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Muon capture on 6Li, 12C, and 16O from ab initio nuclear theory
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Muon capture on nuclei is one of the most promising probes of the nuclear electroweak current driving the
yet-hypothetical neutrinoless double-beta (0νββ) decay. Both processes involve vector and axial-vector currents
at finite momentum transfer, q ≈ 100 MeV, as well as the induced pseudoscalar and weak-magnetism currents.
Comparing measured muon-capture rates with reliable ab initio nuclear-theory predictions could help us validate
these currents. To this end, we compute partial muon-capture rates for 6Li, 12C, and 16O, feeding the ground and
excited states in 6He, 12B, and 16N, using ab initio no-core shell model with two- and three-nucleon chiral
interactions. We remove the spurious center-of-mass motion by introducing translationally invariant operators
and approximate the effect of hadronic two-body currents by Fermi-gas model. We solve the bound-muon wave
function from the Dirac wave equations in the Coulomb field created by a finite nucleus. We find that the
computed rates to the low-lying states in the final nuclei are in good agreement with the measured counterparts.
We highlight sensitivity of some of the transitions to the sub-leading three-nucleon interaction terms. We also
compare summed rates to several tens of final states with the measured total capture rates and note that we
slightly underestimate the total rate with this simple approach due to limited range of excitation energies.

DOI: 10.1103/PhysRevC.109.065501

I. INTRODUCTION

A negatively charged muon can replace an electron in an
atomic orbit, forming a muonic atom. Since a muon is more
massive than an electron, it is likely that the muon is captured
by the positively charged nucleus. Ordinary muon capture
(OMC), distinguished from its radiative counterpart, is a
weak-interaction process in which the muon μ− is captured
by a nucleus (A, Z), transforming the nucleus to (A, Z − 1)∗
and emitting a muon neutrino νμ [1]. The momentum trans-
fers involved in muon capture processes, dominated by the
large muon mass, are of the order of ≈100 MeV. In fact,
muon capture alongside neutrino-nucleus scattering are the
only known nuclear-weak processes operating at this high-
momentum-exchange regime. Thanks to the high momentum
transfer, OMC can also lead to highly excited nuclear states
with practically all spin-parities. These properties make OMC
a particularly promising probe for the hypothetical neutrino-
less double-beta (0νββ) decay [2–5].
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Muon capture operators involve both vector and axial-
vector weak currents and induced magnetic and pseudoscalar
currents. For a long time it was known that operators involving
spin were overpredicted by nuclear theories [6], often called
as “gA quenching” puzzle. While a solution of the puzzle was
recently proposed in the context of β decays by introducing
missing correlations and two-body currents via ab initio nu-
clear theories [7], the situation at higher momentum exchange,
relevant for 0νββ decay, is much less known. Comparing ab
initio calculations on OMC rates with experimental counter-
parts is one of the most promising ways to shed light on this
matter.

Muon captures in light to heavy nuclei have been measured
in several nuclei [1], the experiments mostly dating back to a
few decades ago. Inspired by its connection to 0νββ decay,
there has been a renaissance of OMC experiments dedicated
to measure OMC in nuclei involved in 0νββ processes [8,9],
and these studies are planned to be extended to the remaining
ββ-decay cases as well as selected light nuclei by the MON-
UMENT Collaboration [10] at PSI, Switzerland.

Traditionally, theory predictions of OMC have been based
on phenomenological models, such as the nuclear shell model
(NSM) [2,4,11–15] and proton-neutron quasiparticle random-
phase approximation (pnQRPA) [16–19] frameworks. More
recently, there are also ab initio calculations for the muon-
capture rates in light nuclei. Partial capture rate for the
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transition μ− + 12C(0+
g.s.) → νμ + 12B(1+

g.s.) has been cal-
culated in no-core shell-model (NCSM) [20]. More recently,
muon capture rates in 3He, 4He, and 6Li have been computed
using ab initio Green’s function Monte Carlo (GFMC) and
variational Monte Carlo (VMC) methods [21,22]. Further-
more, partial OMC rates to low-lying states in 24Na have
been evaluated in the valence-space in-medium similarity
renormalization group (VS-IMSRG) method [23]. These cal-
culations provide a first step towards understanding the “gA

quenching puzzle” at finite momentum transfer.
In the present study, we extend these ab initio studies

by computing OMC rates to the ground and low-lying ex-
cited states in 6He, 12B and 16N using no-core shell model
(NCSM) [24–26] with two- and three-nucleon forces derived
from the chiral effective field theory (χEFT). We use trans-
lationally invariant operators with exact bound-muon wave
functions and approximate the effect of two-body currents
using the Fermi-gas model. We compare the calculated rates
against measured partial capture rates and earlier ab initio
calculations.

The paper is organized as follows. In Sec. II we present the
theory framework, including the bound-muon wave functions,
nuclear wave functions, muon capture operators, and normal-
ordered two-body currents. In Sec. III we present the obtained
results for the nuclear spectroscopy and muon-capture rates.
We also analyze the effect of the spurious center-of-mass
motion and the dependence on the harmonic-oscillator basis.
In Sec. IV we summarize the obtained results and give an
outlook for future studies.

II. THEORETICAL FRAMEWORK

A. Bound-muon wave functions

The wave function of a muon bound in an atomic orbit of
the mother nucleus can be expressed as an expansion in terms
of the normalized spherical spinors χκμ:

ψμ(κ, μ; r) = ψ (μ)
κμ =

[−iFκ (r)χ−κμ

Gκ (r)χκμ

]
, (1)

where Gκ and Fκ are the radial wave functions of the bound
state [27]. Here, κ denotes the atomic orbit in the following
manner:

l = κ and j = l − 1
2 , for κ > 0

l = −κ − 1 and j = l + 1
2 , for κ < 0. (2)

Like electrons, the muon spinor corresponds to opposite κ

numbers for the large and small components of the wave
function due to properties of the spherical spinors [28].

After being stopped in the outer shells of an atom, the
negative muon goes trough a series of transitions to lower
atomic orbitals, leaving it finally on the lowest, K atomic
orbit. Hence, the captured muon can be assumed to be initially
bound in the lowest state 1s1/2, corresponding to κ = −1 and
μ = ± 1

2 .
In order to take the finite size of the nucleus properly into

account, we construct a realistic bound-muon wave function
by solving the Dirac wave equations [29] for the large, G−1,
and small, F−1, parts of the wave function (1) in the Coulomb

FIG. 1. The large (G−1, solid lines) and small (F−1, dashed lines)
parts of the wave function bound in the 1s1/2 atomic orbit of 12C. The
blue curves show the results obtained with a finite-size (fs) nucleus,
while the red curves show those obtained assuming a point-like (pl)
nucleus.

field created by the nucleus. Assuming the muon is bound in
the lowest state 1s1/2 (κ = −1), the components satisfy the
coupled differential equations

d

dr
G−1(r) + 1

r
G−1(r) = 1

h̄c
(mc2 − E + V (r))F−1(r),

d

dr
F−1(r) − 1

r
F−1(r) = 1

h̄c
(mc2 + E − V (r))G−1(r). (3)

Taking a uniform distribution of the nuclear charge within
the charge radius Rc = r0A1/3, where r0 = 1.2 fm, the poten-
tial energy V (r) in Eqs. (3) can be written:

V (r) =
⎧⎨
⎩− Ze2

2Rc

[
3 − (

r
Rc

)2]
, if r � Rc

− Ze2

r , if r > Rc.
(4)

The equations (3) can then be solved by means of the package
RADIAL [30] using a piece-wise-exact power-series expansion
of the radial functions, which are summed to the prescribed
accuracy. See an example of the obtained wave functions in
Fig. 1. The normalization of the obtained wave functions is
defined as

N =
∫ [

G2
−1(r) + F 2

−1(r)
]
r2dr = 1. (5)

A similar method has previously been used for both bound
and scattering electron wave functions in the context of ββ

decay [31,32], and for muon capture [23,29].

B. Nuclear wave functions and transition operators

Nuclear wave functions and the transition operator matrix
elements are obtained within the NCSM. In this approach,
nuclei are considered to be systems of A nonrelativistic point-
like nucleons interacting via realistic chiral two-nucleon (NN)
and three-nucleon (3N) interactions. Each nucleon is an ac-
tive degree of freedom and the total momentum, the angular
momentum, and the parity of the nucleus are conserved. The
many-body wave function is expanded over a basis of an-
tisymmetric A-nucleon harmonic oscillator (HO) states. The
basis contains up to Nmax HO excitations above the lowest
possible Pauli configuration. The basis is characterized by an
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TABLE I. Definition of Os in Eq. (6) for different OMC nuclear matrix elements (NMEs).

NME Os

M[0 w u] jw (qrs)G−1(rs)YM f −Mi
0wu (r̂s )δwu

M[1 w u] jw (qrs)G−1(rs)YM f −Mi
1wu (r̂s, σs )

M[0 w u ±] [ jw (qrs )G−1(rs ) ∓ 1
q jw∓1(qrs ) d

drs
G−1(rs)]YM f −Mi

0wu (r̂s )δwu

M[1 w u ±] [ jw (qrs )G−1(rs ) ∓ 1
q jw∓1(qrs ) d

drs
G−1(rs)]YM f −Mi

1wu (r̂s, σs )

M[0 w u p] i jw (qrs)G−1(rs)YM f −Mi
0wu (r̂s )σs · psδwu

M[1 w u p] i jw (qrs)G−1(rs)YM f −Mi
1wu (r̂s, ps )

additional parameter �, the frequency of the HO well. The
convergence of the HO expansion can be greatly accelerated
by applying a similarity renormalization group (SRG) trans-
formation on the 2N and 3N interactions [33].

We use three different χEFT NN and 3N interactions:
NN-N 3LO [34]+3Nlnl [35], NN-N 4LO [36]+3Nlnl [7], and
NN-N 4LO +3N∗

lnl [37], where an additional subleading con-
tact term (E7) enhancing the spin-orbit strength [38] has been
introduced to the 3N force. The E7 low-energy constant has
been adjusted to improve the description of the excitation
energies of 6Li, in particular of the first excited state 3+,
T = 0. Both high-precision NN-N 3LO and NN-N 4LO in-
teractions use a 500 MeV regulator cutoff. The interactions
have been softened by the SRG technique [33] with the SRG
induced three-nucleon terms fully included. In the present
study, we use the evolution parameter λSRG = 2.0 fm−1 for the
NN-N 3LO +3Nlnl and NN-N 4LO +3N∗

lnl interactions, and
λSRG = 1.8 fm−1 for the NN-N 4LO +3Nlnl interaction. We
have checked that the observables are insensitive to the varia-
tion of the λSRG parameter between 1.8 and 2.0 fm−1.

In the lightest systems, 6Li and 6He, we are able to reach
large model spaces up to Nmax = 14 without additional trun-
cations. However, for the Nmax = 8 calculations in the A =
12, 16 systems, additional truncation is needed in order to
make the calculations feasible. To that end, we use importance
truncation [39,40] to control the basis size.

We define the reduced nuclear matrix element (NME) of
an operator Os for a transition from an initial state 
JiMi to a
final 
Jf M f as∫


Jf M f

A∑
s=1

Osτ
s
−
JiMi dr1 . . . drA

= 1√
2Jf + 1

〈
 f ||
A∑

s=1

Os(rs, ps)τ s
−||
i〉

× (JiMiuM f − Mi|Jf M f ), (6)

where τ s
− is the isospin lowering operator changing a neu-

tron into a proton and u is the rank of the operator Os and
the summation runs over all the A nucleons. The different
operators Os contributing to muon-capture rates are defined
in Table I. We use the same notation as in Ref. [27] and
denote the reduced matrix elements corresponding to different

operators as M[
k w u

(±
p

)]
, where k, w, and u are the spin,

orbital, and the total angular momenta (or the rank) of the

operator Os and +, − and p are additional symbols referring
to derivative and gradient operators (see Table I and Ref. [27]
for more details). Here, we assume that the muon is bound
on the κ = −1 orbit and that the small component of the
bound-muon wave function is negligible. In Table I, jw(qrs)
is the spherical Bessel function of rank w and the quantities
YM

kwu are the (vector) spherical harmonics defined as

YM
0wu(r̂) ≡ (4π )−1/2Yw,M (r̂),

YM
1wu(r̂, σ ) ≡

∑
m

(1 − m w m + M|u M )

× Yw,m+M (r̂)

√
3

4π
σ−m,

YM
1wu(r̂, p) ≡

∑
m

(1 − m w m + M|u M )

× Yw,m+M (r̂)

√
3

4π
p−m, (7)

where σ is the Pauli spin vector, p is the nucleon momentum,
Yw,M (r̂) are the spherical harmonics, and r̂ is the unit coordi-
nate vector for angles in spherical coordinates.

The Q value of the muon-capture process is obtained as

q = (mμ − W0)

(
1 − mμ

2(mμ + AM )

)
, (8)

where W0 = M f − Mi + me + EX . Here, M f (Mi) is the nu-
clear mass of the final(initial) nucleus, me the rest mass of an
electron, mμ the rest mass of a muon, M the average nucleon
mass, and EX the excitation energy of the final Jπ state.

We compute the reduced matrix elements of the one-
body operators between initial- and final-state NCSM wave
functions by introducing charge-changing one-body transition
densities as

〈
 f ||
A∑

s=1

Os(rs, ps)τ s
−||
i〉

= − 1√
2u + 1

∑
πν

〈ν||Os(rs, ps)τ s
−||π〉〈
 f ||[a†

ν ãπ ]u||
i〉,
(9)

where Os are the one-body operators from Table I, π and ν

label the different proton and neutron orbitals and ãπ,mπ
=

(−1) jπ −mπ aπ,−mπ
with a†

α and aβ the creation and annihilation
operators of the HO single-particle states.
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The single-particle coordinates rs in the definitions of
the operators in Table I are measured with the respect to
the center of mass of the harmonic oscillator potential. To
remove the spurious center-of-mass motion caused by this,
we follow Ref. [41] and introduce translationally invariant
one-body densities depending on coordinates and momenta
measured from the center of mass of the nucleus, i.e., ξs =
−√

A/(A − 1)(rs − Rc.m.) and �s = −√
A/(A − 1)(ps − P),

where Rc.m. = 1
A

∑A
s=1 rs and P = ∑A

s=1 ps are the center-of-
mass coordinate and momentum of the A-nucleon system. We
can then obtain translationally invariant matrix elements for
the operators following Ref. [42] as

〈
 f ||
A∑

s=1

Os(rs − RCM, ps − P)τ s
−||
i〉

= − 1√
2u + 1

∑
πνπ ′ν ′

〈ν ′||Os

(
−

√
A−1

A ξs,−
√

A−1
A �s

)
τ s
−||π ′〉

× (Mu)−1
ν ′π ′,νπ 〈
 f ||[a†

ν ãπ ]u||
i〉, (10)

where Mu is the transformation matrix defined in [42].

C. Capture rates

Following Ref. [27], the capture rate for a transition from
a Jπ

i initial state to a Jπ
f final state can be written as1

W = 2P
1

2Ji + 1

(
1 − q

mμ + AM

)
q2, (11)

where the term P contains the reduced NMEs and can be
written in terms of vector (V), axial-vector (A), magnetic (M),
and pseudoscalar (P) contributions as

P = 1

2

∑
κ ′u

∣∣MV
κ ′u + MA

κ ′u + MM
κ ′u + MP

κ ′u

∣∣2
, (12)

where the summation goes over the neutrino quantum num-
bers l ′ and j′, abbreviated as κ ′ as in Eq. (2), and the operator
rank u is restricted by |Ji − Jf | � u � Ji + Jf .

The vector part in Eq. (12) is defined as

MV
κ ′u = gV(q2)

[
M[0 l ′ u]S0u(κ ′)δl ′u− 1

M
M[1 l̄ ′ u p]S′

1u(−κ ′)

+
√

3
q

2M

⎛
⎝

√
l̄ ′ + 1

2l̄ ′ + 3
M[0 l̄ ′+1 u +]δl̄ ′+1,u

+
√

l̄ ′

2l̄ ′ − 1
M[0 l̄ ′−1 u −]δl̄ ′−1,u

⎞
⎠S′

1u(−κ ′)

]
,

(13)

1Our definition of the capture rate differs from that in Ref. [27] by a
factor of 1/(2Jf + 1) because of our definition of the reduced matrix
elements (6) consistent with [43].

the axial-vector part as

MA
κ ′u = gA(q2)

[
− M[1 l ′ u]S1u(κ ′)

− 1

M
M[0 l̄ ′ u p]S′

0u(−κ ′)δl̄ ′u

+
√

1

3

q

2M
×

(√
l̄ ′ + 1

2l̄ ′ + 1
M[1 l̄ ′+1 u +]

+
√

l̄ ′

2l̄ ′ + 1
M[1 l̄ ′−1 u −]

)]
S′

0u(−κ )δl̄ ′u, (14)

the magnetic part as

MM
κ ′u =

√
3

2

gM(q2)q

M
S′

1u(−κ ′)

× (
√

l̄ ′ + 1W (1 1 u l̄ ′ ; 1 l̄ ′ + 1)M[1 l̄ ′+1 u +]

+
√

l̄ ′W (1 1 u l̄ ′ ; 1 l̄ ′ − 1)M[1 l̄ ′−1 u −]), (15)

and the pseudoscalar part as

MP
κ ′u = −

√
1

3

q

2M
gP(q2)S′

0u(−κ )δl̄ ′u

×
(√

l̄ ′ + 1

2l̄ ′ + 1
M[1 l̄ ′+1 u +]

+
√

l̄ ′

2l̄ ′ + 1
M[1 l̄ ′−1 u −]

)
. (16)

We use the usual dipole form factors gA(q2) and gV(q2) for
the axial-vector and vector couplings. For the induced weak-
magnetism coupling we use gM(q2) = (1 + μp − μn)gV(q2)
and for the pseudoscalar coupling the Goldberger-Treiman
partially conserved axial-vector-current (PCAC) value

gP(q2) = 2Mq

q2 + m2
π

gA(q2). (17)

The W (· · · ) in Eqs. (13)–(16) are the usual Racah coeffi-
cients and the S’s are geometric factors defined as

Sku(κ ′) =
⎧⎨
⎩

√
2(2 j′ + 1)W

(
1
2 1 j′ l ′ ; 1

2 u
)
δlw, for k = 1√

2 j′+1
2l ′+1 δl ′w, for k = 0

(18)
and

S′
ku(−κ ′) = sgn(κ ′)Sku(−κ ′), (19)

where sgn(κ ) is the sign of κ . The angular momenta l and l̄
correspond to κ and −κ , respectively.

D. Two-body currents

We use two-body currents from χEFT approximated as
effective one-body operators via normal ordering with respect
to a spin-isospin symmetric Fermi gas reference state as in
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TABLE II. The low-energy constants corresponding to each
employed chiral interaction. For NN-N 4LO+3N∗

lnl, the displayed
low-energy constants are the same as for NN-N 4LO+3Nlnl.

Interaction c1 c3 c4 cD Refs.

NN-N 4LO+3Nlnl −1.10(3) −5.54(6) 4.17(4) −1.8 [7,36]

NN-N 3LO+3Nlnl −0.81 −3.20 5.4 0.7 [34,35]

Ref. [44]. The resulting current is

Jeff
i,2b(ρ, q) = gAτ−

i

[
δa(q2)σ i + δP

a (q2)

q2
(q · σ i )q

]
(20)

with two-body functions δa(q2), δP
a (q2) dependent on the

Fermi-gas density ρ:

δa(q2) = − ρ

F 2
π

[
c4

3

[
3Iσ

2 (ρ, q) − Iσ
1 (ρ, q)

]

− 1

3

(
c3 − 1

4mN

)
Iσ
1 (ρ, q)

− c6

12
Ic6(ρ, q) − cD

4gA�χ

]
(21)

and

δP
a (q2) = ρ

F 2
π

[
− 2(c3 − 2c1)

m2
πq2(

m2
π + q2

)2

+ 1

3

(
c3 + c4 − 1

4mN

)
IP(ρ, q)

−
(

c6

12
− 2

3

c1m2
π

m2
π + q2

)
Ic6(ρ, q)

− q2

m2
π + q2

(
c3

3

[
Iσ
1 (ρ, q) + IP(ρ, q)

]

+ c4

3

[
Iσ
1 (ρ, q) + IP(ρ, q) − 3Iσ

2 (ρ, q)
])

− cD

4gA�χ

q2

m2
π + q2

]
. (22)

The integrals Iσ
1 (ρ, q), Iσ

2 (ρ, q), Ic6(ρ, q), and IP(ρ, q) are
given in Ref. [45]. Following Ref. [44], we use Fπ =
92.28 MeV and �χ = 700 MeV. The low-energy constants

TABLE III. The effect of axial-vector 2BCs at q = 0 MeV cor-
responding to NCSM studies of [7] together with the Fermi-gas
densities ρ adjusted so that Eq. (21) gives the correct effect at
q = 0 MeV.

Mass number Interaction δa(0) ρ(fm−3)

6 NN-N 4LO+3Nlnl −0.010 0.0075
6 NN-N 3LO+3Nlnl −0.007 0.0085
12–16 NN-N 4LO+3Nlnl −0.043 0.021
12–16 NN-N 3LO+3Nlnl −0.040 0.027

FIG. 2. Two-body currents obtained from Eqs. (21) (red) and
(22) (blue) with ρ adjusted to the exact two-body currents in β decays
of 6He (dashed line) or 14O (dotted line). The momentum-exchange
region typical in muon-capture processes is denoted by the gray
band.

c1, c3, c4, and cD for each interaction are listed in Table II—c6

is taken from Ref. [44].
In practice, we implement the effect of the two-body cur-

rents on the muon-capture rates by replacing

gA(q2, 2b) → gA(q2) + gAδa(q2)

and

gP(q2, 2b) → gP(q2) − 2mNgA

q
δP

a (q2)

in Eqs. (14) and (16). As was shown in [7], the Fermi-gas
model (in [7], however, the expressions for the currents are
less complete than in the present work) satisfyingly captures
the effect of two-body currents in 100Sn at low momentum
transfer, with a certain choice of the Fermi-gas density ρ. We
follow a similar method and adjust the Fermi-gas density ρ so
that Eq. (21) corresponds to the effect of the explicit two-body
currents in the β decays 6He → 6Li and 14O → 14N in the
NCSM calculations of [7]. The resulting δa(0) and ρ values
are listed in Table III, and the corresponding momentum-
dependent two-body functions are shown in Fig. 2. We then
use these two-body-current estimates for the muon capture
on 6Li, and 12C and 16O, correspondingly. It is worthwhile to
note that the model has not been validated at high momentum
transfer. Furthermore, the Fermi-gas approximation might not
be appropriate for light nuclei such as those considered in the
present study. To properly take the effect of the two-body cur-
rents into account, we should include exact two-body currents
at finite momentum transfer into our calculations, like has
been done at the zero-momentum transfer limit for β decays
[7], magnetic dipole decays [46], and for magnetic dipole
moments [47]. However, in the present study we do not have
access to such currents and we use the adjusted Fermi-gas
model as an estimate of the effect of two-body currents in the
studied muon-capture transitions.

III. RESULTS

A. Spectroscopy

To test the validity of the nuclear wave functions obtained
from the no-core shell model, we first explore the spectro-
scopic properties of the involved nuclei. The ground-state
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FIG. 3. Ground-state energies of 6Li, 12C, and 16N obtained with the NN-N 4LO +3N∗
lnl interaction with different HO frequencies.

energies of the nuclei of interest are shown in Fig. 3. The
energies are obtained with the NN-N 4LO +3N∗

lnl interaction
with different HO frequencies. The colors denote different
Nmax values, and the dashed black lines show the experimental
values [48]. We see that increasing the basis size flattens
out the h̄� dependence and the results converge satisfyingly
towards the measured energies. To extrapolate the final results,
we fit an exponential f (Nmax) = a + be−cNmax to the energies
obtained with the frequency corresponding to the minimum
of the ground-state energy and estimate the uncertainty by
varying the points included in the fit. The extrapolated en-
ergies are shown in the figure as horizontal gray bands and
collected in Table IV. Apparently, the NN-N 4LO +3N∗

lnl with
the subleading 3N term gives slightly closer binding energies
to experiment compared to the other two interactions.

In Fig. 4, we show the excitation-energy spectra of 6Li,
12C, 12B, and 16N. The spectra of 6Li, 12C, and 12B are
obtained with the NN-N 4LO +3N∗

lnl and for 16N with the
NN-N 3LO +3Nlnl interaction, all with h̄� = 14 MeV. The

TABLE IV. The extrapolated ground-state energies of 6He, 6Li,
12C, 12B, 16O, and 16N.

Nucleus Interaction Eg.s. (MeV) Expt. (MeV) [48]

6He NN-N 3LO+3Nlnl −28.3(1) −29.27
NN-N 4LO+3Nlnl −28.3(1)
NN-N 4LO+3N∗

lnl −28.6(1)
6Li NN-N 3LO+3Nlnl −31.5(1) −31.99

NN-N 4LO+3Nlnl −31.4(1)
NN-N 4LO+3N∗lnl −31.7(1)

12C NN-N 3LO+3Nlnl −88.7(10) −92.16
NN-N 4LO+3Nlnl −88.6(10)
NN-N 4LO+3N∗

lnl −92.5(10)
12B NN-N 3LO+3Nlnl −76.1(10) −79.57

NN-N 4LO+3Nlnl −76.0(10)
NN-N 4LO+3N∗

lnl −79.5(10)
16O NN-N 3LO+3Nlnl −126(2) −127.62

NN-N 4LO+3Nlnl −127(2)
NN-N 4LO+3N∗

lnl −127(2)
16N NN-N 3LO+3Nlnl −114(2) −116.58

NN-N 4LO+3Nlnl −114(2)
NN-N 4LO+3N∗

lnl −115(2)

horizontal axes show increasing basis size as Nmax h̄�, and
the computed values are compared against the measured ones
[49]. In the spectra of 6Li and 12C the isospin T = 0 states
are shown as solid lines and the T = 1 states as dash-dotted
lines. The spectra of 12B and 16N only contain T = 1 states.
We see that with increasing basis size the energy levels are
converging towards the experimental ones in all the nuclei.
There are, however, a couple of exceptions: In 12C the second
0+ is the Hoyle state, which is known to be difficult to describe
with the NCSM. In 16N, the ordering of the low-lying 0− and
3− states is flipped, but overall NCSM succeeds in predicting
the energy levels satisfactorily.

B. Removing spurious center-of-mass motion

In Fig. 5, we show the effect of removing the spuri-
ous center-of-mass motion from the matrix elements of the
ground-state–to–ground-state transition rates for 6Li → 6He
and 16O → 16N. The rates computed with the standard one-
body densities are shown as dotted lines while those obtained
with the translationally invariant densities are shown as solid
lines. We note that the effect is notable, about 4%, for the A =
6 system, while it is less significant, ≈2%, for the heavier sys-
tems. Overall, the effect is larger than in a previous β-decay
study [50], where the same approach was followed to remove
the spurious center-of-mass motion from the operators. This
can be explained by the high momentum exchange involved
in the muon captures. As was noted in Ref. [50], the spurious
center-of-mass contamination of the operators increases with
an increasing q. Similarly as in Ref. [50], the center-of-mass
effect is largest, about 5%–10% in the case of 6Li, for the
NMEs of the type M[kwup] involving the gradient operator
ps. For the rest of the NMEs the effect is of the order 1%–2%.

C. Dependence on the harmonic-oscillator frequency

To extrapolate converged OMC rates, we study the con-
vergence of the rates in terms of Nmax and the HO frequency
h̄�. We show examples of rates to different nuclear states
obtained with the N 4LO +3N∗

lnl interaction as functions of
h̄� and Nmax in Fig. 6. Available measured counterparts
[1,51–53] are shown as horizontal bands. Results for the other
two interactions are very similar. We see that with increasing
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FIG. 4. Low-energy spectrum for 6Li, 12C, 12B, and 16N (right). The theoretical values for 6Li, 12C, and 12B are obtained with the NN-
N 4LO +3N∗

lnl and for 16N with the NN-N 3LO +3Nlnl interaction, all with h̄� = 14 MeV.

Nmax the dependence on the HO frequency gets weaker,
though the convergence patterns are generally different than
for the ground-state energies in Fig. 3. In ideal cases, like
for the transitions to 12B(1+

g.s.) and 16N(3−
1 ) in Fig. 6, the

rates are constrained from above and below, depending on the
frequency, and we can choose an optimal frequency between
them. In other cases, like the transition to the 6He(0+

g.s.), the
convergence in terms of the frequency is less clear and we

choose the frequency with the fastest convergence [in the case
of 6He(0+

g.s.) h̄� = 12 MeV].
To further probe the quality of our calculations, we study

the correlations between muon capture rates and other observ-
ables that are expected to have a similar operator structure.
In particular, the transitions from 6Li(1+

g.s.) to 6He(0+
g.s.)

and 12C(0+
g.s.) to 12B(1+

g.s.) with �J = 1 are driven by the
στ operator and can be related to Gamow-Teller β decays

FIG. 5. The obtained capture rates to the ground states of 6Li, 12B, and 16N obtained with translationally invariant (solid lines) or standard
(dotted lines) one-body densities. The rates are obtained with the NN-N 4LO +3Nlnl interaction with h̄� = 20 MeV.
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FIG. 6. The dependence of selected OMC rates on the harmonic-oscillator frequency. The horizontal bands show the measured counterparts
[1,51–53]. ‘Early exps.’ refers to the collection of measurements before 1973 from Ref. [1]. The dashed line refers to an upper limit.

and magnetic dipole (M1) γ decays of the isobaric analog
states (IAS). These processes operate at different momentum-
exchange regimes and have different energy dependencies,
but strong correlations between spin-dominated processes
at different momentum regimes have been found before in
the context of 0νββ decay [54–58]. In Fig. 7 we compare
the muon capture 6Li(1+

g.s.)+μ− → 6He(0+
g.s.)+νμ with the

corresponding Gamow-Teller (GT) β decay 6He(0+
g.s.) →

6Li(1+
g.s.)+e−+ν̄e (left) and magnetic dipole (M1) γ decay

6Li(1+
g.s.) → 6Li(0+

1 , T = 1)+e−+γ . We plot the GT strength

BGT = g2
A

2Ji + 1
| 〈
 f | |OGT |
i〉 |2, (23)

where OGT = ∑A
s=1 σsτ

s
+, and the M1 transition strength

B(M1) = 1

2Ji + 1
| 〈
 f | |OM1| |
i〉 |2, (24)

where OM1 = μN

√
3

4π

∑A
i=1(gl

i�i + 1
2 gs

iσ i ), against the corre-
sponding OMC rate. All the observables are obtained without

the inclusion of two-body currents as we are only interested in
gross features here. We show the measured values [46,51,59]
for each process for comparison. To take the known effect
of the two-body currents into account, we have multiplied
the measured GT strength [59] by a factor 1.022—it has
been shown that the omission of two-body currents results
in overestimation of the GT matrix element by ≈2% [7]. As
expected given the similar operator structures, the GT and
M1 strengths show good correlations with the muon-capture
rate. Different HO frequencies (shown as different colors) give
slightly different correlation lines, indicating that the GT and
M1 observables have different HO-frequency dependencies
than muon capture. In the left panel, we see that with increas-
ing Nmax (increasing color gradient) we reach the measured
GT strength and slightly underestimate the muon-capture rate.
In the right panel, one can see that we slightly underestimate
the M1 strengths, but the inclusion of two-body currents is
expected to increase the B(M1) values by some 5–10% [46].

In Fig. 8 we show similar results for the 12C: we compare
the capture rate from 12C(0+

g.s.) to 12B(1+
g.s.) with the GT β

decay of 12B(1+
g.s.) (left panel) and with the M1 γ decay of

FIG. 7. Muon-capture rate for 6Li(1+
g.s.)+μ− → 6He(0+

g.s.)+νμ vs. Gamow-Teller β-decay strength for 6He(0+
g.s.) → 6Li(1+

g.s.)+e−+ν̄e

(left) and M1 γ -decay strength for 6Li(0+
1 , T = 1) → 6Li(1+

g.s.)+γ (right) with different HO frequencies. The results are shown for Nmax =
0 . . . 14; Nmax increases as symbols become more opaque.
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FIG. 8. Muon-capture rate for 12C(0+
g.s.)+μ− → 12B(1+

g.s.)+νμ vs. GT β-decay strength for 12B(1+
g.s.) → 12C(0+

g.s.)+e−+ν̄e (left) and M1
γ -decay strength for 12C(1+

1 , T = 1) → 12C(0+
g.s.)+γ (right) with different HO frequencies. The results are shown for Nmax = 0 . . . 8; Nmax

increases as symbols become more opaque.

12C(1+;1)—the IAS of 12B(1+
g.s.) (right panel). The measured

values [1,52,59] are shown for comparison. Again, we mul-
tiply the measured GT strength by 1.042 to correct for the
effect of the omitted two-body currents: for 16O the two-body
currents are found to reduce the GT NMEs by ≈4% [7]. We
see that both the observables are strongly correlated with the
capture rate and in this case the correlations do not depend
on the HO frequency. With the optimal frequency, h̄� = 16
MeV (see Fig. 6), we reproduce the measured GT strength
very well and slightly overestimate the M1 decay and the
muon capture rate. Including the two-body currents into the
M1 decay calculation could change the situation.

D. Partial muon-capture rates to low-lying states
in 6He, 12B, and 16N

We collect the partial muon-capture rates to the ground
state of 6He, obtained with the three different interactions, in
Fig. 9. For each interaction, we choose the frequency h̄� = 12
MeV. The interaction dependence of the transition is very
moderate: all the employed interactions agree with each other
within a few %. While the agreement with the experiment
[51] is reasonable, the convergence of the rate is rather slow
and all the interactions underestimate the experiment by some
10%–20%. This is likely due to the cluster structure of the
involved nuclei, which is not fully captured by the NCSM
without continuum. We also compare the results obtained with
one-body currents only (solid lines) against those obtained by
adding the effect of axial-vector two-body currents (dashed
lines) via the Fermi-gas model. For this light case, the two-
body currents reduce the capture rates only by � 2%.

We extrapolate the final results by fitting an exponential
to the rates shown in Fig. 9, and estimate the uncertainty
by varying the points taken into account in the fitting. The
extrapolated rates are shown in Table V. Within the estimated
accuracy, all three interactions are consistent with each other
and underestimate the experiment by some 20%. Our results,
within the uncertainty, are in good agreement with the values
obtained with quantum Monte Carlo ab initio methods with

Norfolk two-nucleon and three-nucleon local chiral interac-
tions [22]. The corresponding variational Monte Carlo (VMC)
method results with one- and two-body currents were 1282 ±
2 1/s with the NV2+3-1a model and 1177 ± 2 1/s with the
NV2+3-1a∗ model, both underestimating the measured rate
by some 20%–25%. In the Green’s function Monte Carlo
method, the rates are reduced to 1277 ± 10 1/s (NV2+3-1a
model) and 926 ± 8 1/s (NV2+3-1a∗ model), increasing the
discrepancy with the experimental counterpart.

The partial capture rates to the low-lying states in 12B
obtained with the three different interactions are collected in
Fig. 10 and the extrapolated rates are shown in Table V. For
each interaction, we show the results obtained with the HO
frequency giving the best convergence (see Fig. 6). We note

FIG. 9. Capture rate to the ground state of 6He obtained with
different interactions with h̄� = 12 MeV as a function of Nmax. The
dashed (solid) lines include one- and two-body currents (one-body
currents only). The triangles denote the variational (red) and Green’s
function (green) Monte Carlo results [22] including both one- and
two-body currents obtained with two different Norfolk two- and
three-body interactions (Ia, Ia∗). The horizontal band shows the
measured rate [51].

065501-9



LOTTA JOKINIEMI et al. PHYSICAL REVIEW C 109, 065501 (2024)

TABLE V. The partial capture rates for the different transitions obtained with different interactions with or without the approximated
two-body currents. The measured rates are given in the last column.

Final state Interaction W (1b)(1/s) W (1b + 2b)(1/s) Expt. (1/s)

6He(0+
g.s.) NN-N 3LO+3Nlnl 1300(100) 1300(100) 1600+330

−129 [51]
NN-N 4LO+3Nlnl 1300(100) 1300(100)
NN-N 4LO+3N∗

lnl 1300(100) 1300(100)
12B(1+

gs ) NN-N 3LO+3Nlnl 3100(700) 2900(700) 6040 ± 350 [1]
NN-N 4LO+3Nlnl 3800(700) 3500(700) 5680+140

−230 [52]
NN-N 4LO+3N∗

lnl 7400(700) 6800(700)
12B(2+

1 ) NN-N 3LO+3Nlnl 160(10) 150(10) 210 ± 100 [1]
NN-N 4LO+3Nlnl 180(10) 170(10) 310+90

−70 [52]
NN-N 4LO+3N∗

lnl 220(10) 210(10)
12B(2+

2 ) NN-N 3LO+3Nlnl 17(5) 16(5) 26+15
−11 [52]

NN-N 4LO+3Nlnl 15(5) 14(5)
NN-N 4LO+3N∗

lnl 13(5) 12(5)
12B(1−

1 ) NN-N 3LO+3Nlnl 340(50) 310(50) 620 ± 20 [1]
NN-N 4LO+3Nlnl 700(50) 640(50) 470+60

−50 [52]
NN-N 4LO+3N∗

lnl 960(50) 890(50)
12B(2−

1 ) NN-N 3LO+3Nlnl 60(50) 60(50) 180 ± 100 [1]
NN-N 4LO+3Nlnl 50(40) 50(40) 60+40

−30 [52]
NN-N 4LO+3N∗

lnl 20(20) 20(20)
16N(2−

gs ) NN-N 3LO+3Nlnl 11100(1000) 10300(1000) 7200 ± 1000 [1]
NN-N 4LO+3Nlnl 10200(1000) 9400(1000) 8000 ± 1200 [53]
NN-N 4LO+3N∗

lnl 11200(1000) 10400(1000)
16N(0−

1 ) NN-N 3LO+3Nlnl 2600(200) 2400(200) 1200 ± 400 [1]
NN-N 4LO+3Nlnl 2400(200) 2200(200) 1560 ± 180 [53]
NN-N 4LO+3N∗

lnl 2600(200) 2400(200) 1560 ± 110 [60]
16N(3−

1 ) NN-N 3LO+3Nlnl 110(20) 100(20) 130 ± 80 [1]
NN-N 4LO+3Nlnl 110(20) 100(20) � 90 [53]
NN-N 4LO+3N∗

lnl 110(20) 100(20)
16N(1−

1 ) NN-N 3LO+3Nlnl 1600(100) 1500(100) 1770 ± 100 [1]
NN-N 4LO+3Nlnl 1700(100) 1600(100) 1310 ± 110 [53]
NN-N 4LO+3N∗

lnl 1800(100) 1700(100) 1270 ± 90 [60]

that in general the results are in reasonable agreement with
the measured capture rates with uncertainties, shown as blue
[1] and red [52] bands. The effect of two-body currents varies
between 5%–10% for each transition.

The NN-N 3LO +3Nlnl and NN-N 4LO +3Nlnl interactions
underestimate the measured rates to the 1+ ground state of
12B by some 30%–45%, while the N 4LO +3N∗

lnl interaction
slightly overestimates them though being consistent within
the error bars. As a Gamow-Teller–type transition, the capture
rate to the 1+ ground state of 12B is sensitive to the spin-orbit
interaction. Hence, including the subleading E7 spin-orbit
term [38] into the 3N part of the NN-N 4LO +3Nlnl interac-
tion has a significant effect on the capture rate. The fact that
this interaction improves the agreement with the experiments
supports the addition of the extra E7 term.

The obtained partial capture rate to the ground state of 12B
shown in Fig. 10 can be compared with the earlier NCSM re-
sults [20], obtained with less realistic interactions. We notice
that our results are above the rate 2.38 × 103 1/s [20] obtained
with the CD-Bonn NN interaction [61] only at Nmax = 6. On
the other hand, our results are comparable to that obtained
with the value 4.43 × 103 1/s obtained with AV8’ NN inter-
action [62] accompanied by the TM’(99) 3N interaction [63]
at Nmax = 4.

For the 2+ and 2− states in 12B [see panels (b), (c) and
(e) in Fig. 10], the interaction dependence is less significant.
However, for the lowest 2+ state, the NN-N 4LO +3N∗

lnl in-
teraction with the E7 term again brings the rate up, in better
agreement with the measured rates, compared to the other two
interactions. On the other hand, the NN-N 4LO +3N∗

lnl inter-
action underestimates the measured rate to the 2+

2 state, while
the other two interaction reach the lower limit by increasing
Nmax. Nonetheless, it should be noted that the rate to this state
is very low, one to two orders of magnitude lower than for the
other states of interest, so this particular transition should not
be given undue weight.

The capture rate to the 1−
1 state in 12B is particularly

sensitive to the chiral interaction: the rate obtained with the
NN-N 3LO +3Nlnl interaction is half of that obtained with
the NN-N 4LO +3Nlnl and only one third of that obtained
with the NN-N 4LO +3N∗

lnl interaction. Also the two mea-
sured rates disagree with each other, so it is hard to
draw definite conclusions about this transition. However,
the NN-N 4LO +3Nlnl is in best agreement with these
experiments.

The rates to different final states in 16N, obtained with the
optimal HO frequencies, are shown in Fig. 11, and the ex-
trapolated rates are summarized in Table V. One can see that
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FIG. 10. Muon-capture rates to different Jπ
f final states in 12B

obtained with different chiral interactions as functions of Nmax. The
triangles show the NCSM results from Ref. [20], obtained with CD-
Bonn two-nucleon force only (red) and with AV’8 two-nucleon and
TM’(99) three-nucleon forces (purple). The rates are obtained with
HO frequencies with best convergence properties. The horizontal
bands denote measured rates with uncertainties [1,52].

the rates are generally in good agreement with the measured
rates [1,53,60], ranging from ≈100 1/s to 104 1/s depending
on the final state. Contrary to the 12C case, the interaction
dependence is quite mild: ≈25% for the transition rate to the
1−

1 state [panel (d)] and 5%–10% for the rest of the transitions

FIG. 11. Capture rates to different Jπ
f final states in 16N. The

rates are obtained with HO frequencies with best convergence
properties. The blue and red bands are the measured rate with un-
certainties from [53,60]. The gray band shows the combined results
of early experiments taken from [1].

[panels (a)–(c)]. The effect of two-body currents is similar to
the 12C case, between 5%–10%.

Having a closer look at the rates, the convergence of
the rates to the 2−

g.s. and 0−
1 state [panels (a) and (b) in

Fig. 11] is very similar, and the NN-N 3LO +3Nlnl and NN-
N 4LO +3N∗

lnl interactions give very similar rates, while the
NN-N 4LO +3Nlnl interactions gives ≈10% smaller rates. In
both cases, we overestimate the measured rates; for the 2−

g.s. by
some 10%–20% and for the 0−

1 state by some 40%–50%. The
reason for the overestimation is currently unclear and might
become more apparent with the inclusion of exact two-body
currents.

For the 3−
1 and 1−

1 states, the dependence on the Nmax is
very weak, and we extrapolate the final results in Table V
from the Nmax results with the uncertainty coming from the
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FIG. 12. The summed OMC rates to positive- (red lines) and negative-parity (blue lines) final states in 12B (left) and 16N (right). The rates
are computed with the NN-N 4LO +3N∗

lnl interaction summing over several dozens of final states of each parity (see the text for details).
Two-body currents are omitted here for simplicity. The color gradient of the lines denotes increasing Nmax. The orange band shows the
experimental total rate [1].

variation of the Nmax and h̄�. For the transition to the 3−
1

state, all the interactions are consistent with the early exper-
iments [1] and, after the inclusion of the two-body currents,
consistent with the upper limit of Ref. [53] within the error
bars. For the 1−

1 state, the NN-N 3LO +3Nlnl is consistent
with Refs. [53,60] within the error bars, while the other two
interactions agree with the early experiments [1] within the
error bars.

E. Total capture rates

In order to study the overall performance of our theory
formalism, we also approximate the total muon-capture rates
in the same nuclei by a simple summation over the final
states. In Fig. 12, we show the total rate obtained by summing
over all the computationally accessible final states in 12B. We
restrict the number of both positive- (red) and negative-parity
(blue) states to a maximum of 75 states for technical reasons.
The color gradients of the lines denote increasing Nmax: the
lightest (darkest) ones correspond to smallest (biggest) Nmax.
The excitation energies of the negative-parity states are given
with respect to the ground-state energy obtained with the
preceding even Nmax. The black lines denote the sum of the
rates to the positive- and negative-parity states. The orange
band denotes the total capture rate taken from Ref. [1].

For 12C, the rates to positive-parity states are obtained
with Nmax = 2, 4, 6 and those for the negative-parity states
with Nmax = 3, 5, 7. We combine the rates to positive- and
negative-parity states by summing Nmax = 2 with the Nmax =
3, Nmax = 4 with the Nmax = 5, and Nmax = 6 with the Nmax =
7. This is a natural way to combine the results, since the
negative-parity states for Nmax + 1 are built on top of the
positive-parity states obtained with Nmax. Altogether, we in-
clude 75 states for each Nmax, except for Nmax = 7 for which
we only reach 52 converged states. Since the NCSM calcu-
lations for the A = 16 systems are much heavier than for the

A = 12 systems, we cannot reach a large number of converged
states with Nmax = 7. Hence, here the rates to positive-parity
states are obtained with Nmax = 1, 3, 5, those to the negative-
parity states with Nmax = 2, 4, 6 and the summed rates are
obtained by summing Nmax = 1 with Nmax = 2, Nmax = 3 with
Nmax = 4, etc. Since these Nmax pairs are not consistent with
each others, we use the measured energies [59] to adjust the
difference of the energies of the lowest negative- and positive-
parity final states. In this case, we obtained 55 converged
states for Nmax = 1, 3, 5; 75 states for Nmax = 2, 4; and 64
states for Nmax = 6.

Figure 12 shows that summing up the rates over the com-
puted states we are able to reproduce most of the measured
total capture rates and underestimate them only by some 15%
in both cases. The discrepancy can be understood looking
at the cumulative sums as functions of energy: the higher
the Nmax the lower the excitation energies we can reach.
With large Nmax, the density of states becomes high and,
for technical reasons, we cannot reach highly excited states
potentially contributing substantially to the summed rate, sug-
gested by the lower-Nmax distributions. This is also supported
by experimental data: in Refs. [8,64] it was seen that in the
case of 100Nb, the measured OMC strength function reaches
excitation energies up to 50 MeV, and in particular there is
high-energy giant-resonance at around 30 MeV. The situation
in these lighter nuclei could be similar. It is worth noting that
the summation method we use here is not the most efficient
way to obtain the total capture rates. In a future work, we
plan to revisit the total muon-capture rates using the Lanczos
strength function method that likely allows us to capture the
total muon-capture strength with less computing power.

IV. SUMMARY AND OUTLOOK

We study muon capture on light nuclei 6Li, 12C, and
16O using no-core shell-model with three different chiral
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interactions including three-body forces. We solve the bound-
muon wave functions from the Dirac equations to take into
account relativistic corrections and the finite size of the nu-
cleus. We remove the spurious center-of-mass motion from
the operators by introducing translationally invariant opera-
tors. Furthermore, we investigate the effect of axial-vector
two-body currents via effective one-body currents normal-
ordered with respect to a Fermi-gas reference state.

We test the validity of the nuclear wave functions by com-
paring the calculated ground-state and excited-state energies
against the experimental counterparts and find a good agree-
ment. We study the convergence of the muon-capture rates in
terms of the harmonic-oscillator basis size and frequency and
extrapolate the results from the convergence patterns. We find
in general good agreement with the measured muon-capture
rates as well as with earlier ab initio calculations obtained with
different chiral interactions. We observe sensitivity of some
of the rates to the subleading chiral three-nucleon interaction
terms. The Fermi-gas-approximated two-body currents are
found to reduce the capture rates by ≈2% in 6Li and by <10%
in 12C and 16O. Including exact two-body currents is left for
a future work. We also estimate total muon-capture rates in
12C and 16O by summing the partial capture rates over all the
computationally accessible final states in 12B and 16N. In both
cases, we obtain roughly 85% of the measured total rate, the
underestimation being likely due to the restricted number of
final states. A better estimation of the total capture rates, using
the Lanczos strength-function method is underway.

The present study serves as one step closer to better
understanding of the weak interaction at finite momentum
transfer—relevant for neutrinoless ββ decay. To draw fur-
ther conclusions, both theoretical and experimental efforts are
called for. From the theory side, inclusion of exact two-body

currents and continuum states would help us improve the
calculations. Eventually, one would also need to derive robust
uncertainties for the capture rates, taking into account the
errors coming from both the truncation of the χEFT expan-
sion and the many-body method. It would also be beneficial
to revisit the measurements, especially for the transitions for
which the earlier measurements disagree, and to extend the
measurements to other nuclei accessible for the ab initio
techniques. Nevertheless, the good description of the muon-
capture processes also motivates further studies of similar
processes involving the same nuclei. For example, both 12C
and 16O are interesting candidates for neutrino-scattering ex-
periments [65].
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