high temperatures) and,
therefore, one can essentially use a T = 0 EOS as an input
in hadronic transport. However, one cannot directly apply the
neutron star (NS) EOS to heavy-ion collisions because YQ,QCD

is quite different in the two systems. Thus, we describe below
the procedure used to switch from the T = 0 NS EOS to
the T = 0 heavy-ion collision (HIC) EOS. Note that this is a
standard procedure when done in the opposite order [95,107],
that is, when converting from SNM to ANM.

A. Neutron star equation of state

We begin our discussion with three EOSs that have been
previously shown in Refs. [37,38,52] to produce heavy neu-
tron stars compatible with x-ray observations from NICER
J0740 [42,43] and J0030 [40,41], which provide posteriors

for the mass-radius relation for two different neutron stars,
and with gravitational wave extraction of the tidal deforma-
bility from a binary neutron-star coalescence observed in
GW170817 [45,46]. We are especially interested in an EOS
that can support even heavier neutron stars in light of recent
observations of mystery objects that fall within the mass gap
between the heaviest known neutron star and the lightest
known black hole. For instance, GW190814 observed the
coalescence of a heavy black hole with a mystery object
of mass M = 2.5M�–2.67M� [31], V723 Mon is a dark
object with mass of M � (2.91 ± 0.08)M� [108], and the
recently measured pulsars PSR J1810+1744 and PSR J0952-
0607 have inferred masses M > 2.19M� [25] and (2.35 ±
0.17)M� [109], respectively.

Extensive details about the construction of these EOSs, as
well as the link to the open-source code that generates them
can be found in Ref. [38]. Here, we provide a brief overview
of the technique. At low densities, the Togashi EOS [110–112]
is adopted up to some chosen switching point nsw, after which
a functional form of the EOS reproducing a given shape
of the speed of sound c2

s is used. Motivated by quarkyonic
matter [47–51] and hyperon EOSs [73], a large peak in c2

s
is introduced, implemented by using a linear function with
a large slope, describing the steep rise in c2

s as a function
of nB up to the maximal value of c2

s |max, followed by an
exponential decay to the conformal limit c2

s → 1/3. While a
large family of EOSs that can produce heavy neutron stars
was developed in Ref. [38], here we specifically only select
three EOSs, including two extreme EOSs, to give a proof-of-
principle of our method. We have checked our results against
pQCD constraints extended to lower densities [113] at their
maximum central baryon density (similar to what was done in
Refs. [114,115]), and note that all EOSs easily fall within the
allowed band.

In the left panel of Fig. 1, one can see the three NS EOSs
considered in this work. The distinguishing feature of eos1,
eos2, and eos3 is a peak created by a very steep rise in c2

s start-
ing at nB = {1.5, 2.0, 3.0}nsat, respectively, followed by an
exponential relaxation to the conformal limit. These particular
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EOSs are chosen to explore the question whether extremely
massive neutron stars (or, equivalently, extreme peaks in the
speed of sound) are excluded based on the inconsistency of the
corresponding EOSs with inferences from heavy-ion collision
measurements. In all cases, the maximum mass of the stellar
sequence occurs at relatively low densities. The early peak in
c2

s , characterizing eos1, leads to a maximum central density
of nmax

B ≈ 3.5nsat, the peak at intermediate nB correspond-
ing to eos2 allows for a central density of nmax

B ≈ 4.5nsat,
and the late peak in c2

s used in eos3 results in a maximum
central density of almost nmax

B ≈ 6nsat. The middle panel of
Fig. 1 shows the corresponding dependence of pressure on
energy density. There, the peaks in c2

s as a function of nB

lead to corresponding changes in the slope of the pressure as
a function of the energy density. In the right panel of Fig. 1,
where we show the mass-radius sequence calculated using the
Tolman-Oppenheimer-Volkoff equation [116,117] for all three
EOSs together with relevant constraints, one can see how
the three considered locations of a peak in c2

s influence the
mass-radius curves. We note that one should use some caution
in considering the allowed mass-radius region extracted from
GW170817, as there is some dependence on the choice of the
EOS used to obtain the constraint, in particular on whether
one uses a spectral EOS vs. universal relations [46] (also
see Ref. [118] for a discussion of Gaussian processes and
Ref. [52] for a discussion of binary Love relations); we also
note here that spectral and polytropic EOSs cannot describe
nontrivial structures in c2

s . This dependence of the extracted
mass-radius posterior from gravitational wave data on the
EOS and its effect on the extracted maximum mass is dis-
cussed in Ref. [38], see in particular Fig. 8.

The results from the right panel of Fig. 1 make it clear
why these three specific EOSs were chosen for the current
study. One can see that eos1 is a very extreme EOS that is
near the large-radius edge of the posterior distribution for
extracted mass-radius region of GW170817. In consequence,
it produces a very large maximum mass of 3M�. In contrast,
eos3 is positioned towards the other end of the posterior dis-
tributions of observed neutron stars and has a maximum mass
of ≈2.2M�. This value still corresponds to a large maximum
mass but also happens to fall within recent bounds based on
merging systems of binary neutron stars and quasi-universal
relations [119]. In between the extremes of eos1 and eos3, we
have eos2 that fits right through the center of all astrophysical
constraints and reaches to nearly 2.5M� for its maximum
mass. With these three EOSs, we can explore the extreme
variants of heavy neutron stars with eos1 and eos3, while eos2
leads to more moderate results.

B. Subtracting the lepton contribution

Neutron stars must be electrically neutral to be stable.
Thus, the net hadronic (or quark) contribution to electric
charge, nQ,QCD, must be counterbalanced by the net lepton
contribution to electric charge nQ,lep, as shown in Eq. (2),
where in most cases the hadrons considered in neutron stars
provide only a positive contribution to nQCD

Q (i.e., protons) and
the leptons always contribute negatively (i.e., electrons). How-
ever, if strange particles are present, the situation becomes

complicated by the fact that, e.g., sigmas can be positive,
negative, or neutral. Additionally, deconfined quarks present
challenges related to fractional charges.

In the case of an EOS for neutron stars (specifically, fully
evolved neutron stars that are not undergoing a merger), one
considers the EOS in β equilibrium. Consequently, for a sim-
ple EOS with contributions from only neutrons, protons, and
electrons, the following interaction is in weak equilibrium:

p + e− ↔ n + ν, (6)

such that the chemical potentials can be related as

μp + μe = μn. (7)

Note that, since the neutrinos can easily escape in this case,
they do not contribute to the chemical potentials. From this
reaction, it is clear that for an EOS in β equilibrium the num-
ber of protons must equal the number of electrons such that
Eq. (2) holds. Thus, the EOS has two separate contributions
from baryons and leptons such that

p = pQCD + plep, (8)
ε = εQCD + εlep. (9)

The lepton contribution can be described by a noninteracting
quantum gas of leptons (i.e., a free Fermi gas), which leads to
analytic expressions for thermodynamic variables at T = 0,

nX = k3
F

3π2
,

εX = 1

π2

⎡
⎢⎣(

1

8
m2

X kFX + 1

4
k3

FX

)√
m2

X + k2
FX

−1

8
m4

X ln
kFX +

√
m2

X + k2
FX

mX

⎤
⎥⎦,

pX = 1

3

1

π2

⎡
⎢⎣(

1

4
k3

FX
− 3

8
m2

X kFX

)√
m2

X + k2
FX

+3

8
m4

i ln
kF +

√
m2

X + k2
FX

mX

⎤
⎥⎦, (10)

where X = e−, μ−, τ− (although τ− are not considered
within neutron stars due to their large mass), kFX is the Fermi
momentum of the lepton (that is, the point where the energy
is equal to the chemical potential EFX = μX ), mX is the mass
of the lepton, and we have taken h̄ = c = 1.

In this paper, we assume that only electrons are present (al-
though it would not be difficult to include muon contributions
as well, see Ref. [120] for a discussion of muons in the context
of the symmetry energy). Here, we are considering functional
forms of the EOS without specific microscopic information.
Therefore, we must rely on a functional form of YQ,QCD to
determine the appropriate nlep

Q . With charge neutrality nQ = 0,
we can rearrange Eq. (2),

nQ,lep = −nBYQ,QCD, (11)
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FIG. 2. Comparison of p and ε for a free Fermi gas of electrons.

where the negative sign cancels out once one recalls that
electrons have a negative charge. Then, given a YQ,QCD, for
each density nB we can obtain the corresponding nQ,lep, and
from Eqs. (10) we can solve for the electron energy density
and pressure at that nB.

Finally, we obtain the QCD contribution to the EOS

pQCD = p − plep, (12)

εQCD = ε − εlep, (13)

which is what we use in the following section when con-
sidering the symmetry energy expansion. In Fig. 2, we plot
the contributions of the leptons for both the pressure and en-
ergy density against the corresponding electric charge density,
nQ,lep. We see that for a fixed value of nQ,lep, the pressure
contribution from leptons is smaller than the energy density
contribution. Thus, when plep and εlep are subtracted from the
EOS, it has the effect of a slight stiffening of the EOS (because
more energy density is subtracted than pressure).

As a proof of principle, we take the hadronic CMF NS
EOS #2 (with only neutrons, protons, and electrons) at T = 0,
assuming β equilibrium, from Ref. [105], where we know
YQ,QCD exactly, so it is straightforward to subtract the lepton
contribution. In Fig. 3, we compare the original CMF NS EOS
to the CMF NS EOS without leptons in the range of pressures
and energy densities relevant for neutron stars. The lepton
contribution is comparatively very small. Thus, it is natural
to ask whether it is relevant to subtract it when performing the
symmetry energy expansion? As it turns out, while the contri-
bution to the EOS is quite small, it does play a significant role
when it comes to reproducing saturation properties, which we
discuss in more detail in the next section.

C. Symmetry energy expansion

1. Connecting neutron star equations of state
with the heavy-ion collision domain

To make the connection between the EOS in HIC, where
the isospin asymmetry is small or even taken to be zero, and
the EOS in NS, in which there is a large isospin asymme-
try, we make use of the definition of the symmetry energy

FIG. 3. Comparison between the original CMF NS EOS and the
CMF NS EOS without the lepton contribution. The corresponding nB

range for this plot is 0nsat–5nsat .

expansion from Eq. (3). There, the asymmetry parameter δ,
originally defined for neutron-star matter consisting only of
nucleons in terms of neutron and proton number densities
as δ = (nn − np)/(nn + np), can be defined in terms of the
charge fraction as δ = 1 − 2YQ,QCD [see Eq. (4) and the cor-
responding comments in the text], which is the form that we
use in this work. The advantage of the latter expression is that
it can be applied to both nonstrange and strange matter, as
well as to matter consisting of hadrons and/or quarks. YQ,QCD

is also provided as an independent variable by several EOS
repositories, such as CompOSE [126]; see Appendix A for
more details.

We note here that the nucleon energy E , following the
notation used in studies devoted to the symmetry energy, does
not include the rest mass energy; in contrast, in heavy-ion
collision studies, it is customary to use total energy density
ε which does include contributions from the rest mass. The
two quantities are then connected by

ε = nB

[
E

NB
+ mN

]
, (14)

where mN is the average mass of the nucleons.
The symmetry energy Esym at a given baryon number

density nB can be expanded around its value at nsat [96]. In-
serting this expansion in Eq. (3), using Eq. (4), and renaming
ANM → NS,QCD and SNM → HIC,sym, we obtain

EHIC,sym

NB
= ENS,QCD

NB
−

[
Esym,sat + Lsym,sat

3

(
nB

n0
− 1

)

+Ksym,sat

18

(
nB

n0
− 1

)2

+ Jsym,sat

162

(
nB

n0
− 1

)3
]

× (1 − 2YQ,QCD)2, (15)

where Esym,sat is the symmetry energy at nsat, Lsym,sat is the
slope of the symmetry energy at nsat, and Ksym,sat and Jsym,sat

are higher-order coefficients, also taken at nsat; the definitions
of these coefficients and their ranges are given in Table I.
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TABLE I. Definitions of the symmetry energy expansion coefficients, as used in Eqs. (15) and (18), together with constraints on their
values based on experimental data [121].

Coefficient Definition Range References

Esym,sat

(
EPNM−ESNM

NB

)
nsat

31.7 ± 3.2 [MeV] Multiple data analyses from nuclear physics and astrophysics [121]

Lsym,sat 3nsat

(
dEsym,2

dnB

)
nsat

58.7 ± 28.1 [MeV] Multiple data analyses from nuclear physics and astrophysics [121]

Ksym,sat 9n2
sat

(
d2Esym,2

dn2
B

)
nsat

106 ± 37 [MeV] PREXII [122,123]

−120+80
−100 [MeV] Bayesian analyses inferred from GW170817 and PSR J0030+0451 [124]

Jsym,sat 27n3
sat

(
d3Esym,2

dn3
B

)
nsat

300 ± 500 [MeV] Many-body nuclear theory [125]

Astrophysical constraints on these coefficients have also been
found [107], although we do not take these specific constraints
into account in this work. Additionally, a recent large-scale
study on the interplay of these coefficients can be found in
Ref. [127] which finds similar ranges of these coefficients
as those that we use in this work. As explained above, the
energy that enters into the symmetry energy expansion is only
the QCD energy such that one must first subtract the lepton
contribution. See also Ref. [128] for an alternative expansion
scheme.

Applying Eq. (14), we can rewrite Eq. (15) in a form more
commonly used in high-energy physics,

εHIC,sym = εNS,QCD − nB

[
Esym,sat + Lsym,sat

3

(
nB

nsat
− 1

)

+Ksym,sat

18

(
nB

nsat
− 1

)2

+ Jsym,sat

162

(
nB

nsat
− 1

)3
]

× (1 − 2YQ,QCD)2, (16)

where the mass contribution cancels on each side.
As previously mentioned, collisions of heavy ions do not

typically involve exactly symmetric nuclei so that np/nB �=
0.5. Additionally, unlike in neutron stars, YQ,QCD is not a
function of baryon density and instead it only depends on the
choice of nuclei, Y const

Q,QCD = Z/NB. This definition only works
for collisions of identical nuclei, e.g., Au–Au collisions, and
assumes that the collisions are such that the particular value
of Z/NB describes well the fraction of nucleons participating
in the collision. If we instead considered collisions of unlike
nuclei, e.g., 16O–Au, then the picture would be more complex.
However, in this paper we only consider collisions of iden-
tical nuclei and assume that YQ,QCD describes the nucleons
participating in the collision well; as we discuss later, tiny
differences in YQ,QCD due to fluctuations in the number of
participating protons and neutrons are too small to lead to
significant effects on the EOS.

To investigate asymmetric HIC matter, introducing Y const
Q,QCD,

we can write a symmetry energy expansion for heavy-ion
collisions [again following Eq. (3), where we now rename
ANM →HIC,asym],

εHIC,asym = εHIC,sym + nBEsym
(
1 − 2Y const

Q,QCD

)2
, (17)

where εHIC,sym can be identified with the term on the left-hand
side of Eq. (16). After some rearrangements, we eventually
obtain

εHIC,asym = εNS,QCD − 4nB

[
Esym,sat + Lsym,sat

3

(
nB

nsat
− 1

)

+Ksym,sat

18

(
nB

nsat
− 1

)2

+ Jsym,sat

162

(
nB

nsat
− 1

)3
]

×
[(

Y const
Q,QCD − YQ,QCD

)+ (
Y 2

Q,QCD − (
Y const

Q,QCD

)2
)]

,

(18)

where we once again stress that YQ,QCD has a dependence on
nB which comes from the fact that the NS EOS is an EOS
for β-equilibrated matter, and Y const

Q,QCD is simply equal to Z/NB

of the colliding nuclei. Note that by varying the value of
Y const

Q,QCD, one can effectively study the EOS at T = 0 in a two-
dimensional (2D) space of possible values of nB and Y const

Q,QCD,
with particular values of Y const

Q,QCD corresponding to slices of the
{nB,YQ,QCD} space along lines of constant YQ,QCD.

We constrain the density dependence of YQ,QCD by requir-
ing that it describes the fraction of charge along the line of β

equilibrium in the {nB,YQ,QCD} space. Within a microscopic
model, one would, of course, be able to extract this depen-
dence directly. However, among the microscopic models that
reproduce large peaks in the speed of sound, very few results
are provided for neutron-star matter, and even these do not
include data for YQ,QCD or Ylep. Thus, we do not have the
desired guidance from microscopic models on the functional
form of YQ,QCD(nB) and must use other approaches. In this
work, we want to be able to determine YQ,QCD from the func-
tional form of the NS EOS. In principle, YQ,QCD may include
contributions from charged hadrons other than protons (e.g.,

’s and �’s) or from quarks. However, we anticipate that
protons are still likely the dominant contribution to electric
charge in the relevant regime (assuming no quark phase), so
that here we set YQ,QCD ≡ Yp; in future work, we may explore
alternative schemes. Thus, we can use the fact that in the
symmetry energy expansion, the proton fraction Yp can be
expanded around its value at the saturation density such that

YQ,QCD(nB) ≡ Yp(nB) = 1
16

[
8 − π4/3nB

21/3X + (
π
2

)2/3 X
E3

sym

]
, (19)
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where X is given by

X = (−24E6
symnB +

√
2
√

288E12
symn2

B + π2E9
symn3

B

)1/3
. (20)

The derivation of the above result as well as the range of
possible values of Yp obtained given the allowed ranges in
the expansion coefficients Esym,sat, Lsym,sat, and Ksym,sat can be
found in Appendix B. Note that while we based this derivation
on ideas from Ref. [129], we relax the approximation that
Yp 	 1 to find the exact solutions (among which we only then
consider the real solution). We also include all four symmetry
energy expansion coefficients (Ref. [129] included only three)
to ensure validity up to higher nB. From this point on, we refer
to our expansion as YQ,QCD(nB) instead of Yp.

To test the validity of YQ,QCD(nB) expansion in Eq. (19),
we compare values of YQ,QCD(nB) extracted directly from
CMF (assuming just protons, neutrons, and electrons) to
values obtained from the expansion using the symmetry en-
ergy coefficients from CMF: Esym,sat = 30.45 MeV, Lsym,sat =
90.43 MeV, Ksym,sat = 25.72 MeV. Because Jsym,sat has not
yet been calculated within CMF, we vary its value between
−200 and 700 MeV to obtain a range of solutions and under-
stand the uncertainty in YQ,QCD(nB) when Jsym,sat is unknown.
The results are shown in Fig. 5. We find that the original
YQ,QCD(nB) from CMF and the one we obtain from the ex-
pansion using the exact symmetry energy coefficients from
CMF are similar. Up to nB � 2nsat, the influence of Jsym,sat is
negligible, and even up to nB � 3nsat it still plays a relatively
small role. However, at higher baryons densities there is a
significant amount of uncertainty due to the lack of knowledge
about Jsym,sat.

At this point we should note that for a small subset of
symmetry energy coefficients (and at large values of nB),
we occasionally obtain values of YQ,QCD(nB) that are imag-
inary. One can see from Eq. (20) that this can occur when
the total symmetry energy is negative, i.e., when Esym < 0.
Since Ksym,sat and Jsym,sat are allowed to be both positive and
negative, then it is indeed possible for this to occur at large
enough nB (since Ksym,sat and Jsym,sat are higher-order terms).
In that case, we simply discard all those energy expansion
coefficients that lead to imaginary YQ,QCD(nB) for nB < 6nsat.

In summary, our approach for obtaining the HIC EOS from
a given NS EOS is based on the symmetry energy expansion
of the energy density, Eq. (18), as well as on the symmetry en-
ergy expansion of the charge fraction YQ,QCD, Eq. (19). Within
the validity of the Taylor expansion, this approach would be
very well defined if the exact values of the symmetry energy
expansion coefficients {Esym,sat, Lsym,sat, Ksym,sat, Jsym,sat} were
known. Alas, putting meaningful constraints on the values of
the symmetry energy coefficients is the subject of ongoing
vigorous research. Therefore, in this work we are going to
concentrate on exploring the space of possible HIC EOSs, as
obtained from NS EOSs, given the possible ranges of values
of {Esym,sat, Lsym,sat, Ksym,sat, Jsym,sat}.

In Ref. [121], values of the symmetry energy expan-
sion coefficients are extracted from the 2016 survey of
53 analyses from both nuclear experiments and astrophys-
ical observations. The central values for the first two
expansion coefficients are Esym,sat = 31.7 ± 3.2 MeV and

Lsym,sat = 58.7 ± 28.1 MeV [121]. However, the recent
PREXII results [122,123] are in tension with many of the
previous measurements of Lsym,sat. Thus, in this paper we
consider ranges of priors on the first two symmetry coef-
ficients to be Esym,sat = 25 MeV to 40 MeV and Lsym,sat =
30 MeV to 136 MeV. The higher-order coefficients are
poorly known, with values for the curvature Ksym,sat and
skewness Jsym,sat restricted to be −400 � Ksym,sat � 100 MeV
and −200 � Jsym,sat � 800 MeV, respectively, based on a
Bayesian analysis of astrophysics data and on nuclear many-
body theory [121]. We summarize our priors for all four
symmetry energy expansion coefficients in Table I.

Note that we use a broad prior for Esym,sat both because
it has been considered in previous studies [130], as well as
because we want to entertain the possibility of large values
for Lsym,sat that would be compatible with PREXII. Gener-
ally, Esym,sat and Lsym,sat are positively correlated such that
large values of Esym,sat are needed to obtain large Lsym,sat;
see Ref. [131] for detailed discussion involving theory and
experiments.

2. Other thermodynamic quantities

Besides the energy density ε, we need a number of other
thermodynamic quantities to obtain the full EOS to be used in
heavy-ion collision simulations. These can be derived directly
from thermodynamic relations using the Gibbs free energy
density,

ε + p − sT = nBμB + nQμQ + nSμS, (21)

where s is the entropy, μQ is the charge chemical potential, nS

is the strangeness density, and μS is the strangeness chemical
potential. Generally, to study the QCD phase diagram, we
assume that there are no significant magnetic fields and that
the energy scale is not large enough to produce charm, bottom,
or top quarks in any relevant amounts. Additionally, for T = 0
the entropy term vanishes. Moreover, in heavy-ion collisions
strangeness is conserved such that nS = 0. Neutron stars do
not conserve strangeness, but it is unlikely that strange quarks
and hadrons are in thermodynamic equilibrium so that the
associated strangeness chemical potential μS is likely equal
zero. We then obtain a simplified equation,

ε + p = nBμB + nQμQ. (22)

As already discussed, neutron stars are electrically neutral and
in β equilibrium, so the additional lepton contribution satisfies
nQ,QCDμQ,QCD + nQ,lepμQ,lep = 0, while isospin symmetry ar-
guments allow one to put μQ = 0 for exactly SNM [93].
However, in heavy-ion collisions matter is not exactly sym-
metric, such that the nQμQ term is nonzero. Thus we are
dealing with three scenarios summarized in Table II.

In our work, we first obtain the energy density εHIC from
the symmetry energy expansion (note that below, we drop
the “NS” and “HIC” subscripts since the used equations are
generic). When making the connection between the NS and
the HIC EOS, one has the choice to connect them at the same
values of nB and then obtain the associated μB, or to connect
them at the same values of μB and then obtain the associated
nB. Since the symmetry energy expansion explicitly depends
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TABLE II. Gibbs free energy density equations at T = 0 for different axes of the QCD phase diagram.

NS ε + p = nBμB μB = dε

dnB

∣∣∣
nQ=const

μQ = dε

d (nBYQ,QCD )

∣∣∣
nB=const

HIC,sym ε + p = nBμB μB = dε

dnB

∣∣∣
nQ=const

HIC,asym ε + p = nBμB + nQμQ μB = dε

dnB

∣∣∣
nQ=const

μQ = dε

d (nBY const
Q,QCD )

∣∣∣
nB=const

on nB, we choose nB as the primary variable in our proce-
dure. If Y const

Q,QCD �= 0.5, then the system is also described by a
nonzero charge chemical potential,

μQ = dε

dnQ

∣∣∣∣
nB=const

, (23)

which, given YQ,QCD = nQ/nB, can be rewritten as

μQ = dε

d (nBYQ,QCD)

∣∣∣∣
nB=const

. (24)

Finally, one then uses the appropriate Gibbs free energy equa-
tion (see Table II) to solve for the pressure. We note that for
SNM, an equivalent expression for pressure is

p = n2
B

d (ε/nB)

dnB
. (25)

With these thermodynamic variables, we can then calculate
the speed of sound

c2
s =

(
d p

dε

)
T =0

. (26)

Note that at finite T , if the speed of sound is calculated to
be used in, e.g., hydrodynamic evolution, one must consider
the appropriate trajectory through the QCD phase diagram.
This is typically done by following isentropes such that the
entropy per baryon (or entropy density per baryon density)
s/nB = const.

3. Effect of Y const
Q,QCD

Now that we have described our methodology, we can
apply the symmetry energy expansion to the three NS EOSs
we are considering in this work (see Fig. 1 and the corre-
sponding discussion in the text). To demonstrate the effect
of the symmetry energy expansion on the EOS, we detail
the necessary steps with eos2 as an example, however, the
same results can be found for eos1 and eos3 in Appendix C.
Using Eq. (18), Table II, and Eq. (26), we can construct the
EOS across different slices of constant Y const

Q,QCD. In Fig. 4, we
demonstrate this procedure by showing the calculated c2

s for
different values of Y const

Q,QCD and comparing with our original
NS EOS; here, we used the following expansion coefficients:
Esym,sat = 31.5 MeV, Lsym,sat = 46 MeV, Ksym,sat = 0 MeV,
and Jsym,sat = 0 MeV. We find that YQ,QCD most strongly af-
fects c2

s at nB � 3nsat. It is also interesting to note that slices
of constant Y const

Q,QCD indicate a fairly similar functional form
despite differences in their magnitudes, which we believe is
a consequence of using the Taylor expansion. What is quite

surprising is that the large peak in c2
s is clearly preserved both

in terms of magnitude and location.
Based on Fig. 4, we find that a realistic heavy-ion Y const

Q,QCD ≈
0.4 is nearly identical to that of exactly SNM, Y const

Q,QCD = 0.5.
Thus, for the rest of this work, we use the simpler assumption
that Y const

Q,QCD = 0.5. The reason for this is twofold: First, we
can then avoid calculating μQ, which significantly reduces the
computational cost when sampling across all four coefficients
of the symmetry energy expansion. Second, Y const

Q,QCD = 0.5
is the maximally different value as compared with values
of YQ in the NS EOS. Since we want to test causality and
stability of the EOSs obtained through the expansion, all
Y const

Q,QCD slices along the expansion must be stable and causal
for an EOS to be valid. In particular, by testing Y const

Q,QCD =
0.5 we are able to put the most stringent constraint on the
EOS.

We note that results in Fig. 4 are obtained using cen-
tral values of both Esym,sat and Lsym,sat, and values of
Ksym,sat and Jsym,sat that lead to reasonable results. It is
natural to ask how much of an effect other combina-
tions of these coefficients have? Could combinations of
{Esym,sat, Lsym,sat, Ksym,sat, Jsym,sat} completely change the loca-
tion of the peak in c2

s or its overall magnitude? Could they
make the EOS unstable or acausal? To explore these ques-
tions, we conduct a systematic study of the symmetry energy
expansion coefficients and their effect on the obtained HIC
EOS.

FIG. 4. Comparison of the YQ directly from the CMF
model [105] with the YQ expansion from Eq. (19) with the
coefficients Esym, Lsym, Ksym given directly from CMF. Since Jsym is
unknown from CMF the band demonstrates the variation of Jsym and
the corresponding uncertainty.
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FIG. 5. Speed of sound squared as a function of normalized
baryon density, obtained from eos2 (peak at medium density) using
different values of Y const

Q,QCD and the central values of Esym,sat and Lsym,sat

from Ref. [121].

D. Proof-of-principle comparison and saturation properties

Here we demonstrate (again using the CMF NS EOS at
T = 0, as in Sec. II B) the effectiveness of our approach.
Taking only the QCD contributions to the CMF NS EOS, we
apply the symmetry energy expansion to obtain the converted
EOS. In the case of CMF, we know precisely the correct
values of YQ,QCD as well as the coefficients Esym,sat, Lsym,sat,
Ksym,sat. Furthermore, we also know directly from CMF the
correct EOS for SNM, so that we can also compare our ex-
panded EOS to the one calculated directly in the CMF model.
As it was done for results shown in Fig. 5, we vary Jsym,sat in
our calculations.

To begin our proof-of-principle comparison, we calculate
the binding energy using the EOS expanded with the exact
YQ,QCD(nB) function from CMF. In Fig. 6, we show how
the binding energy per nucleon for the converted CMF EOS

FIG. 6. Result of the conversion of the CMF NS EOS to
Y const

Q,QCD = 0.5 using the exact YQ(nB ) from CMF. We find that the
converted EOS shows the correct binding energy per nucleon at
saturation.

FIG. 7. Comparison between the original CMF EOS for
Y const

Q,QCD = 0.5, the converted CMF EOS (from CMF NS EOS into
HIC EOS at Y const

Q,QCD = 0.5) using the symmetry energy expansion,
and YQ,QCD obtained directly from CMF, and the converted CMF EOS
using the symmetry energy expansion and YQ,QCD from Eq. (19). The
plot covers a density range of nB = 0nsat–5nsat .

reproduces the correct binding energy at saturation,

B = εHIC,sym

nB
− mN = −16 MeV, (27)

using mN = 938.919 MeV for the mass of the nucleon. We
note here that it is only possible to obtain the correct binding
energy after one subtracts the lepton contribution from the
CMF NS EOS, even though at nsat, the corresponding YQ is
quite small [132]: on the order of YQ ≈ 0.05.

Next, we convert the CMF NS EOS using the symmetry
energy expansion, both for the exact YQ,QCD obtained from
CMF and for YQ,QCD from the expansion in Eq. (19). As
before, we take the exact coefficients for Esym,sat, Lsym,sat, and
Ksym,sat, and vary Jsat,sym. In Fig. 7, we show the result for the
converted CMF HIC EOS vs. the original CMF HIC EOS for
SNM. We find that using the exact YQ,QCD, one obtains a very
good reproduction of the CMF EOS for SNM. When using the
expansion of YQ,QCD from Eq. (19), more uncertainty occurs
given that Jsat,sym is unknown, however, this only becomes
a significant effect at high densities. Thus, we find that our
approach is reasonable (especially for low densities), even
though there is still significant uncertainty in the large density
regime.

III. CONSTRAINTS ON THE SYMMETRY
ENERGY EXPANSION

The general methodology used in this paper is to take EOSs
shown to be consistent with neutron-star observations and
convert them into EOSs corresponding to a different value
of YQ,QCD while ensuring that the EOSs remain causal and
stable. The EOSs we use here are not (by far) the only pos-
sible EOSs that fit within the constraints set by neutron-star
observations, however, they do both obey NICER and LIGO-
Virgo constraints and support heavy neutron stars with masses
M � 2M� (even up to M � 3M�). For each NS EOS, the
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FIG. 8. Algorithm used to convert a NS EOS at T = 0 into a
HIC,sym EOS at T = 0.

conversion to a chosen YQ,QCD, given many allowed choices of
the coefficients {Esym,sat, Lsym,sat, Ksym,sat, Jsym,sat}, yields dif-
ferent possible HIC EOSs, some of which lead to acausal
solutions c2

s > 1 or unstable solutions c2
s < 03 Here, we only

apply the stability constraint at nB > 0.9nsat to preserve the
description of the first-order nuclear liquid-gas phase transi-
tion at lower densities; likewise, we only apply the stability
constraint up to a chosen density value, ncut ≈ 6nsat, which
generally covers the range of densities relevant to both heavy-
ion collisions and neutron stars. Additionally, we also perform
a check of the properties of the converted EOS at saturation.
The saturation density, where the pressure turns from negative
to positive, is required to be in the range of 0.14 to 0.18 fm−3.
The binding energy at saturation, B = εHIC,sym/nB − mN , is
required to be in the range of −14 to −18 MeV. The in-
compressibility K0 = 9 ∂ p

∂nB
|nB=n0 is required to be larger than

200 MeV; since the values of K0 tends to be small in our
converted EOSs, there is no need to set a constraint on the
upper value of K0.

Once the acausal and unstable EOSs, as well as EOSs
which do not exhibit reasonable saturation properties, are
removed, the remaining EOSs can be used to define a band of
viable EOSs. Moreover, we can study whether there is a pref-
erence for certain values of {Esym,sat, Lsym,sat, Ksym,sat, Jsym,sat}
that produce physical, causal, and stable EOSs. A summary
of our algorithm is shown in Fig. 8, where the crucial in-
puts are the NS EOS and the symmetry energy expansion
coefficients. The precise thermodynamic conversion from
neutron stars to heavy-ion collisions was discussed already in

3While an EOS including an unstable region (where c2
s < 0) is

perfectly well defined, and in fact necessary for the description of
the spinodal region of a first-order phase transition, the symmetry
energy expansion is a simple Taylor series that cannot be expected to
reliably describe the nonmonotonic behavior of c2

s , occurring in this
case, at large distances from nsat .

TABLE III. Ranges of values of the symmetry energy expansion
coefficients used in the following study.

Coefficient Range Step size

Esym,sat 27–40 1 MeV
Lsym,sat 20–130 10 MeV
Ksym,sat −220–180 50 MeV
Jsym,sat −200–800 100 MeV

Sec. II, however, we briefly summarize it here. The neutron-
star energy density (the NS EOS) and the symmetry energy
expansion coefficients are inputs used in Eq. (18) [or, equiv-
alently, Eq. (16)] to obtain the corresponding HIC energy
density (the HIC EOS). Because we use Eq. (19) for YQ,QCD

in Eq. (18) [or Eq. (16)], which tends to lead to a diver-
gent behavior when nB → 0, we enforce a maximum value
YQ,QCD � 1. With the obtained εHIC, we calculate μB using
μB = dεHIC/dnB|nQ=const, which then allows us to obtain the
pressure from Eq. (22). Finally, we obtain c2

s from Eq. (26).

A. c2
s from neutron star to heavy-ion collision

We start with a discussion about the current knowledge of
the symmetry energy expansion coefficients, summarized in
Table I. In Ref. [121], the magnitudes of Esym,sat = 31.6 ±
2.7 MeV and Lsym,sat = 58.9 ± 16 MeV are obtained from
28 analyses of both nuclear experiments and astrophysics
observations. As mentioned before, PREXII results demon-
strate a much larger Lsym,sat = 106 ± 37 MeV [122,123]. We
are not aware of any experimental constraints on Ksym,sat

and Jsym,sat and, therefore, must rely on theoretical estimates.
Thus, to provide a wide prior and ensure that we are not
strongly biasing our work, we explore wide ranges of values of
the symmetry energy expansion coefficients, summarized in
Table III.

Next, we take all possible combinations of {Esym,sat,

Lsym,sat, Ksym,sat, Jsym,sat} from Table III, use them in Eq. (18)
(where we take nsat = 0.160 fm−3) to convert the chosen NS
(QCD only) EOS (eos1, eos2, or eos3) into the HIC,sym EOS,
and evaluate the resulting EOSs for causality and stability up
to ncut, as well as check the saturation properties. Using our
priors on the symmetry energy coefficients, we obtain c2

s for
SNM from eos2 as shown in Fig. 9. In the figure, no causality,
stability, or saturation properties constraints have been applied
and one can see that at high densities, nB � 3.5nsat, some of
the symmetry energy expansion coefficients lead to c2

s that are
either negative (unstable) or larger than one (acausal). The
constraints of causality and stability (that we enforce in the
following) are shown by horizontal dot-dashed lines.

By constraining the possible combinations of the symmetry
expansion coefficients to only those that preserve the causal-
ity, stability, and saturation properties, we can then determine
the underlying distribution of the viable parameter space for
{Esym, Lsym, Ksym, Jsym}; we stress here that each of the consid-
ered NS EOSs features a large peak in the speed of sound, and,
therefore, our constraint on the symmetry energy coefficients
is based on the assumption that they should allow one to
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FIG. 9. Speed of sound squared as a function of normalized
baryon density, calculated for HIC EOSs obtained from a NS EOS
with a peak in c2

s at nB = 2nsat (eos2) by using the symmetry energy
expansion and varying all four symmetry energy expansion coeffi-
cients over their allowed ranges. The original NS EOS is shown
in black. Here, we show EOSs for all symmetry energy coefficient
combinations without applying causality and stability constraints.
The horizontal dot-dashed lines show constrains on causality and
stability that we enforce in the following figures.

convert such an EOS from YQ = Y NS
Q,QCD to Y const

Q,QCD ≈ 0.5 while
preserving causality, stability, and properties at nsat.

The dependence of c2
s on nB for SNM (Y const

Q,QCD = 0.5)
EOSs, converted from eos2, that fulfill causality, stability, and
nuclear matter properties at saturation density (−18 MeV <

B < −14 MeV and K0 > 200 MeV), is shown in Fig. 10.
The top panel demonstrates the structure of the individual
EOS from various sets of the symmetry energy expansion
coefficients. The bottom panel compares the original NS EOS
(eos2), shown in black, to the extracted maximum (red) and
minimum (blue) bands which form an envelope over all EOSs
shown in the top panel. To extract the bands, negative values
of c2

s < 0 and acausal values of c2
s > 1, which may still occur

for nB > ncut, are set to zero and one, respectively.
Interestingly, regardless of the choice of symmetry energy

expansion coefficients, the peak in c2
s for HIC EOSs is lo-

cated in the exact same density region as for the NS EOS
(here, eos2). Depending on the particular set of the expan-
sion coefficients used, there is a (rather slight) shift in the
overall magnitude of the peak. Following the peak, there is
a huge variation in the HIC EOSs, rendering them nearly
unconstrained past the peak. This wide spread in the EOSs
for densities above the peak is not surprising, since it reflects
the spread in the allowed values of the symmetry energy
expansion coefficients, in particular the higher-order ones. In
addition, if the peak in the NS EOS occurs due to the appear-
ance of strange baryons or quarks, then one would require an
altered symmetry energy expansion to account for these new
degrees of freedom. We note that we purposely incorporated
a large range of Esym,sat and Lsym,sat, see Table III, which
is likely beyond what one would expect from experimental
constraints, see Table I. However, we verified that even if we
include tighter constraints on Esym,sat, we find similar results.

FIG. 10. (top) Same as in Fig. 9, but only showing possible
combinations of symmetry energy expansion coefficients which lead
to results that are causal, stable, and satisfy nuclear matter properties
at saturation density. (bottom) The minimum and maximum bands
encompassing all obtained HIC EOSs shown in the top panel.

In Fig. 11, we show a corner plot for the distributions of
combinations of {Esym,sat, Lsym,sat, Ksym,sat, Jsym,sat} leading to
causal, stable, and physical (satisfying saturation properties)
HIC EOSs from eos2. We emphasize that this corner plot is
only based upon ensuring causality and stability from 0.9nsat

up to ncut = 6nsat as well as satisfying saturation properties.
We find a number of interesting features. For instance, we find
a preference for a small Lsym,sat. We also find a preference for
a negative value of Ksym,sat, while Jsym,sat appears to have a
preference for a (large) positive value.

Using all of the sets of coefficients producing physical,
causal, and stable HIC EOSs from eos2, we investigate the
corresponding values of the symmetry energy Esym as a func-
tion of baryon density. A scatter plot of all such obtained
symmetry energy values is shown in Fig. 12 along with the
±1σ and ±2σ contours around the mean symmetry energy
for each value of nB. As could be seen already in Fig. 11,
the requirement of a physical HIC EOS yields a rather tight
constraint on the symmetry energy in the vicinity of nsat or,
equivalently, on Esym,sat and Lsym,sat as the lowest expansion
coefficients are most important for the expansion in this re-
gion. This is, in fact, expected given that for densities below
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FIG. 11. Corner plot for the symmetry energy expansion coefficients {Esym,sat, Lsym,sat, Ksym,sat, Jsym,sat} as constrained by demanding
causality, stability, and reasonable nuclear matter saturation properties for HIC EOSs obtained from eos2.

2nsat, eos2 simply reproduces the Togashi EOS which is char-
acterized by particular values of Esym,sat and Lsym,sat: because
we require that the saturation properties are reasonably re-
produced, the accepted sets of symmetry energy expansion
coefficients cannot contain Esym,sat and Lsym,sat which differ
wildly from those of Togashi. On the other hand, the con-
straints of causality and stability apply at higher densities and
result in a strong preference for negative values of Ksym,sat and
positive values of Jsym,sat. As a result, the rise of the symmetry
energy with density at nB > nsat is first suppressed, showing
the influence of Ksym,sat, and then accelerates again when
Jsym,sat starts to dominate, producing a characteristic inflection
as a function of nB. One might consider also this feature to be
a trivial consequence of the applied constraints and the fact
that the symmetry energy is modeled with a polynomial: it is
indeed intuitive that if the higher-order coefficients, Ksym,sat

and Jsym,sat, have opposite signs, then altogether their con-
tributions lead to more moderate, and therefore causal and
stable, behavior than in the case if they were either both pos-
itive (and therefore more likely to lead to acausal behavior at
moderate densities) or negative (and therefore more likely to
lead to unstable behavior at moderate densities). However, it
is interesting to note that a similar structure with a stalled rise

above nsat, suggesting Ksym,sat < 0, has been obtained both in
chiral effective field theory calculations and in a recent fit to
experimental data points, both of which are shown as bands
labeled “Drischler et al.” [133] and “Lynch, Tsang” [134],
respectively, in Fig. 13. Therefore, our results for Ksym,sat and
Jsym,sat might point toward robust features of the symmetry
energy at higher densities. Finally, we note that results corre-
sponding to those shown in Fig. 12, but obtained for eos1 and
eos3, are very similar, as can be seen in Appendix C.

B. The limit of vanishing nB

The very low density limit of NS EOS represents the crust
and it contains quite different degrees of freedom than the
matter created in heavy-ion collisions (beyond containing a
degenerate Fermi gas of electrons). As the density increases
within the crust, the influence of the nuclei becomes larger,
first contributing primarily to the energy density but eventu-
ally, depending on the lattice structure that they form, also
providing a substantial contribution to the pressure. For each
nB, a specific nucleus minimizes the free energy. As one
increases nB, heavier and heavier nuclei that are also more
neutron-rich dominate the EOS. Eventually, the neutron drip
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FIG. 12. Scatter plot of the symmetry energy Esym as a function
of baryon density nB, obtained using all sets of coefficients for which
the converted eos2 HIC EOS satisfies the physical, causality, and
stability constraints (see Fig. 11). The thick solid line corresponds
to the mean symmetry energy, while the thick (thin) dashed line
corresponds to the ±1σ (±2σ ) contour around the mean.

line is reached around nB ≈ 10−4nsat, at which point the nu-
clear matter EOS has inputs from a combination of nuclei,
electrons, and free neutrons. Further details can be found, e.g.,
in Ref. [143] and in various textbooks [144,145].

Systems produced in heavy-ion collisions contain matter
originating from the collision of two heavy, fully ionized
nuclei. These events are extremely short-lived, such that the
only relevant interactions are those on the timescales of the
strong force. While leptons (and antileptons) are produced in
the collisions, they generally immediately leave the collision
region without further interactions and thus do not contribute
to the EOS. On the other hand, light nuclei are not only
produced in the collision region [146,147], but also contribute
to its dynamics; this remains true even for the highest energy
collisions [148,149]. Moreover, in recent years production of
various light hypernuclei [150] and antihypernuclei [151,152]
has been measured in heavy-ion collisions. Nevertheless, the
produced matter at low temperatures and moderate densities
is predominantly composed of protons and neutrons.

The single-particle potentials used in simulations of heavy-
ion collisions depend on the baryon (and, in cases where
isospin dependence is included, also isospin) number of the
affected particles, and one can parametrize the underlying
HIC EOS starting from the simple concept of uniform nuclear
matter, that is matter composed of only protons and neutrons.
In this situation, the energy per baryon ε/nB converges to the
nucleon mass in the limit of vanishing nB. This, however,
is not the case for an EOS obtained through the symmetry
energy expansion of a NS EOS. The reasons for this are
twofold: First, as already explained above, the two EOSs
employ different degrees of freedom. Second, the expansion
is only strictly well-defined around nsat and, consequently,
does not necessarily lead to reasonable results as nB → 0; in
particular, in our approach the approximation for YQ diverges
in this limit (see Fig. 17 in Appendix B), leading to an EOS
incompatible with the assumptions used in modeling the EOS

FIG. 13. The ±1σ (region with black vertical stripes) and ±2σ

(region with gray vertical stripes) contours of the symmetry en-
ergy Esym as a function of baryon density nB, obtained in this
work as in Fig. 12, compared with selected constraints: N3LO
chiral effective field theory calculations (band labeled “Drischler
et al.”) [133], constraints from comparisons of experimental data
to results of transport simulations of heavy-ion collisions (bands
labeled “ASY-EOS” [135], “FOPI-LAND” [136], and “Tsang
et al.” [137] and symbols labeled as “HIC(isodiff)”, “HIC(n/p)”, and
“HIC(π )” [134]), constraints obtained in Ref. [134] based on a novel
interpretation of analyses of dipole polarizability αD [138] (green
diamond), of nuclear masses in DFTs [139,140] (cyan dot symbol)
and in Skyrme models [141] (cyan star symbol), of isobaric analog
states (IASs) energies [142] (magenta plus symbol), and of PREX-II
experiment [122] (blue inverted triangle symbol), as well as the 68%
confidence region consistent with the best fit of experimental data
points (band labeled “Lynch, Tsang”) [134]. Figure adapted from
Ref. [92].

for heavy-ion collisions. For this reason, we choose to only
use the HIC EOS obtained from a symmetry energy expansion
of a NS EOS above some chosen low density nlow

B where its
behavior is reasonable in the context of heavy-ion collisions.
For nB < nlow

B , we smoothly match the converted EOS to an
EOS obtained from the density functional (VDF) model [101]
EOS whose behavior as nB → 0 is compatible with the basic
assumptions about uniform nuclear matter. In particular, such
an EOS then satisfies two necessary conditions at nB → 0:

(1) the energy density per baryon density, ε/nB, is equal to
the mass of the nucleon,

εHIC,sym

nB

∣∣∣∣
nB→0

= mN ; (28)

(2) the speed of sound squared is zero,

c2
s

∣∣
nB→0 = 0. (29)

The two above conditions can be achieved by smoothly
matching the VDF EOS and our converted EOS at nlow

B =
0.5nsat. The smooth matching is done using a hyperbolic
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tangent function; additionally, we also ensure that certain
properties of SNM are the same between the VDF and our
converted EOS. Note that only SNM is relevant since this
matching is done at Y QCD

Q = 0.5. The properties that we en-
sure are identical between the two matched EOSs are

(1) the saturation density, nsat;
(2) the binding energy of SNM at nsat, B = εSNM(nsat )/

nsat − mN ;
(3) the nuclear incompressibility, KSNM(nsat ) =

9 d pSNM

dnB
|nsat .

We begin with a NS EOS that has been converted
into a SNM EOS, εHIC,sym. We then calculate {nsat, E0,SNM,

KSNM(nsat )} for the given converted EOS. These are then used
as input parameters for parametrizing the VDF EOS for SNM,
denoted here as εVDF.

Having in this way obtained the converted EOS, εHIC,sym,
and the VDF EOS with the same saturation properties, εVDF,
we can combine the two using a smooth matching function as
follows:

ε(nB)fin = s(nB)εHIC,sym(nB) + [1 − s(nB)]εVDF(nB), (30)

where ε(nB)fin is our final energy density that is used as the
basis for the SMASH input. While the smoothing function can
be defined in a number of ways, here we use a hyperbolic
tangent, i.e.,

s(nB) = 0.5 + 0.5 tanh
[(

nB − nlow
B

)/
a
]
, (31)

where nlow
B was already defined above as the matching den-

sity and a is a free parameter that determines the region
in nB where the transition from one EOS to another is
smoothed over; a larger (smaller) value of a leads to a
smoother (sharper) transition. Here we used nlow

B = 0.5nsat

and a = 0.03 fm−3, which we have tested to provide a
reasonably smooth transition between the EOSs. An exam-
ple of a single realization of the final EOS, ε(nB)fin, is
shown in the top panel of Fig. 14. In this example, the
matched EOSs have the following common saturation prop-
erties: nsat = 0.1616 fm−3, E0,SNM(nsat ) = −16.0352 MeV,
and KSNM(nsat ) = 218.367 MeV. The pressure and the speed
of sound squared are then calculated from ε(nB)fin using the
thermodynamic relations from Eqs. (25) and (26). In Fig. 14,
we can see that as nB → 0, we have ε/nB → mN (top panel)
and c2

s → 0 (bottom panel).

IV. COMPARISONS TO HEAVY-ION COLLECTIVE
FLOW DATA

The most energetic heavy-ion collisions, obtained with
beams at the center-of-mass energy of

√
sNN = 5.02 TeV

(available at the Large Hadron Collider), can reach temper-
atures up to approximately Tmax ≈ 650 MeV.4 At moderate
values of rapidity, almost all of the particles measured in

4This number comes from simulations using v-
USPhydro [153,154], e.g., by looking at the temperature profiles
from the simulations performed in Ref. [155].

FIG. 14. (top) An example of an energy per particle, ε(nB)fin/nB,
of the final EOS obtained from matching our converted EOS,
εHIC,sym(nB ), with a VDF EOS, εVDF(nB ), to ensure reasonable prop-
erties at vanishing baryon densities. (bottom) c2

s obtained from the
final EOS shown in the top panel.

these events are created from the energy deposited in the
collision region rather than coming from the original nu-
clei. Because quarks and antiquarks are always produced in
pairs, the created systems have very low net baryon or net
strangeness density. Such matter is similar to matter that filled
the Universe in the first microseconds after the Big Bang, but
different from the dense nuclear matter in neutron stars and
supernovae explosions. Only once the beam energy is low-
ered, a relevant number of baryon charges originating from
the colliding nuclei is trapped in or is otherwise affected by
the expanding collision region, such that the evolving systems
are characterized by a finite net baryon density nB at moderate
values of rapidity. Note, however, that while matter produced
in these experiments can be characterized by a comparable
range of probed baryon densities, it is still very different from
the neutron-star matter both in terms of YQ and strangeness
content.

Lowering the collision energy not only increases nB in
the collision region, but also simultaneously decreases Tmax.
Eventually, at relatively low beam energies, a significant frac-
tion of the probed matter is a compressed material of the
original nuclei, and one reaches a maximum accessible net
baryon density nB,max. If one continues to lower the beam
energy past this point, both Tmax and nB,max decrease. Note
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that in this discussion, we purposefully do not include exact
values of

√
sNN where these effects occur, nor can we easily

discuss the Tmax and nB,max probed across the full range of√
sNN at this time. The reason behind this choice is the fact

that both Tmax and nB,max depend on the dense nuclear matter
EOS, which at this moment still carries a significant amount
of uncertainties at densities nB � 2n0, reached at mid to lower
values of

√
sNN [19,89,92]. Moreover, identifying the optimal

simulation framework for these beam energies is currently still
the subject of vigorous research.

At high
√

sNN, the reached Tmax are larger than the pseud-
ocritical temperature of the QCD phase transition calculated
within lattice QCD, T (LQCD)

pc ≈ 155 MeV [156], and experi-
mental analyses clearly suggest that in these collisions quarks
and gluons form a Quark-Gluon Plasma (QGP) [157–160],
that is a strongly interacting fluid of deconfined quarks and
gluons. The dynamics of these systems is very well described
by relativistic viscous hydrodynamics, which reproduces the
experimental data and makes precise predictions across a
range of

√
sNN [161–163]. As the system cools and ex-

pands, the temperature eventually drops to a value at which
a crossover transition to a gas of hadrons occurs; on the
simulation level, this is where one should switch from a
hydrodynamic description to one utilizing hadronic degrees
of freedom, e.g., a hadronic transport code. In practice, for
very high

√
sNN, the hadron gas phase is a subdominant ef-

fect compared with the hydrodynamic phase when looking
at flow observables [164]. Nevertheless, meaningful compar-
isons with the experimental data still require hydrodynamics
to be coupled to a hadronic afterburner to reproduce, e.g., par-
ticle spectra [165,166], the transverse momentum and particle
species dependence of the elliptic flow [159], or the centrality
and rapidity dependence of the elliptic flow [167].

At low
√

sNN, significantly high values of nB are reached
while values of Tmax are lower. In this case, there is an impor-
tant interplay between the QGP phase and the hadronic phase.
Because Tmax decreases, the fraction of the total duration of
the collision described by hydrodynamics becomes smaller,
and at the same time the hadronic phase starts to play a signif-
icant role [106]. Moreover, as the collision energy is lowered,
collision systems take increasingly longer times to arrive at
near-equilibrium, necessary for a hydrodynamic description
to be applicable. As a result, in this energy range heavy-ion
collisions are best described by hybrid models, combining
relativistic hydrodynamics with a hadronic transport. Current
relativistic viscous hydrodynamic calculations coupled with
the hadronic transport code SMASH [90] provide a reasonable
description of particle production down to

√
sNN = 4.3 GeV

(Ekin = 8 AGeV) [168], while another recent study found that
relativistic viscous hydrodynamics calculations using Monte
Carlo (MC) Glauber with baryon stopping for the initial state
and UrQMD for the hadronic afterburner can also reproduce
experimental data down to

√
sNN = 7.7 GeV [169]. At the

same time, at these and lower beam energies
√

sNN ≈ 2.0–10
GeV, heavy-ion collision systems can be well modeled using
only hadronic transport simulations, which in particular can
describe the out-of-equilibrium stages of the evolution that
have to be included if the system evolves through unstable
regions of the phase diagram (e.g., the coexistence region of

a first-order phase transition). Consequently, these codes are
commonly employed to reproduce experimental data in that
region (see Ref. [170] for an overview of models used, and
Ref. [92] for a discussion of challenges and opportunities in
hadronic transport theory).

Presently, uncertainties remain regarding the appropriate√
sNN at which one should switch from one simulation ap-

proach to the other [171]. Additional questions have been
recently raised in view of the HADES experiment measure-
ment of the average temperature Tavg ≈ 71 MeV of systems
created in Au + Au collisions at

√
sNN = 2.4 GeV [20].

Even though this average temperature is much lower than
the pseudocritical temperature at μB = 0 as obtained in lat-
tice QCD, Tavg < T LQCD

pc , it is high enough to ask whether
a QGP is produced at these beam energies [22], given that
the QCD transition temperature TQCD decreases with increas-
ing nB [172,173]. Consequently, experiments at low values
of

√
sNN have recently garnered a significant amount of at-

tention within the field [4]. This interest is very timely, as
data from the Fixed Target campaign of the Beam Energy
Scan (BES) program at the Relativistic Heavy Ion Collider
(RHIC), exploring

√
sNN ∈ (3.0, 7.7) GeV, is being analyzed.

At the same time, future experiments, such as the Compressed
Baryonic Matter (CBM) experiment [174–177] at the Facility
for Antiproton and Ion Research (FAIR), are scheduled to go
online within several years. Both of these efforts will further
explore the above questions, among others.

Overall, constraints on the nuclear matter EOS can be
obtained by comparisons of simulation results to experimental
observables. These include measurements of the collective
flow, that is the Fourier coefficients of the angular momentum
distribution in the transverse plane dN/dφ, where the nth
coefficient is given by

vn ≡
∫

dφ cos(nφ) dN
dφ∫

dφ dN
dφ

. (32)

In particular, the slope of the directed flow v1, dv1/dy|y=0,
and the elliptic flow v2 at midrapidity, v2(y = 0), are shown
to be very sensitive to the EOS by numerous hydrody-
namic [178–184] and hadronic transport [19,89,185–190]
models. Notably, as demonstrated in Ref. [191], for

√
sNN �

6.4 GeV spectators play a crucial role in the development of
flow observables. Because most of the state-of-the-art hydro-
dynamic codes are intended for the description of heavy-ion
collisions at very high energies, where the spectators do not
influence the evolution of the system at midrapidity, these
codes neglect the spectators. As a result, the majority of
modern hydrodynamic codes are not currently applicable for
modeling flow observables at

√
sNN � 6.4 GeV without sub-

stantial modifications.
As noted above, in this collision energy range hadronic

transport simulations are well-positioned to capture most of
the relevant physics driving the influence of the EOS on
experimental measurements. In addition to describing the evo-
lution of the entire heavy-ion collision system including the
spectators, hadronic transport also naturally includes trans-
port of conserved charges: baryon number B, strangeness S,
and isospin I3 (or, equivalently, electric charge Q). Moreover,
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because hadronic transport simulations do not require the
assumption of near-equilibrium to be fulfilled, they can also
describe an evolution through unstable regions of the phase
diagram, which may be necessary for systems evolving at
temperatures lower than the critical temperature and densities
higher than the critical density of the conjectured QCD first-
order phase transition.

Below, we use extremely soft and extremely stiff EOSs,
chosen from the families of EOSs obtained for eos1, eos2,
and eos3 as described in Sec. III, in hadronic transport
simulations at center-of-mass collision energies

√
sNN =

2.4, 3.0, 4.5 GeV, and we compare the results to data from
modern heavy-ion collision experiments.

A. Simulation framework

To simulate collisions at low
√

sNN, we use a hadronic
transport model SMASH [90] (version 2.1 [100]). In SMASH, the
dynamics of the system is simulated by numerically solving
the relativistic Boltzmann-Uehling-Uhlenbeck (BUU) equa-
tion for the evolution of the one-body distribution function of
the nth particle species fn(t, x, p),[

∂

∂t
+ dx

dt

∂

∂x
+ d p

dt

∂

∂ p

]
fn(t, x, p) = Icoll. (33)

In the above equation, the left-hand side is equal zero in
the absence of particle-particle collisions and decays. This
follows directly from the Liouville theorem and can be un-
derstood intuitively by noting that the total time derivative
dfn(t, x, p)/dt , i.e., the left-hand side of Eq. (33), describes
how the value of fn changes in time as seen by an observer
who travels along with the system on its trajectory (x(t ), p(t )).
Without collisions and decays, which can either remove or
add particles to a given subvolume of the phase space, the
distribution function remains constant in the subvolume de-
fined by trajectories taken by the particles. If collisions and
decays are allowed, then the corresponding changes in the
distribution function are accounted for through the right-hand
side of Eq. (33), known as the collision term. This term in-
cludes, at least in principle, all possible cross sections and
decay channels between different particle species. Thus in a
system with N possible particle species, one considers a set of
N coupled differential equations of the form given in Eq. (33).
We note here that although Eq. (33) is not written in a mani-
festly covariant way, it can be shown that it is relativistically
covariant.

The numerical approach to solving Eq. (33) is based on
the method of test particles, within which the continuous
distribution fn(t, x, p) for a system of A particles of species
n is approximated by a discrete distribution of a large num-
ber N = NT A of test particles with phase-space coordinates
(t, xi, pi ),

fn(t, x, p) ≈ 1

NT

N∑
i=1

δ(x − xi(t ))δ(p − pi(t )); (34)

here, NT is the number of test particles per particle and the
factor of 1/NT in the above equation is introduced to preserve
the normalization of f reflecting the number of real particles

present in the system. The trajectories of the test particles in
the phase space are determined by their velocities and forces
acting upon them,

dxi

dt
= pi

Ei
, (35)

d pi

dt
= F i = −∇Ui. (36)

The test particles are also allowed to undergo scatterings and
decays. Since the system of test particles is “oversampled”
with respect to the real system by a factor of NT , preserving
the average physical number of scatterings per test particle
requires scaling the cross sections according to σ/NT , where
σ is the physical cross section. For a given phase-space
distribution at the initial time t0, fn(t0, x, p), approximating
fn(t0, x, p) by a distribution of a (large) number of test parti-
cles as prescribed in Eq. (34) and evolving them according to
Eqs. (35) and (36) as well as performing scatterings and de-
cays as described above effectively solves the BUU equation,
Eq. (33). This can be intuitively understood by realizing that
such evolved test particles can at any time t be used to form
the discrete distribution approximating the true distribution
fn(t, x, p), as shown in Eq. (34), thus yielding the time evo-
lution of the continuous phase-space distribution fn(t, x, p) as
long as the evolution of each test particle correctly mimics the
evolution of a “real” particle under given conditions.

It is important to note that the accuracy of the approxi-
mation used in Eq. (36) is directly related to the number of
used test particles or, equivalently, to the used number of test
particles per particle NT . Larger values of NT lead to better
accuracy, but in practice the choice of NT is constrained by
numerical costs; while the optimal value of NT may depend
on the particular situation at hand, it is fairly well established
that this number should be in the hundreds or even thousands
(see, e.g., Ref. [89]).

The information about the EOS of the modeled system
enters transport simulations through Eq. (36) [and, in case
of potentials leading to a development of an effective mass,
also indirectly through Eq. (35)], in which the single-particle
potential Ui is usually modeled as a mean-field potential.
Commonly used mean-field potentials range from simple
parametrizations reproducing the known properties of nuclear
matter around the saturation density, such as the well-known
nonrelativistic Skyrme parametrizations [192], to more com-
plex potentials such as the relativistic potentials obtained from
the vector density functional (VDF) model [101], allowing
one to describe nontrivial features of the EOS at high densities
(e.g., a phase transition).

In this work, we choose to use the approach proposed in
Ref. [89], where the single-particle potentials used in transport
simulations are parametrized to reproduce a given dependence
of the speed sound squared at zero temperature on baryon den-
sity, c2

s (nB). Within each of the families of EOSs obtained by
converting eos1, eos2, and eos3 (all of which satisfy neutron-
star constraints, see Sec. II A) from neutron star to heavy-ion
collision conditions (see Sec. III), we consider two limiting
cases: an EOS that most accurately traces the minimum band
encompassing all converted EOSs and an EOS that most accu-
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TABLE IV. Properties of symmetric nuclear matter at saturation
density for each of the considered EOSs: saturation density nsat , bind-
ing energy B, incompressibility K0, and the speed of sound squared
at saturation c2

s (nB = nsat ).

EOS nsat [fm−3] B [MeV] K0 [MeV] c2
s (nB = nsat )

eos1 min 0.175 −14.6 200.5 0.024
eos1 max 0.171 −17.8 325.9 0.039
eos2 min 0.167 −14.6 206.7 0.025
eos2 max 0.161 −16.9 214.8 0.026
eos3 min 0.153 −14.8 220.2 0.027
eos3 max 0.162 −16.5 201.7 0.024

rately traces the corresponding maximum band (see Fig. 10).
The basic properties of symmetric nuclear matter at saturation
density for each of the considered EOSs are given in Table IV.
Note that, with the exception of “eos1 max,” these EOSs
satisfy reasonable constraints on the incompressibility K0 =
230 ± 30 MeV [192]. Using the fact that K0 = 9μBc2

s and
assuming μB(nB = nsat ) = 922 MeV, the above constraints
on K0 further lead to c2

s (nB = nsat ) = 0.028 ± 0.004, which is
again satisfied by all considered EOSs with the exception of
“eos1 max.” To ensure compatibility of the considered EOSs
with the parametrization of the single-particle potentials used
in SMASH, for low values of the density we smoothly match
each of the chosen six converted EOSs with a VDF EOS
according to the procedure described in Sec. III B. We stress
here that this procedure preserves the two most important
features of the converted EOSs: the location of the peak in c2

s
and the behavior at high densities driven by the used values of
the symmetry energy expansion coefficients. Finally, for each
of such obtained EOSs we extract the profile c2

s (nB) which is
used as an input to parametrize the single-particle potentials
employed in SMASH.

We note here that, although the input EOSs are constructed
at T = 0, they are still applicable in heavy-ion collision sim-
ulations at finite T given that the mean-field potentials used
are of the vector density type: such potentials do not depend
on the temperature and, therefore, can be fixed at T = 0,
while at the same time they support nontrivial changes in
the EOS with increasing T due to contributions arising from
the kinetic part of the EOS. We elaborate on this point in
Appendix D.

B. Results

For each of the extracted c2
s (nB) profiles, we run SMASH

simulations at a series of beam energies corresponding to most
recent experimental results. To assess the effect of different
EOSs on the collision dynamics, we then analyze the simula-
tion data to obtain predictions for the slope of the directed flow
dv1/dy′|y′=0 and the elliptic flow at midrapidity v2(y′ = 0).
These predictions, obtained using appropriate impact param-
eter ranges and transverse momentum cuts (see Table V), can
be compared directly to experimental data obtained by the
HADES [102] and STAR [103,104] experiments.

The results of our simulations are shown in Fig. 15. Over-
all, we find that the experimental data are described best by

TABLE V. Comparison of different experimental conditions for
flow measurements [102–104]: the center-of-mass collision energy√

sNN, considered range of the impact parameter b, and cuts on the
proton transverse momentum pT .

Data
√

sNN [GeV] b [fm] pT cut [GeV]

HADES 2.4 4.7–8.1 [0.2, 2.0]
STAR 3.0 4.7–9.3 [0.4, 2.0]
STAR 4.5 v1: 4.7–7.4 [0.4, 2.0]

v2: 0.0–8.10

the EOS labeled “eos2 min” (i.e., corresponding to an EOS
converted from eos2 that was most accurately tracing the
minimum band encompassing all converted EOSs based on
eos2, see Fig. 10 and the bottom middle panel in Fig. 15). In
the case of the EOSs labeled “eos2 max,” the EOS is seen to
be too stiff at baryon densities around 3nsat–4nsat, probed by
collisions at

√
sNN = 4.5 GeV (see, e.g., Refs. [89,92]), thus

leading to an overprediction of the values of dv1/dy′|y′=0 and
underprediction of v2(y′ = 0). Results for the minimum and
maximum EOSs chosen from the family of EOSs converted
from eos1 (“eos1 min” and “eos1 max”) strongly indicate
that a large peak in c2

s starting at nB = 1.5nsat is excluded by
experimental data. Additionally, we note here that the large
difference between the incompressibilities of “eos1 min” and
“eos1 max” does not lead to large differences in results, in par-
ticular those corresponding to the HADES experiment which
performs collisions at the lowest considered beam energy
and thus probes the smallest range of densities, underscoring
the fact that the behavior at saturation density is not probed
well even at these relatively low energies. Similarly, results
for “eos3 min” and “eos3 max” suggest that a large peak
in c2

s starting at nB = 3nsat is unlikely: even though “eos3
max” describes the v2(y′ = 0) data well, it overpredicts val-
ues of dv1/dy′|y′=0 at higher energies, suggesting it is too
stiff at high densities; conversely, “eos3 min” underpredicts
dv1/dy′|y′=0 at

√
sNN = 3 GeV, suggesting it is too soft at

the corresponding densities. This contrasts with the results ob-
tained using “eos2 min,” which consistently describe both the
dv1/dy′|y′=0 and v2(y′ = 0) data. As can be seen in the bottom
middle panel in Fig. 15, the “eos2 min” EOS corresponds to
a large peak in c2

s starting at nB = 2.0nsat and symmetry en-
ergy expansion coefficients equal Esym = 28.5 MeV, Lsym =
37.5 MeV, Ksym = −95 MeV, and Jsym = 600 MeV, which
are well within the most preferred ranges of symmetry energy
coefficients as identified by constraints based on causality, see
Fig. 11. We also note that the EOS labeled as “eos2 min” is
qualitatively similar to the constraint on the EOS obtained in
Ref. [89] through a Bayesian analysis of the STAR experi-
ment data [103,104], which likewise exhibits a sharp peak
between 2.0nsat–3.0nsat and a significant softening between
3.0nsat–4.0nsat. At the same time, another recent Bayesian
analysis [193] of heavy-ion collision data supports high values
of c2

s up to nB = 3.0nsat–4.0nsat.
In Fig. 16, we compare pressure as a function of baryon

density for “eos2 min” and “eos3 max” against constraints
from chiral effective field theory [133] and constraints
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d
d

FIG. 15. Results of our study for EOSs representing two limiting cases, “min” (solid lines) and “max” (dashed lines), chosen from the
family of EOSs obtained by converting eos1 (left column), eos2 (middle column), and eos3 (right column). (top) Simulation results for the
slope of the directed flow of protons at midrapidity dv1/dy′|y′=0 as a function of the center-of-mass collision energy

√
sNN. Also shown are

measurements from the HADES [102] and STAR [103,104] experiments. Note that the results are expressed using scaled rapidity y′ = y/y0,
where y0 is the beam rapidity. (middle) Simulation results for the elliptic flow at midrapidity v2(y = 0) as a function of the center-of-mass
collision energy

√
sNN. (bottom) The speed of sound squared c2

s as a function of density in units of nsat . Note that while the peak of the speed of
sound is put at a specific position for eos1, eos2, and eos3 (at nB = 1.5, 2.0, and 3.0n(0)

sat , respectively, where n(0)
sat is the saturation density of the

underlying NS EOS), the value of nsat after conversion depends on the symmetry energy expansion coefficients, leading to slight discrepancies
between the position of the c2

s peak for the “min” and “max” curves.

extracted from comparisons to heavy-ion observables [19,89].
We note that the fact that “eos3 max” largely aligns with
results from Ref. [19] (region with black horizontal stripes)
is not that surprising given that in both cases, the EOS de-
scribes some, but not all of the considered experimental data.
Additionally, the excellent agreement of “eos2 min” with
results of Bayesian analysis of heavy-ion flow observables
from Ref. [89] (region with vertical green stripes) is also to be

expected due to the fact that both that study and this work used
the same simulation framework. Here, however, the “eos2
min” EOS has been shown to not only describe heavy-ion
measurements, but also satisfy all constraints from neutron-
star observations as well as support extremely heavy neutron
stars. Thus our results show that NS EOS with large peaks
in the speed of sound can be compatible with EOS extracted
from heavy-ion data as long as the simulation framework used

065803-19



NANXI YAO et al. PHYSICAL REVIEW C 109, 065803 (2024)

FIG. 16. Pressure at zero temperature as a function of baryon
density for two EOSs considered in this work, “eos2 min” (solid blue
line) and “eos3 max” (dashed red line), as well as for constraints
obtained from next-to-next-to-next-to-leading order chiral effective-
field theory calculations [133] (solid orange region), comparisons
of transport model simulations to heavy-ion collision measure-
ments [19] (region with black horizontal stripes), and a Bayesian
analysis of modern heavy-ion collision measurements [89] [region
with vertical green stripes, where the shaded (unshaded) contour
corresponds to the 68% (95%) confidence interval].

for that extraction allows for similarly nontrivial behavior of
the EOS with density.

Still, the simulation results must be evaluated with caution.
The EOS parametrization used in our study does not include
a momentum dependent potential, which is expected to be
repulsive for nucleon kinetic energies of most relevance for
the explored collision energies [194,195]. Consequently, our
simulations miss an additional source of repulsion between
baryons. Including this additional repulsion would generally
lead to larger values of dv1/dy′|y′=0 and smaller (more nega-
tive) values of v2(y = 0); however, it is difficult to estimate the
magnitude of this effect. Ongoing work on including momen-
tum dependent potentials in the simulation framework will
enable addressing this problem in the future. Additionally, we
also did not include effects due to isospin (i.e., we consid-
ered EOSs of exactly isospin-symmetric matter even though
systems created in heavy-ion collisions are characterized by
Y const

Q,QCD �= 0.5), which, however, are expected to be small at
the considered energies [92]; this can be also seen from results
shown in Fig. 4. Still, it is worth noting that the isospin-related
effects in heavy-ion collisions, although small, are the subject
of active research [92,196], including its effect on the momen-
tum dependence of the potential [197–199].

V. CONCLUSIONS

In this work, we considered three neutron-star EOSs con-
taining a prominent structure (a large peak) in the speed of
sound c2

s as a function of baryon density nB. These EOSs
can reproduce heavy neutron stars and fulfill all astrophysical

observation constraints. For each of these EOSs, we then
subtracted the contribution of leptons and explored allowed
values of the expansion coefficients of the symmetry energy
around saturation density to obtain families of EOSs cor-
responding to larger charge fractions, YQ,QCD → 0.5, and in
particular to obtain EOSs corresponding to matter created in
heavy-ion collisions at T = 0. We found that the speed of
sound squared for heavy-ion collision matter with YQ = 0.4
is approximately the same as for YQ = 0.5, and that the effect
of using different expansion coefficients is much larger than
the variation from using different charge fractions YQ,QCD.

We also found that by just restricting the converted EOSs
to satisfy 0 � c2

s � 1, we can constrain the allowed ranges
of symmetry energy expansion coefficients. While we found
almost no preference for Esym,sat within the probed range, a
small Lsym,sat was preferred in our study. Furthermore, we
found a preference for the higher-order symmetry energy
expansion coefficients to take values Ksym,sat ≈ −100 MeV
and Jsym,sat � 0. Thus, our analysis provides a new proof-
of-principle method for using astrophysics to constrain the
nuclear EOS.

Next, we ran SMASH simulations of heavy-ion collisions
at

√
sNN = 2.4, 3.0, 4.5 GeV with example EOSs from the

restricted families of converted EOSs for SNM. These EOSs
were chosen to most accurately trace either the minimum or
the maximum band encompassing all converted EOSs for a
given NS EOS. We found that among the considered EOSs,
the EOS most accurately reproducing the minimal profile of c2

s
as a function of density (labeled as “eos2 min”) describes the
experimental data very well (see Fig. 15). This is consistent
with the results of a Bayesian analysis of STAR flow data
performed in Ref. [89] and supports an EOS with a sharp
peak in the speed of sound for baryon densities nB ∈ (2, 3)nsat

followed by a substantial softening at larger densities. We also
note that the “eos2 min” EOS corresponds to symmetry en-
ergy expansion coefficients equal Esym = 28.5 MeV, Lsym =
37.5 MeV, Ksym = −95 MeV, and Jsym = 600 MeV, which
are well within the most preferred ranges of symmetry energy
coefficients as identified by constraints based on causality, see
the discussion above and Fig. 11. On the other hand, EOSs
with a peak in c2

s starting at nB = 1.5nsat are strongly disfa-
vored, while EOSs with a peak in c2

s starting at nB = 3.0nsat

are found to be unlikely due to the fact that, in contrast with
“eos2 min,” they do not lead to a consistent description of
heavy-ion observables. Overall, given that “eos2 min” has
been obtained from a NS EOS which satisfies all constraints
from neutron-star observations and supports neutron stars
with masses up to 2.5M�, our results show that NS EOS with
large peaks in the speed of sound can be compatible with
EOS extracted from heavy-ion data. However, let us note that
our framework did not include momentum dependent terms
in the mean-field potentials. Because of that, the simulations
were missing an additional source of repulsion which would
likely lead to a larger slope of the directed flow and a smaller
(more negative) elliptic flow. Therefore, the above conclusions
should be revisited within a framework including the influ-
ence of momentum dependent potentials. Nevertheless, from
Fig. 15 one can see that the expected corrections in flow would
not favor the other EOSs over “eos2 min.”
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FIG. 17. Different values of YQ as a function of nB obtained using
different symmetry energy coefficients.

Our results demonstrate an algorithm that can be used in fu-
ture studies: taking a single high-likelihood EOS constrained
by neutron-star observations, converting it into a family of
EOSs obtained by varying the coefficients in the symmetry
energy expansion, and using limiting cases of these EOSs in
hadronic transport simulations to further constrain the EOS
with heavy-ion data. Ideally, one would go a step a further
and combine constraining the EOS using neutron-star and
heavy-ion collision data within one comprehensive analysis.
However, recent studies that generate posteriors using Markov
chain Monte Carlo (MCMC) and neutron-star observations
often take on the order of 105 EOSs. One would then run
a second MCMC for the symmetry energy expansion that
could lead to another 104 EOSs for each single neutron-star
EOS, altogether leading to 109 EOSs to test within a hadronic
transport code which would have to be compared with exper-
imental data at multiple beam energies. Currently, this is not
remotely feasible: within a reasonable time, transport simula-
tions using the framework employed in this study can test on
the order of 101 to 102 EOSs (the latter case corresponding
to about 106 CPU hours of computation time). The numerical
cost of these simulations will further increase by an order of
magnitude with the inclusion of momentum dependent poten-
tials. This presents an interesting numerical challenge that is
important to overcome in the next decade, as new results begin
to emerge from neutron star mergers with future upgraded
gravitational wave detectors [39], new and better constrained
NICER results [40,41], the awaited Beam Energy Scan II and
fixed-target data from STAR [200,201], the upcoming experi-
mental campaign from HADES [202], the future FAIR facility
at GSI [174–177], and the upcoming experiments colliding
neutron-rich heavy nuclei at FRIB [196].

Additional challenges remain on the theoretical side. For
the symmetry energy expansion, one should think carefully
about the inclusion of strangeness and quark degrees of free-
dom to improve the expansion at large nB. Similarly, the
expansion at large nB may become more reliable by including
more terms in the symmetry energy expansion. Moreover, for
hadronic transport models there are a number of theoretical
and simulation developments required to correctly describe

FIG. 18. (top) c2
s dependence on Y const

Q,QCD for eos1 (peak in c2
s at

nB = 1.5nsat). (bottom) c2
s dependence on Y const

Q,QCD for eos3 (peak in c2
s

at nB = 3nsat). For EOSs in both panels, the central values of Esym,sat

and Lsym,sat from Ref. [121] were used.

relevant aspects of a heavy-ion collision evolution, as de-
tailed in Ref. [92]. This includes, among others, momentum
dependence of the potentials, in-medium cross sections,
description of cluster production, subthreshold particle pro-
duction, and off-shell propagation.
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APPENDIX A: DEFINITION OF THE ASYMMETRY
PARAMETER δ

For a hadronic system consisting of only protons and neu-
trons, the usual definition of the asymmetry parameter δ in
terms of proton and neutron densities np and nn can be rewrit-
ten in terms of the isospin fraction YI as

δ = nn − np

nB
= −2

(∑
i niIi∑
i ni

)
= −2YI , (A1)

where nB = np + nn, and ni and Ii are number density and
isospin of the ith species, respectively. The parameter δ can
also be easily described in terms of the charge fraction YQ,QCD,
given that for nonstrange matter [i.e., matter where YS =∑

i niSi/(
∑

i ni ) = 0, where Si is the strangeness of particle
species i] one has YI = YQ,QCD − 0.5 [93], where YQ,QCD =∑

i niQi/
∑

i ni; as a result, one can write

δ = −2(YQ, QCD − 0.5) = 1 − 2YQ, QCD(YS = 0). (A2)

APPENDIX B: DERIVATION OF THE PROTON
FRACTION Yp

We now derive the proton fraction Yp from Ref. [129],
following Ref. [131], but staying consistent with the notation
used in this paper. At T = 0, in β equilibrium, and with charge
neutrality we have

∂ (EQCD + Ee)

∂Yp
= μp − μn + μe − (mn − mp) = 0, (B1)

where EQCD and Ee are the (kinetic) energy of nucleons and
electrons, respectively, and μp and μn are proton and neutron
chemical potentials measured with respect to their rest masses,
mp and mn. Neglecting the difference between the proton and
neutron mass in Eq. (B1) leads to

μe = −(μp − μn). (B2)

Since we have charge neutrality, it must be that ne = YpnB, and
furthermore, in the ultrarelativistic approximation, we have

μe ≈ kF,e = (3π2nBYp)1/3. (B3)

FIG. 19. c2
s as a function of nB for HIC EOSs obtained using the symmetry energy expansion with varying coefficients. The left column

shows the results for the low-density peak (eos1) and the right column shows the results for the high-density peak (eos3). The top row shows all
EOSs obtained for specific combinations of the symmetry energy expansion coefficients (after applying the causality and stability constraints),
while the bottom row shows the extracted minimum and maximum envelopes.
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FIG. 20. Same as Fig. 11, but for eos1.

Taking the derivative of Eq. (3) (up to quadratic terms), com-
bined with Eq. (4), gives

∂EQCD

∂Yp
= −4Esym(1 − 2Yp), (B4)

which, again neglecting the difference between the proton and
neutron mass, so that ∂EQCD/∂Yp ≈ μp − μn, leads to

μp − μn ≈ −4Esym(1 − 2Yp). (B5)

Put together, Eqs. (B2), (B3), and (B5) yield

(3π2nBYp)1/3 = 4Esym(1 − 2Yp). (B6)

We can then solve for Yp exactly and take the only real solu-
tion,

Yp = 1

16

[
8 − π4/3nB

21/3X
+

(π

2

)2/3 X

E3
sym

]
, (B7)

where X is given by

X = (−24E6
symnB +

√
2
√

288E12
symn2

B + π2E9
symn3

B

)1/3
. (B8)

As a reference, we also show the two complex solutions here:

Yp,± = 1

2
+ 1 ± i

√
3π4/3nB

32 × 21/3X
− (1 ± i

√
3)π2/3X

32 × 22/3E3
sym

. (B9)

In Fig. 17, we show the band of possible values of YQ,QCD

as a function of density nB as obtained for all values of the
symmetry energy expansion coefficients considered in this
work, see Table III. Generally, we anticipate an increase in
YQ,QCD at nB ≈ nsat, followed by a decrease at large densities
if a phase transition to deconfined quark matter takes place.

APPENDIX C: SYMMETRY EXPANSION
OF EOS1 AND EOS3

In the main text, we described in detail the steps to apply
the symmetry energy expansion to eos2. Here, we apply the
same method to eos1 and eos3. In Fig. 18, we compare dif-
ferent Y const

Q,QCD slices for the same fixed set of the symmetry
energy expansion coefficients, similarly as previously shown
in Fig. 4 for eos2. Interestingly, we find that the location of
the peak in c2

s for eos1 and eos3 does not change at all when
the symmetry energy expansion is applied, while the height
of both peaks increases as matter becomes more symmetric.
Qualitatively, we find very similar behavior as in Fig. 4, i.e.,
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FIG. 21. Same as Fig. 11, but for eos3.

that the low-nB region has a smaller effect from the change
in Y const

Q,QCD. For eos3, we see more of a dependence on Y const
Q,QCD

before the peak, which is due to the fact that the peak occurs
at a large nB.

Next, in Fig. 19 we show c2
s calculated from the converted

HIC EOSs (Y const
Q,QCD = 0.5) for eos1 (left panels) and eos3

(right panels). For both eos1 and eos2, the location of the
peak in c2

s stays the same after the expansion to SNM and the
magnitude is only slightly dependent on the coefficients. For
eos3, since the peak is at a larger nB, the wide (i.e., poorly con-
strained) ranges of the allowed higher-order symmetry energy
expansion coefficients lead to the result that the magnitude of
the c2

s peak in the HIC EOS can either become significantly
larger or smaller than in the corresponding NS EOS. The
same wide ranges of Ksym,sat and Jsym,sat are also responsible
for the fact that for all considered NS EOSs, there are wide
variations in the converted HIC EOSs for densities larger than
the one at which the peak occurs. The main takeaway here is
that peaks in c2

s that appear at large densities may be more
strongly affected by the high-density behavior of the symme-
try energy expansion, including the possibility that they may
be somewhat washed out. Next, in Figs. 20 and 21 we show
corner plots for eos1 and eos3, respectively. We find similar
results for the symmetry energy expansion coefficients as we

did for eos2, see Fig. 11. For instance, Esym,sat has a fairly flat
posterior with a possible slight preference for small values,
and there is a preference for a small Lsym,sat, regardless of
the NS EOS considered. Similarly as before, Ksym,sat appears
to prefer values ≈ − 100 MeV and Jsym,sat demonstrates a
preference for large positive values.

Finally, we also show scatter plots of the symmetry energy
as a function of density, based on all accepted symmetry
energy expansion coefficients, for eos1 and eos3 in Fig. 22.
Similarly as in the case of eos2, see Fig. 12, we see a tight
constraint around nsat, reflecting the tight constraint on the
lowest two coefficients of the symmetry energy, followed
by a soft rise of the symmetry energy at moderate densities
which is a direct consequence of the simultaneous preference
for negative values of Ksym,sat and positive values of Jsym,sat

or, equivalently, a consequence of the causality and stability
constraints.

APPENDIX D: TEMPERATURE DEPENDENCE
OF THE EOS IN TRANSPORT SIMULATIONS

While within our formalism the EOS is determined for
nucleons at T = 0, it still displays nontrivial behavior as a
function of T and its implementation in hadronic transport is
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FIG. 22. Same as Fig. 12, but for eos1 (top) and eos3 (bottom).

appropriate for describing complex systems of many baryonic
species that inevitably arise in considerations at finite temper-
ature as well as in heavy-ion collisions.

To see that this is the case, let us first consider a simple
model of nuclear matter in which nucleons are relativis-
tic fermions interacting through a simple vector-density–
dependent potential (for example of the Skyrme type). At
T = 0, the parameters of the potential are fixed so that the
model describes nuclear matter with its usual relatively well-
established properties: saturation density, binding energy, and
incompressibility. The fact that nuclear matter is in equilib-
rium at a finite density nsat means that at nB = nsat, P = 0.
Moreover, dP/dnB > 0 for nB = nsat (because incompress-
ibility is positive), and we also naturally have P(T = 0, nB =
0) = 0. This means that at T = 0, there is a region between
nB = 0 and nB = nsat where P < 0, and, consequently, there
is also a region where dP/dnB < 0, that is a region where the
matter is mechanically unstable. In other words, the consid-
ered model describes matter with a first-order phase transition.

The behavior of this simple model at T = 0 is almost
entirely driven by the interaction terms, which do not change
as a function of temperature since the density does not depend
on temperature. In this situation, the only term that changes
with temperature is the kinetic contribution to the pressure.
However, this is enough to produce nontrivial features: As the

temperature is increased, the momenta of particles increase
and so does the kinetic contribution to the pressure. At some
point, for high enough temperatures, this kinetic contribution
overwhelms the contribution from the interaction terms in
such a way that not only there is no region where P < 0, but
also there is no region where dP/dnB < 0. The temperature
at which this happens is the critical temperature, while critical
density is the density at which the region with dP/dnB < 0 be-
comes, with increasing temperature, a point where dP/dnB =
0 (for a more extensive discussion of features of first-order
phase transitions the reader may further consult Appendix B
of Ref. [203] or a standard resource such as Ref. [204]).

All of the above features are preserved in transport simu-
lations. Our model for the EOS has density-dependent terms,
which in particular lead to density-dependent terms in single-
particle energies of particles carrying baryon number. In
the simulations, baryon density can be calculated simply by
summing contributions from all baryons in the vicinity of
a chosen point, which includes baryons other than nucleons
produced in the collisions through scatterings and decays.
The equations of motion for baryons are based on Hamil-
ton’s equations of motion, that is include gradients of the
single-particle energy. The single-particle energy, which can
be directly derived from the EOS of the system [101,205],
is comprised out of two terms: the kinetic term and the
interaction term. Gradients of the interaction term carry infor-
mation about the influence of density-dependent interactions.
Gradients of the kinetic term are proportional to the parti-
cle velocity, which reflects the amount of energy that the
particles have. In equilibrium, this energy can be explicitly
connected to the temperature of the system. Consequently,
since the evolution of the particles involves both their ve-
locities and gradients of mean-field interactions (where the
former, in equilibrium, can be directly connected to tem-
perature), transport simulations can exactly reproduce the
nontrivial thermodynamic behavior of the underlying EOS
with density-dependent interactions even though there are
no explicit T -dependent terms in the single-particle energy.
All that is needed to describe systems at vastly different
temperatures (if equilibrium is available so that temperature
can be well-defined) is differences in the kinetic momenta
of particles. These differences can stem, for example, from
different energies of the collisions or simply from consid-
ering different stages of collisions at a given energy. Since
the interactions enter microscopic transport on the level of
single-particle energies (as opposed to on the level of the
EOS as in, e.g., hydrodynamic simulations), the effects of the
interactions both extend to and are well-defined in situations
away from equilibrium.

Overall, the used simulation framework takes into ac-
count all nontrivial changes with temperature that can be
described within a model employing interactions dependent
on density. Extensions of this approach applicable to trans-
port simulations include using interactions of scalar type in
which the momentum distribution (in equilibrium directly
related to the temperature) affects the effective masses of
particles and thus introduces nontrivial changes also in the
interaction terms. Such changes, in particular, could lead to
a more complex behavior of the EOS with temperature. For
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example, the speed of sound that does not have a mini-
mum for a given nB at T = 0 could possibly develop such
a minimum at the same nB for T > 0. However, here of
note is the significantly higher, almost prohibitive, compu-
tational cost of simulations using interactions beyond vector

(density) type. Studies such as the one pursued in this work
will become much harder to perform once such developments
are included. Nevertheless, efforts in this direction, aimed in
particular at enabling comprehensive Bayesian analyses, are
ongoing [203].
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