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A global Bayesian analysis of relativistic Pb + Pb collisions at
√

sNN = 2.76 TeV is performed, using a
multistage model consisting of an IP-GLASMA initial state, a viscous fluid dynamical evolution, and a hadronic
transport final state. The observables considered are from the soft sector hadronic final state. Posterior and
maximum a posteriori parameter distributions that pertain to the IP-GLASMA and hydrodynamic phases are
obtained, including the shear and bulk specific viscosity of strong interacting matter. The first use of inference
with transfer learning in heavy-ion analyses is presented, together with Bayes model averaging.
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I. INTRODUCTION

Much is known about the behavior of Quantum Chromody-
namics (QCD)—the theory of the nuclear strong interaction—
in situations where “cold” strongly interacting systems are
investigated by high-energy probes. This success is owed in
great part to asymptotic freedom, the running of the strong
constant whose value decreases as the energy scale increases,
rendering controlled and systematically improvable pertur-
bative calculations possible. In regimes where perturbative
approaches converge poorly, lattice QCD has proved to be
a powerful tool to investigate QCD both at zero and finite
temperatures [1]. Comparing with the status of “cold” QCD,
much less is known about the behavior of the theory in con-
ditions of extreme temperatures and energy density, although
some features have nevertheless been predicted with certainty.
In such environments, lattice calculations have predicted a
crossover transition to occur from composite hadronic de-
grees of freedom to a partonic state [the quark-gluon plasma
(QGP)] at a temperature ≈150 MeV, for vanishing net bary-
onic density [2]. Furthermore, exploring the QCD phase
diagram away from the axis where baryon density vanishes,
several theoretical studies support the existence of a first-
order phase transition line, terminating at a critical end point
(CEP) [3].

In addition to an active global research effort in the theory
of strongly interacting systems under extreme conditions, a
vigorous experimental program exists to further study and
characterize the QGP through experiments performed at facil-
ities around the world and also through observations involving
dense stellar objects such as neutron stars [4]. In terrestrial
laboratories, this exotic state of QCD has been experimentally
observed at the Relativistic Heavy Ion Collider (RHIC, at
Brookhaven National Laboratory) and at the Large Hadron
Collider (LHC, at CERN) involving the relativistic collisions
of large nuclei (“heavy ions”) [5], and much activity is cur-
rently also being devoted to studies involving comparatively
smaller hadronic systems [6].

One of the theoretical breakthroughs in modeling rela-
tivistic heavy ion collisions has been the realization of the
effectiveness of relativistic viscous fluid dynamics, which
features collective hadronic flow that accurately describes
experimental observations in heavy-ion collisions [7]. Along
with this milestone in theory, the importance of deviation
from ideal fluid dynamics is quantified with the evaluation of
transport coefficients that represent fundamental features of
QCD. The main ones represent the shear and bulk viscosity
of the strongly interacting matter [7,8]. Much research has
been devoted to the evaluation of those shear and bulk vis-
cosity coefficients using a variety of models and approaches,
both perturbative and nonperturbative [9]. Up to now, direct
calculations have had limited success. One of the contribut-
ing factors is the fact that the conditions created in nuclear
collisions and reconstructed by hadronic probes span a pa-
rameter space where QCD is inherently nonperturbative and
strong nonequilibrium features render the use of fluctuation-
dissipation techniques [10] problematic. The difficulty in
directly calculating the transport coefficients has been high-
lighted in several presentations and reviews and is illustrated
by a wide spread in theoretical results [11–17]. Consequently,
data-driven techniques—chiefly Bayesian inference—have
been developed and currently are successful in extracting the
transport coefficients from heavy-ion collision data through
systematic model-to-data comparison.

The efforts to obtain the temperature dependence of the
coefficient of shear viscosity over the entropy density, η/s,
and of the bulk viscosity over the entropy density, ζ/s, have
relied on multistage models constructed to describe the entire
space-time history of the collision process. Prior to this work,
the modeling of the different reaction stages has included

(i) TRENTO [18] supplemented by freestreaming [19,20]
for the early stage, prehydrodynamic era;

(ii) MUSIC [21–23], VISH2 + 1 [24], and—more
recently—TRAJECTUM [25], for the relativistic
viscous fluid dynamics epoch;
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(iii) URQMD [26] and SMASH [27] for the late time evolu-
tion and dynamical freezeout.

Various combinations of those elements have been as-
sembled as ab initio simulations to interpret measurements.
Traditional modeling and simulation techniques would simply
entail simulating the nuclear reaction as faithfully as possible,
obtaining a good fit to the final state(s), and extracting phys-
ically relevant information from the exercise. In the field of
relativistic heavy-ion collisions, this avenue of investigation
is not practical at scale for a variety of reasons. First, the
sophistication of the multistage models used to simulate and
interpret experiments probing nuclear matter under extreme
conditions comes at considerable computational expense. In
addition, the many-body environment typical of relativis-
tic nuclear collisions final states generate a wide variety of
observables, many of which are correlated with each other
and increase the dimensionality of the Bayesian inference.
Those two aspects have led to the development of modern
approaches combining principal component analysis (PCA)
with surrogate modeling in an effort to minimize possible
correlations and accelerate calculations.

Many of these aspects have been used with Bayesian infer-
ence (described in the following sections) to determine the
temperature dependence of shear and bulk viscosity within
some statistically relevant intervals [25,28–32]. This work
[33] shares similar goals but with important differences. It
is known that the extraction of QCD transport coefficients
from the analysis of heavy-ion collisions is influenced by
the physics of very early times [34–36]. In this context, the
calculations made up to now have been made using TRENTO

and freestreaming, for the initial very early stages. While this
model and scenario are practical and versatile, it is worthwhile
to explore analyses based on an approach with some degree
of microscopic support. In this vein, this work will use the
IP-GLASMA model [37] which we summarize in a later section,
and which has a history of successful phenomenology for
heavy-ion collisions [38]. Another novel aspect highlighted
in this work is the first use of transfer learning in a realistic
analysis involving the physics of relativistic heavy-ion colli-
sions. We describe this aspect later in our paper, and also in
a companion Letter [39]. Finally, this study also comprises
a series of technical innovations [33] (e.g., the prior distri-
butions, the design space, etc.) which will be presented and
discussed in turn, as appropriate. To keep this survey as simple
and transparent as possible, we focus on Pb + Pb collisions
at an energy of

√
sNN = 2.76 TeV. Even at this degree of

resolution, the required numerical work needed to establish
the surrogate modeling on a firm statistical basis was consid-
erable. Extending our approach to other systems and energies
is left for future work.

This paper is structured as follows: Section II reviews the
basic tenets and usage of Bayesian analysis in the context
of this work, and goes over the basics of surrogate modeling
and of transfer learning. The following section, Sec. III, then
discusses the different components of our physical multistage
model. Section IV covers the approach to defining priors,
together with a description of the physical parameters studied
in this work. Our approach to the design phase is also outlined.

Section V discusses the important milestone of closure tests
and self-consistency of the surrogate modeling: this step is
crucial in order to ensure that the model is self-consistent. We
then address comparing the model with data: postdictions and
predictions. The statistics approach to selecting a particular
physical model over competitors is discussed in Sec. VII. The
paper ends with a summary and conclusion.

II. BAYESIAN INFERENCE AND SURROGATE MODELING

A. Bayes’s theorem

We begin by defining the statistical notation used through-
out this work. p(A) denotes the probability density p(·)
of a proposition A. p(A|B) denotes the probability den-
sity of proposition A conditional on proposition B, i.e., the
probability density of A given B. There may be multiple
statements to which the proposition of interest is conditional;
these are all contained to the right of the vertical bar, e.g.,
p(A|B,C, D, . . . ).

With this established, we can begin to interpret Bayes’s
theorem [40], a fundamental statement of probability theory:

p(H |d, I ) = p(d|H, I )p(H, I )

p(d, I )
. (1)

H represents a particular hypothesis, such as the proposed
values of a set of parameters and d represents data to which
the hypothesis is compared. The Bayes evidence quantifies a
balance between quality of fit via the likelihood and predictive
power by penalizing increasing dimensionality. It can be used
in model selection as the best model is the one that fits the
data best with the fewest number of free parameters. Finally,
the quantity of interest in Bayesian inference is p(H |d, I ),
the posterior. It quantifies the belief in a given hypothesis H
posterior to comparison with measured data d .

Bayes’ theorem formalizes statistical learning by making a
prior belief explicit and then comparing it to data, after which
the prior belief is determined to be relatively more or less
likely. The result posterior to comparison with data is the new
state of understanding.

B. Surrogate modeling with a statistical emulator

Surrogate modeling is a strategy for computation with
expensive likelihood functions. Likelihood functions are ex-
pensive because they require detailed model evaluation. A
cheaper model (the “surrogate”) is trained to emulate the
expensive model using calculations from the more expensive
model. This less computationally expensive surrogate can be
considered a low-fidelity model, or a model of a model, and
compromises a limited degree of accuracy for great reduction
of computational expenditure. It does this by mapping inputs
to outputs and learning the functional relationship between
them rather than attempting to produce a coarse version of
the intermediary physics. These methods have had success in
heavy ion physics [25,28–31,41–46].

Given a set of training points, there are infinitely many
functions that can describe the points. Gaussian processes
(GPs)—the surrogate models used in this study—assign a
probability to each of these functions, meaning that the output
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is a probability distribution of the characterization of the data.
Conveniently, this also allows one to determine the relative
confidence in the prediction. The only assumptions by the GP
are that it assumes the function is continuous and smoothly
varying with respect to the length scales of the observations.

C. Transfer learning

A surrogate modeling technique only recently considered
in the context of heavy ion collisions is transfer learning
[47,48]. This learns about a “task” of interest (the target task)
by using information from related tasks (source tasks). In
heavy ion collisions, inductive transfer learning—where the
source and target have the same input domain—can be readily
deployed. This allows for transfer learning between models
of viscous corrections at particlization that do not introduce
additional parametric flexibility [48]. Efficient transfer was
also found to be possible for collisions of slightly different
nuclei at different collision energies [48].

Transfer learning is performed by first having a trained sur-
rogate model for a source task. Then, the discrepancy between
the source and the target is found and is encapsulated in a
discrepancy function. The advantage of transfer learning is to
use comparably little new training information about the target
to learn the discrepancy function.

More formally, if fS (x) is the source and fT (x) the target,
one can propose a simple relationship

fT (x) = ρ fS (x) + δ(x) (2)

where ρ is a linear correlation between the source and target
estimated via the maximum likelihood and δ(x) is the discrep-
ancy between the source and target models. fS (x) and δ(x)
are considered to be independent Gaussian processes. This is
derived from multifidelity emulation, where the source is a
computationally inexpensive low-fidelity model and the target
is a computationally expensive high-fidelity model [49].

This vastly reduces the computational cost of training
new models that are similar to an already-trained source.
In the case of (linear) viscous corrections, particularly those
between Grad’s 14-moment viscous corrections [50,51] and
the Chapman-Enskog viscous corrections [30,52], an order
of magnitude fewer training points are required to reach a
specified accuracy when using transfer learning as opposed to
training a new surrogate model [48]. This work is the first time
transfer learning methods will be used for Bayesian inference
in heavy ion collisions. We use transfer learning to implement
a second viscous correction model with Grad’s 14-moment
viscous corrections as the source fS and Chapman-Enskog
relaxation time approximation (RTA) viscous corrections as
the target fT .

III. PHYSICAL MODELS

As all of the individual elements of our hybrid modeling
exist in the literature and have been used extensively in a
variety of applications, only a brief summary is provided here
and the reader will be referred to the appropriate references.

A. Preequilibrium: IP-GLASMA

The very first instants of the heavy-ion collisions consid-
ered in this work are modeled by IP-GLASMA, an approach
which is derived from the color-glass condensate (CGC) [53].
More specifically, the CGC action can be written as [54]

SCGC =
∫

d4x

(
−1

4
F a

μνF a μν + Ja μAa
μ

)
, (3)

where F a μν is the non-Abelian field strength tensor with
color index a, and Ja μ is the current representing the hard
partons that source soft gluons. The CGC can be viewed as an
effective field theory representation of QCD. Its implementa-
tion here follows the IP-GLASMA model of initial conditions
[7,37,55], where the IP-SAT approach [56,57] is used to de-
termine the fluctuating initial color configuration in the two
highly energetic approaching nuclei. These color charges then
act as sources for the small x soft gluon fields, which have a
large occupation number and therefore can be treated classi-
cally. Their evolution obeys the Yang-Mills equation:

[Dν, Fμν]a = Ja μ (4)

with Da
μ = ∂μ − igAμt a, and t a the color SU(3) matrices. The

color current Ja μ = δμ±ρa
A(B))(x

∓, x⊥) is generated by nu-
cleus A (B) moving along the light-cone direction x+(x−),
and ρa represents the color charge distribution extracted from
IP-SAT. The Glasma distributions resulting from solving the
classical Yang-Mills equations event by event then serve as an
input to fluid dynamics, at proper time τ0. For the purpose of
this work, an important parameter of IP-GLASMA is μQs , the
constant of proportionality relating the color charge per unit
transverse area g2μ(x, b⊥) to the [58] squared saturation scale
Q2

s . This is one of the parameters considered in this study.
To connect IP-GLASMA to hydrodynamics, we follow the

same procedure as Ref. [59] and previous literature. The en-
ergy density ε and flow velocity uμ are defined by Landau
matching with the classical Yang-Mills energy-momentum
tensor

T μ
ν uν = εuμ (5)

and finding the timelike eigenvector for uμ. The shear stress
energy-momentum tensor is the traceless, transverse part of
the classical Yang-Mills energy-momentum tensor. The bulk
pressure is defined as 
 ≡ ε/3 − P(ε) where P(ε) is the
pressure from the QCD equation of state.

B. Viscous hydrodynamics: MUSIC

Hydrodynamics is an effective theory of long-wavelength
modes. Practically, this means that the evolution of a collec-
tion of differential elements can be described not by tracking
microscopic particles, but considering their long-wavelength
(or spatially coarse) collective motion. Analogously, to model
a hurricane or storm front, it is not necessary (or even relevant)
to model the behavior of every constituent water droplet or
molecule of air. Instead, the collective dynamics at a much
larger scale reveal the physics of interest.

Most of the modern approaches to relativistic fluid dy-
namics perform a gradient expansion of hydrodynamic
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equations up to second order, following original work by
Müller, Israel, and Stewart [60,61] (MIS), who added trans-
port coefficients in the form of shear and bulk relaxation
times that characterize the timescale on which shear stress
tensor and bulk pressure approach their first-order solutions,
ensuring causal solutions under a range of conditions.1

In this study, second-order transient relativistic hydrody-
namics is used to describe the plasma, specifically the DNMR
(Denicol, Niemi, Molnár, and Rischke) formulation [64] with
both shear and bulk viscosity as implemented numerically in
MUSIC (MUSCl for Ion Collisions) [21–23]. The equation for
the conservation of energy and momentum is coupled with
relaxation equations for the shear tensor and the bulk pres-
sure, with parametrized shear and bulk viscosities (discussed
below) and second-order transport coefficients related to the
first-order ones [65].

The transport coefficients of interest here, η/s (the shear
viscosity over the entropy density) and ζ/s (the bulk viscosity
over the entropy density), characterize the first-order deviation
from ideal fluid dynamics. The equation of state (EoS) is
where the specific material properties of QCD matter inform
the hydrodynamic stage and as a result, must be constructed
to be consistent with the model choices. The EoS at high
temperature is matched to lattice calculations [66]. At low
temperature, the EoS matches that of the particle list used
in the hadronic transport (to be discussed in a later section),
which ensures that the EoS is continuous across the tran-
sition between the two stages. The matching between the
high and low temperature results must be done in a manner
consistent with what is currently known about QCD: it must
have a smooth crossover between degrees of freedom rather
than a sharp phase transition at vanishing baryochemical po-
tential.2 Attempts to constrain the equation of state directly
from hadronic observables have shown promise, but as of yet
still have significant remaining uncertainty [73,74]. Active
learning techniques are also being applied to the efforts to
characterize the equation of state [75].

The equation of state used in this work smoothly connects
the HotQCD Collaboration’s calculation [66] at high temper-
atures to a list of stable resonances at low temperatures, and
matches that of Ref. [30], and the code that produced it is
publicly available with the default parameters [76].

C. Particlization: IS3D

To particlize the hydrodynamic medium, one defines a
surface at constant temperature, energy density, or entropy;
these choices are equivalent in the case of zero baryochemical
potential, which this study strictly respects. This temperature
is the switching, or particlization, temperature. Once this sur-
face has been drawn, particles can be sampled stochastically,
respecting energy and momentum conservation on ensemble

1Recent works have further investigated the constraints imposed by
causality on relativistic fluid dynamics [62,63].

2Discussions of nonzero baryochemical potential are beyond the
scope of this work, but are a vibrant field which features a search for
a possible QCD critical point [5,67–72].

average. This means that the sampled distribution converges
to the true distribution of particles, momenta, etc. it is useful
to oversample this surface. This is either done a fixed number
of times (typically 100 to 300 times), or until a sufficient
number of particles has been sampled. The way the sampling
is performed is via the Cooper-Frye prescription [77], im-
plemented in IS3D [78]. Given an isothermal (or isentropic,
etc.) hypersurface � with normal vector σμ(x), the invariant
momentum spectra of a particle species i with degeneracy
gi is

E
dNi

d3 p
= gi

(2π )3

∫
�

fi(x, p)pμdσμ(x), (6)

where fi(x, p) is the phase-space distribution, and gi is a
degeneracy factor. This distribution function reproduces the
energy-momentum tensor of hydrodynamics at the particliza-
tion surface,

T μν (x) =
∑

i

gi

(2π )3

∫
pμ pν fi(x, p)

E
d3 p. (7)

Here, fi(x, p) is species specific, representing either Bose-
Einstein or Fermi-Dirac statistics.

The out-of-equilibrium nature of the system generates in-
teresting physics, but presents significant challenges. If at the
time of particlization the hydrodynamic medium were in equi-
librium, the choice of the distribution function would simply
be the equilibrium form, and the rest frame velocity and tem-
perature would be fixed by the hydrodynamic velocity and the
energy density in the local rest frame. However, the medium
is generally not in equilibrium, and consistency between the
kinetic description of particles and viscous hydrodynamics
must be attempted. The existence of shear and bulk stress
contributions, πμν and 
, produce deviations of the micro-
scopic distributions and yields from the equilibrium ones. As
mentioned earlier, this study will exclusively consider Grad’s
14-moment approximation and the linear Chapman-Enskog
expansion in the relaxation time approximation.

The distribution function for a fluid out of local equilibrium
may be separated as

fi(x, p) = feq,i(x, p) + δ fi(x, p), (8)

where feq,i(x, p) is the equilibrium distribution function
(Bose-Einstein or Fermi-Dirac for different particle species)
and δ fi(x, p) is the nonequilibrium correction.

Unfortunately, the separation of the distribution function
into the equilibrium contribution and a viscous correction,
despite the constraints from matching to hydrodynamics, does
not fully specify the momentum-dependence of δ fi(x, p).
This means that the choice of correction remains a modeling
choice with inherent ambiguity that can impact calculations
of hadronic observables [79]. To constrain further, the reason-
able assumption is made that hydrodynamics and relativistic
kinetic theory are simultaneously applicable at the transition
between them.

Linearized viscous corrections linearize the correction
δ fi in the shear stress tensor, bulk viscous pressure, and
baryon diffusion current. In this study, baryon diffusion is not
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considered. In linearized viscous corrections, the expansion
coefficients are adjusted to exactly reproduce T μν .

Grad’s 14-moment approximation expands the correction
δ fi(x, p) in momentum moments of the distribution function
[50], only truncating at the level with terms involving pμ and
pμ pν , i.e., at hydrodynamic order.

The Chapman-Enskog expansion is a gradient expansion
around feq,i. The relaxation time approximation (RTA) is used
for the collision term of the Boltzmann equation. Expanding
fi into its equilibrium component and correction and assuming
hydrodynamic gradients are small in comparison to the re-
laxation time, a first-order gradient correction for the thermal
distribution may be derived [80].

D. Hadron cascade: SMASH

Once hadrons have been sampled from a hydrodynamic
hypersurface, they can be evolved using kinetic theory via the
SMASH transport code [27]. The particles interact with each
other, scattering, decaying, and forming resonances. These are
computed in SMASH using measured particle properties and
channels [81] via a tower of coupled Boltzmann equations:

pμ∂μ fi(x, p) = C[ fi], (9)

where i is an index over species. Once again, fi(x, p)
is species specific, representing Bose-Einstein statistics for
particles with integer spin and Fermi-Dirac statistics for par-
ticles with half-integer spin. This list of species is given
in the SMASH documentation [82]. This work uses SMASH

version 1.8.

IV. PRIOR SPECIFICATION
AND EXPERIMENTAL DESIGN

A. Priors

The prior distribution, or state of knowledge, for each pa-
rameter must be justified for each study. However, the general
form of the prior deserves some attention. Most Bayesian
inference studies in heavy ion collisions to date have used
uniform priors. Existing guidance from Bayesian practition-
ers in the statistics community suggests using uniform priors
with sharp cutoffs only if that is an accurate reflection of
the underlying constraint and not as a general noninformative
choice. Additionally, priors may be chosen with features such
as boundary avoidance or invariance under reparametrization
[83]. Another important consideration is to interrogate what
“weakly” or “noninformative” means in the absence of ex-
plicit reference to the likelihood. If the dominant constraint
comes from the prior, then the prior is informative. Con-
versely, if the likelihood is the dominant source of constraint,
then the prior is less informative.

In order to bias the priors as little as possible and to
smoothly move beyond the uniform distribution, this study
uses the symmetric generalized normal distribution with vary-
ing mean μ, location α, and shape parameter β. The shape
parameter β controls the tails of the distribution. When
β = ∞, the distribution becomes the uniform distribution.
When β = 2, the distribution is Gaussian, while when β = 1,
the distribution is Laplacian. This provides a flat plateau with

power law tails, smoothly interpolating between the current
practice (effectively β = ∞) and priors more reflective of the
underlying physics. This distribution has support on the whole
real line and can be shifted. Additionally, the half generalized
normal distribution exists for instances where a sharp cutoff
is reasonable, e.g. positive specific viscosity for nondecrease
of entropy. Quantities such as the probability density function
(PDF) and cumulative distribution function (CDF) are well
defined, as is the entropy of the distribution.

The probability density function of the generalized normal
distribution is

p(x, μ, α, β ) = β

2α�(1/β )
e(−|x−μ|/α)β , (10)

where � is the gamma function.

B. Parameters

In this section, the physical meaning of the free parameters
investigated is described. The specific choices for individual
priors are explicitly specified but the general form of the
prior remains the same: a generalized normal distribution with
a specified shape parameter β and a central 99% interval.
Rather than specify values of the location and scale, the cen-
tral 99% interval is chosen and the parameters that produce
this interval are found through numerical optimization. This
is more interpretable as it specifies a 99% degree of belief
that the parameters are within a certain range and is directly
comparable to the 100% central interval used to characterize
the uniform distribution.

In this study, only parameters in IP-GLASMA and MUSIC

are varied. The choice of viscous correction is in effect a
parameter in the Copper-Frye particlization sampling (as im-
plemented in IS3D), but is fixed for each calculation.

The parameters in IP-GLASMA are mostly fixed via the
IP-SAT model’s comparison to deep inelastic scattering ex-
periments. Two parameters in IP-GLASMA can be considered
poorly constrained and are thus included in the Bayesian
study: (i) the proportionality between the saturation scale and
color charge densities, and (ii) the onset of hydrodynamics. In
this study the strong coupling has been fixed to g = 2, a value
compatible with the bulk of heavy-ion phenomenology at the
energies of the LHC [84].

Each parameter in the initial stage model is now described
in more detail and is given a shorthand notation.

(1) μQs : Multiplier from the saturation scale to the color
charge density profile (Qs = μQs g

2μ). In the CGC,
these quantities are proportional but an a priori con-
straint on this proportionality is not known from
theory.

(2) τ0: Proper time of the transition between IP-GLASMA

and hydrodynamics. In IP-GLASMA, the glasma phase
stabilizes within approximately 0.2 fm while flow con-
tinues to build as shown in Fig. 1 reproduced from
[85]. The onset time of hydrodynamics is not known
with certainty, but estimates have been guided by the
fact that, parametrically, gluon saturation should be
attained for momentum scale smaller than Qs [86],
which corresponds to a timescale ≈1/Qs. Practically,
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FIG. 1. Longitudinal and transverse pressure, scaled by the en-
ergy density, as a function of proper time in (2 + 1)-dimensional
IP-GLASMA. Adapted from [85].

IP-GLASMA initial states with a proper time span 0.2 <

τ < 0.4 fm have been used [38,84,87]. Recent studies
with freestreaming [25,30,44] extract a longer time to
the onset of hydrodynamics than those typically used
with IP-GLASMA. This work will allow for switching
times up to ≈1.2 fm, informed by longer hydrody-
namic onset time and the approach to hydrodynamics
[88], to determine if these long onset times are favored
when using a preequilibrium model with microscopic
dynamics.

In the relativistic hydrodynamic phase, the temperature de-
pendence of both shear and bulk viscosity is varied. Because
of the parametric flexibility in the viscosity, these parameters
dominate the analysis. One more parameter is the parti-
clization temperature between hydrodynamics and hadronic
transport.

It has been proposed to avoid using a parametrization,
which correlates values of the viscosity at different temper-
atures [45], an idea that has recently been explored in other
contexts in heavy ion collisions [89]. This is beyond the scope
of this work. This work uses the viscosities as parametrized in
[29,30] but widens the prior ranges.

The specific shear viscosity is parametrized as

η/s(T ) = (η/s)kink + aη,low(T − Tη,kink )�(Tη,kink − T )

+ aη,high(T − Tη,kink )�(T − Tη,kink ), (11)

where the function has four parameters: (η/s)kink, aη,low,
aη,high, and Tη,kink. These control the value of η/s at some
kink, the slope below and above the kink, and the tempera-
ture of the kink. In practice, this can be less than 0, so the
value used is max(0, η/s). Generally, strong coupling implies
low viscosities, and the strongest coupling should be in the
deconfinement region (below, quarks are confined, and above
asymptotic freedom reduces the strength of the interaction).
This minimum in shear viscosity has been observed for a large
number of systems. [11,28,90] For QCD, direct calculations
and experimental extractions currently produce a variety of
results [91,92] with variable temperature dependence.

The specific bulk viscosity is parametrized as the probabil-
ity density function of a skewed Cauchy distribution,

ζ/s(T ) = (ζ/s)max�
2

�2 + (T − Tζ ,c)2

� = wζ [1 + λζ sgn(T − Tζ ,c)] (12)

where the function again has four parameters: the maximum
of the bulk viscosity (ζ/s)max, the temperature at which the
bulk viscosity is maximum Tζ ,c, the width wζ of the bulk
viscosity peak, and the skewness λζ . This parametrization,
as highlighted in [30], is based on the expectation that the
specific bulk viscosity for QCD matter reaches a peak near the
deconfinement transition; this is related to the trace anomaly
of QCD or a corresponding dip in the speed of sound in-
medium [17,92–95]. At high temperature, QCD becomes
increasingly conformal and the specific bulk viscosity is ex-
pected to smoothly approach zero [96].

The full list of the parameters varied in the relativistic
hydrodynamic phase is as follows:

(1) (η/s)kink: The value of η/s at the kink temperature.
(2) Tη,kink: The temperature at which η/s changes slope.
(3) aη,low: The slope of the η/s below the kink tempera-

ture. This is broadly expected to be negative or 0, but
has not yet been constrained conclusively by model-
to-data comparison.

(4) aη,high: The slope of η/s above the kink temperature.
This is anticipated to be positive definite, but has not
yet been constrained conclusively by model-to-data
comparison. A theoretical exception to this expecta-
tion can be found in the NJL model for SU(3) [97].

(5) (ζ/s)max: The maximum of ζ/s.
(6) Tζ ,c: The temperature of the maximum of ζ/s.
(7) wζ : The width of the peak in ζ/s.
(8) λζ : The asymmetry of the peak in ζ/s.
(9) Tsw, also known as the particlization or switching tem-

perature. A surface at constant temperature is drawn
(assuming no baryochemical potential) from which
hadrons are sampled with the Cooper-Frye formula,
implemented in the IS3D code. The individual hadrons
are then described with hadronic transport (SMASH).

As stated earlier, the parameters related to IP-GLASMA are
μQs and τ0, the latter defining the boundary with the hydro-
dynamics phase. With other parameters held fixed, μQs was
varied and the final multiplicity dependence was observed and
used to determine a broad range for this parameter. Allowing
for an approximate factor of 2 in the prior yields a 99% prior
range, as seen in Table I. The prior for τ0 is extended to times
considered late by most applications, to ensure those values
are properly explored. The remaining parameters whose priors
must be motivated are those of the hydrodynamic stage: the
eight parameters of the specific shear and bulk viscosity as
well as the particlization temperature. For the parameters of
the specific shear viscosity, the parametrizations presented
earlier and shown in Fig. 2 are used. The priors for the
parametrization of the specific shear viscosity were widened,
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TABLE I. Prior hyperparameters and distributions for each parameter varied.

Parameter 0.5th percentile 99.5th percentile β Distribution

μQs 0.55 0.90 10 Generalized normal
τ0 (fm) 0.20 1.20 20 Generalized normal
Tη,kink (GeV) 0.120 0.320 20 Generalized normal
aη,low (GeV−1) −2.10 1.20 20 Generalized normal
aη,high (GeV−1) −1.20 2.10 20 Generalized normal
(η/s)kink 0.00 0.30 10 Half generalized normal
(ζ/s)max 0.00 0.30 10 Half generalized normal
Tζ ,c (GeV) 0.100 0.350 10 Generalized normal
wζ (GeV) 0.02 0.18 30 Generalized normal
λζ −1.0 1.0 20 Generalized normal
Tsw (GeV) 0.135 0.180 10 Generalized normal

when compared to those used in a previous study [30], and
both signs of the slope below and above the kink were
explored. The shape of the specific bulk viscosity allowed for
a peaked distribution, with both variable width, asymmetry
and normalization. The form of the priors for each parameter
is again the symmetric generalized normal distribution or the
half symmetric generalized normal distribution if the quantity
is commensurate with a sharp cutoff (e.g., is required to be
positive definite). The full set of parameter priors, with the
central 99% range and the generalized normal distribution
shape parameter β is collected in Table I.

C. Maximum projection designs

Previous studies using uniform priors have sampled the
allowed parameter space using maximin Latin hypercube
sampling (LHS) techniques, which maximize the minimum
Euclidean distance between points. Latin hypercubes are de-
signed to provide uniform coverage when projected into one
dimension while the maximin algorithm helps select points
that give a fairly reasonable coverage of the volume.

An issue that may arise in surrogate modeling is that not all
parameters are equally impactful; some may even have little
impact on the final result. As a result, there is a projection of
the full design space that impacts the outputs, called the “ac-
tive subspace.” It is not possible to know the active subspace
ahead of time, but it is possible to construct a space filling
design that maximizes all arbitrary projections of the space
to lower dimensions. This is the idea behind the maximum

projection (MaxPro) design strategy [98]. Specifically, this
study will utilize a MaxPro Latin hypercube design.

The sampling must also be made commensurate with the
parameter ranges and priors used. This is accomplished by
sampling designs on a unit hypercube with the relevant num-
ber of dimensions. The priors are chosen and the percent point
function (or quantile) can be straightforwardly calculated. The
sample location on each dimension of the unit hypercube cor-
responds to a percentile of the prior range in each dimension.
This ensures uniform coverage of the probability volume by
weighting by the prior density. This deformation technique is
shown for a simple two-dimensional example in Fig. 3 and
its success has already been demonstrated [99]. In this study,
350 design points were used for the primary choice of model,
which uses Grad’s viscous corrections at particlization. An
additional 50 design points, which also maximize the MaxPro
metric, were generated for model calculations with Chapman-
Enskog viscous corrections.

V. MODEL VALIDATION

It is important to investigate which parameters are both re-
liably constrained using the underlying hybrid model and are
reliably emulated by the Gaussian process surrogate model.
This step, revisited at the outset of each study, must be
performed to ensure that predictions made by the Gaussian
process emulators are sensible and will provide physical—
rather than spurious—constraint.

FIG. 2. The parametrization of the viscosities.

065207-7



HEFFERNAN, GALE, JEON, AND PAQUET PHYSICAL REVIEW C 109, 065207 (2024)

FIG. 3. Deformation of a two-dimensional maximum projection
design on the unit hypercube centered at 0 according to a standard
symmetric generalized normal distribution with β = 10. The points
of the centered unit hypercube are highlighted with a square box and
are shown in blue, while points shown in orange have been deformed
as described.

A. Forward model validation

The physical observables we shall consider are divided into
two classes that we label “first generation observables” and
“next generation observables.” This distinction is somewhat
arbitrary but receives some support from chronology. The first
generation observables broadly describe large-scale features
of the fireball and add four-particle azimuthal Fourier coef-
ficients to the set of observables used in a previous Bayes
study [29,30] with the exception of correlated momentum
fluctuations. More specifically, the quantities in this class are

(1) dNch/dη: The number of charged hadrons per unit
pseudorapidity. Measurements are from the ALICE
Collaboration [100].

(2) dNi/dy, i ∈ {π, p, K, . . . }: Identified charged hadrons
per unit rapidity. Measurements are from the ALICE
Collaboration [101].

(3) dET/dη: Transverse energy, defined as ET=
√

m2+p2
T,

per unit rapidity. Measurements are from the ALICE
Collaboration [102].

(4) 〈pT〉i, i ∈ {π, p, K}: Mean transverse momenta of
identified hadrons. Measurements are from the ALICE
Collaboration [101].

(5) vn{2}: Two-particle azimuthal Fourier coefficients.
Measurements are from the ALICE Collaboration
[103].

(6) vn{4}: Four-particle azimuthal Fourier coefficients.
Measurements are from the ALICE Collaboration
[104].

The “next generation observables” explore correlations
between geometric features or momentum fluctuations and
decompositions of observables into a linear and non-linear
response of the medium. Again, more specifically,

(i) Two- and three-plane scalar product event plane cor-
relators: Correlations between expansion coefficients
vn reveal patterns of fluctuations in the initial state and
nonlinear effects in hydrodynamics. Measurements,
as well as detailed definitions, are from the ATLAS
Collaboration [105]. These patterns are coupled and
reproduction of them in parametric models has been
shown to be highly model dependent [106]. The AL-
ICE Collaboration measures similar quantities, which
are also used, statistics allowing [107].

(ii) χn,mk : Nonlinear response coefficients that quan-
tify mixing between higher- and lower-order modes.
These decompose higher order vn into a linear com-
ponent from the corresponding position space energy
density Fourier coefficients (εn) and a nonlinear com-
ponent from lower modes. For example, v5 = vL

5 +
χ5,32 v3v2. Measurements and more details may be
found in [107].

(iii) Linear and nonlinear flow modes: these quantify the
linear and non-linear response of the flow to collision
geometry, similarly to the event plane correlators and
χn,mk above [107].

(iv) δpT/〈pT〉: Correlated transverse momentum fluc-
tuations. This quantifies the correlations between
deviations from the mean transverse momentum. If
the deviations are uncorrelated over all events, this
quantity is 0 [108].

The purpose of using these carefully chosen observables is
to efficiently constrain the properties of strongly-interacting
matter. For example, the multiplicities constrain the overall
energy of the system, the azimuthal Fourier coefficients con-
strain the momentum-space geometry of the hydrodynamic
stage, and next-generation observables couple various aspects
of the medium evolution.

The set of observables that are reliably calculated and
distinguishable from statistical fluctuations are again all of
what we will call “first generation observables”; the nonlinear
response coefficients χ4,22, χ5,23, χ6,222, and χ6,33; the lin-
ear and nonlinear flow modes vL

4 , v4(�2), v5(�23), v6(�2),
v6(�3); and the event plane correlations ρ422, 〈cos(4(�2 −
�4))〉, 〈cos(6(�2 − �3))〉, 〈cos(6(�2 − �6))〉, 〈cos(4(�3 −
�6))〉, 〈cos(2�2 + 3�3 − 5�5)〉, 〈cos(2�2 + 4�4 − 6�6)〉,
and 〈cos(2�2 − 6�3 + 4�4)〉. The calculation of these ob-
servables at each design point is shown in Fig. 4. Principal
component analysis (PCA) is now performed.

In a space defined by the observables, where each di-
mension corresponds to a particular observed quantity, it is
possible to identify correlations. Principal component analysis
is a simple technique to “rotate” in observable space into
a linear combination of the original axes such that every
dimension of the data is linearly independent. This rotation
is also invertible, meaning that predictions can be made for
the transformed space and inverted back to the observable

065207-8



BAYESIAN QUANTIFICATION OF STRONGLY … PHYSICAL REVIEW C 109, 065207 (2024)

FIG. 4. Calculations at each design point forming the prior predictive distribution for each observable. Points are experimental data.

space. This is useful as it is no longer necessary to interpolate
between hundreds of dimensions in the observable space, but
rather only interpolate in a O(10) dimensional space, which
is much more feasible. Another way to think of this rotation is
by a decomposition of the data in question to its eigenvalues
and eigenvectors. The eigenvalues are the fraction of the total
variance in the data described by each eigenvector.

A truncation of the eigenvectors is commonly used as a
dimensionality reduction technique, separating signal from
noise by eliminating principal components that only describe
a tiny fraction of the total variation. This is a widely used

practice in the analysis of large data sets, such as is com-
mon in modern machine learning applications [109]. In this
work, 20 principal components explain 90.6% of the vari-
ance in the observables across the design points. Surrogate
models are trained on the principal components vs the pa-
rameters that are varied in this study, and predictions are
made in this reduced space before being transformed back
to the observable space. This process can be validated by
producing model calculations at validation points not used in
training the surrogate model emulators, and the predictions
can be compared to calculations. These emulator predictions
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FIG. 5. Emulated vs computed for all observables considered. Successful emulation is clustered around y = x.
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FIG. 6. Observable relation to the first three principal components.

at validation points vs the computed results are shown in
Fig. 5.

Observables that are only loosely clustered along the y = x
lines in Fig. 5 are not kept for the final analysis and observ-
ables that are extremely uncertain are also not included. This
constitutes “forward model validation.” Given a known set of
inputs, the predictions are compared to model calculations,
and observables the surrogate model predicts poorly are
inappropriate for inclusion in a physics study. Finally, the
〈cos(4(�2 − �4))〉 event plane correlator is not included
as it quantifies the same correlation as the ρ422 correlator
and has an overall bias. The finalized set of observables for
testing self-consistency and comparison to data is composed
of the first generation observables; the flow modes vL

4 ,
v4(�2), v5(�23), v6(�2); and the plane correlations ρ422,
〈cos(2�2 + 3�3 − 5�5)〉, and 〈cos(2�2 + 4�4 − 6�6)〉.
While not included in the Bayesian calibration, the excluded
observables remain excellent candidates for predictions with
higher-statistics calculations to test the posterior state of
knowledge.

Once these observables have been selected, the principal
component analysis and Gaussian process emulation are re-
peated and are found to be sufficiently reliable for performing
self-consistency tests and comparisons to data. Further details
of the principal component analysis for the final observable
set are shown in Fig. 6, where the relationship between the
first three principal components (PCs) is shown. The first few
principal components contain the majority of the variance of
the data and it can be clearly seen that the first three PCs relate
clearly to the observables, further supporting the idea that they
are successfully reducing the dimensionality of the data with
minimal loss of underlying signal. With the final observable
set, 30 principal components explain 97.94% of the variance
in the data. The full set of principal components to explain the
total variance in the data consists of 161 PCs, meaning that
the remaining 131 principal components represent 2.06% of
the variance in the data, which is almost certainly dominated
by noise in the underlying calculations. Note that the presence
of exclusively linear correlations between observables must

be (and has been) investigated for the final set of chosen
observables, but is sufficiently large (a 334×334 matrix of
plots to show pairwise combinations of every observable in
every centrality) as to not fit in this work.

1. Transfer learning for Chapman-Enskog δ f

Viscous corrections at particlization are an important
source of uncontrolled theoretical uncertainty to quantify. An
extremely computationally efficient way to control the uncer-
tainty is using transfer learning. This uses information learned
from a source system—in this study, the already validated
Grad viscous correction—to learn about a similar target sys-
tem, the Chapman-Enskog RTA δ f . By construction, these
are both linearized viscous corrections and are designed to
be small corrections to the equilibrium distribution function.
This is a prime opportunity to use transfer learning to enable
Bayesian inference for the first time in heavy ion collisions.
In this study, the Grad design points are used to construct
the “source” emulator described in Sec. II C. Then, 50 cal-
culations using Grad viscous corrections are performed at 50
design points chosen according to the maximum projection
metric, ensuring coverage of the design space as well as its
lower-dimensional projections. The difference between the
Grad and Chapman-Enskog calculations is used to train a
Gaussian process emulator of the difference between these
two models.

Transfer learning is implemented using EMUKIT and GPY’s
[110,111] multifidelity emulation framework and follows the
proof of concept in [48]. We build on this proof of concept
by additionally incorporating principal component analysis
and evaluating the covariance matrix necessary for evaluating
the likelihood function, thereby enabling the use of transfer
learning in full-scale Bayesian inference studies.

The information contained in the principal component
analysis for the Grad viscous corrections (see Fig. 6) is ex-
ploited so that the transfer learning can take place on the
principal components. The Grad PCA, trained on a large num-
ber of design points, can be understood to perform a critical
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FIG. 7. Transfer learning emulated vs computed for all observables considered. Validation points are shown with a consistent color to
identify correlations between points. The diagonal dashed line is located at y = x, and denotes perfect prediction.

covariance-revealing and noise-filtering function. By acting as
a rotation in the observable space, the true underlying signal is
contained in the first N PCs and noise fluctuations are reduced.
This reveals mutual information between observables, e.g.,
that one can be fairly confident of dNch/dη in the 30–40%
bin given its value in the 0–5% bin. It also means that ob-
servables that require higher statistics to calculate reliably,
such as δpT /〈pT 〉, become correlated with observables that
do not, resulting in noise reduction and more successful surro-
gate modeling. Additionally, by training the transfer learning
emulator on the same principal components as the source
emulator, the comparison between the two is put on an even
footing.

A second improvement to the transfer learning is us-
ing “transformed parameters,” introduced and used in
[29,30,112]. Although the parametrization of the specific
shear and bulk viscosity may appear intuitive and concise,
it can present challenges to nonparametric models such as
Gaussian processes, since the relationship between the ob-
servables and these parameters can be highly nonlinear and
nonuniform. However, observables are often more straight-

forwardly dependent on the value of the specific shear and
bulk at a given temperature. For any one set of parameters in
Eqs. (11) and (12) there exists one and only one set of values
of η/s and ζ/s at a set of temperatures, and a one-to-one
mapping takes place. Thus, no information is gained or lost
by performing this transformation. By using the transformed
observables, the transfer learning emulator’s mean squared
error was reduced by a factor between 2 and 20 for every
observable considered as well as corresponding improvement
in the distance between the coefficient of determination R2

and its maximum value of one. Finally, software changes were
made to make it indistinguishable from the original emulator
object and therefore compatible with existing Markov chain
Monte Carlo (MCMC) software and ready for use.

The transfer learning emulator validation begins with com-
paring emulated predictions to computed values at validation
points not used in training, shown in Fig. 7. In this figure, the
colors denote that the points all come from the same validation
design point but are merely different centralities of the same
observable. This helps to show the correlations between these
points. All the observables considered for the study with Grad
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viscous corrections are well predicted by the transfer learning
model, in some cases even better than the source emulator
trained on the full design. Uncertainties are often larger in the
transfer learning model than in the Grad emulator, but this
does not interfere significantly with the quality of predictions
and is consistent with having two Gaussian processes, each
with its own variance, rather than just one. Predictions by
the transfer learning emulator are broadly consistent with the
true values and the emulator uncertainty is well balanced
with the computed uncertainty in the most statistics-hungry
observables. Were one source of uncertainty systematically
larger than the other, this would suggest imbalance between
the number of design points and the number of model runs at
each design point [113], which must be judged by the most
statistics-hungry calculations. In this case, there are the cor-
related momentum fluctuations and event plane correlators:
δpT /〈pT 〉, ρ422, and 〈cos(2�2 + 4�4 + 6�6)〉SP. It is worth
highlighting what appears to be a slight emulator bias in the
three-plane correlators in Fig. 5, which is resolved in the
transfer learning simulation.

B. Inverse model validation

Once again, the model is tested for self-consistency with
pseudodata generated by the underlying multistage model at
known points in the parameter space that were not used in
training the surrogate model. The surrogate model is then
used for inference with pseudodata and the resulting posterior
is investigated to determine how well it recovers underly-
ing truth. Due to the fact that a particular parametrization
has been chosen for the specific shear and bulk viscos-
ity, the test for self-consistency is best compared as, for
example, η/s vs temperature. After all, despite the moti-
vation for the parametrization, the physics is contained in
the temperature dependence of the viscosity, not a particular
representation.

It is cumbersome to show this result for all validation
points, but care is taken to show a representative sample of
validation points in this section. The parameters related to
the hydrodynamic viscosities are shown separately from those
not related to viscosity, for former shown as η/s or ζ/s vs
temperature. No discernible covariance is seen between the
two groups of parameters. While no covariances are seen,
when the model is pushed to the edges of the prior region,
the distribution can become bimodal. Examples are shown in
Figs. 8–10.

What is important to inspect is if the posterior consistently
contains the known truth. For example, does the true value fall
within the 90% credible interval (C.I.) approximately 90% of
the time? If so, then it is plausible that, provided with a 90%
credible interval, a gambler would break exactly even assum-
ing they were presented with fair odds by the bookmaker. This
is clearly the case for results shown in Figs. 8 and 10. The
sample validation points chosen for these figures addition-
ally demonstrate the resolution of a large, relatively flat bulk
viscosity (Fig. 10) and a bulk viscosity with a comparatively
sudden peak at high temperature (Fig. 8) in addition to a vari-
ety of η/s. All are recovered well and within the 90% credible

FIG. 8. Posterior distributions of nonviscous (top) and viscous
(bottom) parameters for a sample validation point. The true values
are highlighted in black (top). The quoted values are the median and
95% C.I.

interval, although one needs to consider this in tandem with
Figs. 5 and 7 to be confident in closure performance.

The posteriors in Fig. 9 demonstrate a strong bimodality
for Grad viscous corrections and bias in Chapman-Enskog δ f
and, while the truths are partially recovered, the posteriors
seem at odds with physical intuition and are not in particularly
good agreement with each other, such as in τ0. This occurs
because the true value of the bulk viscosity peak is below
the particlization temperature and a bimodality develops in
ζ/s for Grad δ f , while the Chapman-Enskog δ f attempts to
compensate and does not resolve the second ζ/s mode and
poorly resolves η/s. For each peak of ζ/s, a different value of
the switching time between IP-GLASMA and MUSIC is preferred
as the model is pushed into a corner, causing bimodality in the
posterior of the initial condition and particlization parameters.
The observable that couples these quantities is δpT /〈pT 〉,
whose pseudodata is noisier than the experimental data, fur-
ther exacerbating the issue. This example of an interpretable
failure is an edge case in the parameter space.

It is intuitive that the model struggles to reproduce true
values of hydrodynamic quantities that are located outside the
hydrodynamic evolution. Joint priors (i.e. requiring the bulk
peak temperature to be greater than particlization) have not
yet been developed for heavy ion collision studies and doing
so is beyond the scope of this work. Note as well that this
is a particular feature of the multimodal bulk viscosity, as
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FIG. 9. Posterior distributions of nonviscous (top) and viscous
(bottom) parameters for a second sample validation point. The true
values are highlighted in black (top). This is an important example of
interpretable failure. The quoted values are the median and 95% C.I.

the true value of Tsw in Fig. 8 is close to the edge but can
still be well constrained. Nonetheless, the ability to interpret
these failures of the modeling workflow further strengthens
the results derived from this study.

A reassuring feature of the inferential framework is that
all of the closure points reproduce the pseudodata well, as
exemplified in Fig. 11. As can be seen, the emulator is
not overfitting by going through every potentially noisy data
point, but is instead robust to statistical fluctuations in the
underlying data. This further suggests that the model is be-
having well and is well-conditioned for the problem at hand
while also not exhibiting strong bias. An example of low
bias can also be seen in the marginal distributions for μQs

in Figs. 8–10; the truth is not always exactly located at the
peak of the marginal distribution, but instead the peaks are
distributed around the true value. Additionally, the two δ f
models are differentiable and provide further evidence that the
transfer learning model is not simply reproducing the source
model’s results.

An exciting feature in these closure tests in comparison to
previous studies is the constraint on η/s and ζ/s at higher
temperatures. In previous studies, constraint was limited to
the low temperature regions and the model was insensitive to
the high-temperature (or early-time) behavior of the fireball
evolution unless the temperature dependence was explic-
itly specified by the parametrization [25,29–31,44]. In these

FIG. 10. Posterior distributions of nonviscous (top) and viscous
(bottom) parameters for a third sample validation point. The true
values are highlighted in black. The quoted values are the median
and 95% C.I.

closure test, for the first time, constraint on the viscosity can
be achieved even at high temperature. This raises the exciting
prospect that the viscosity of strongly interacting matter in
heavy ion collisions may be constrained to an unprecedented
precision without sacrificing accuracy.

VI. INFERENCE WITH LHC DATA

A. Grad and Chapman-Enskog posteriors

Now that the surrogate model is known to behave in ac-
cordance with expectations for test points and failures are
interpretable, the validation pseudodata is exchanged for real
experimental data. The previous section has confidently es-
tablished that the Bayesian parameter estimation produces
reasonable results for known inputs, leading to the belief
that this should plausibly reveal the underlying properties of
experimentally produced quark-gluon plasma in heavy ion
collisions. The repeated validation, observable selection, clo-
sure testing, and sanity checks of the surrogate modeling and
inference have established that the models are reliable and
well conditioned for the problem at hand.

The calculations at the design points form the prior pre-
dictive distribution and were shown in Fig. 4 for a superset of
observables. These calculations cover the experimental results
well, although correlations between calculations are difficult
to discern and likely introduce some tension. The MCMC is
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FIG. 11. Posterior predictive distributions with Grad viscous corrections for the posterior shown in Fig. 10 with pseudodata used for
comparison shown as data points.

again performed using a parallel tempering algorithm. The
above closure test and the below comparison to data are
performed using Grad’s 14-moment viscous corrections and
while the above closure tests were performed with 10 000
MCMC steps with 10 walkers per dimension and 10 rungs in
the parallel tempering temperature ladder; the below compar-
ison to data is performed with 20 000 MCMC steps with 50
walkers per dimension and 20 rungs in the parallel tempering
ladder for improved sampling resolution. The trace, moving
average, and autocorrelation of the final MCMC chain are
shown in Fig. 12 for three sample walkers. It is important to
note that these walkers have clearly thermalized, i.e., there is
no directed walk, as the trace exhibits no discernible autocor-
relation and are thus sampling from the target distribution.
This is not trivial, especially as the number of parameters
increases and insufficient verification of this can result in
incorrect sampling of the posterior.

With confidence in the MCMC, it is finally time to look
at the posterior distribution after comparison with data. The

nonviscous parameter posterior for both viscous corrections
is shown in Fig. 13, the viscous posterior for both viscous
corrections is shown in Fig. 14, and the marginal and joint
marginal distributions of the 11-dimensional posterior are
shown in Fig. 15. The nonviscous parameters demonstrate
clear constraint, particularly in the case of the normalization
μQs . The switching time between IP-GLASMA and MUSIC is
well localized to early times τ0 � 0.7 fm, which is in accor-
dance with previous experience and appears not to favor very
late hydrodynamic onset times.

The particlization temperature Tsw is also well constrained
within the prior region. A recent estimate of the crossover
temperature from lattice QCD places it at Tc = 156 ±
1.5 MeV [114,115], precisely in the region of highest poste-
rior density for the particlization temperature. The constraint
of the particlization temperature is particularly interesting as
the chemistry (equation of state) of the hydrodynamic medium
and the hadron resonance gas are identical to those of [30],
which required a much lower particlization temperature with
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FIG. 12. MCMC trace, moving average, and autocorrelation from comparison to experimental data with Grad viscous corrections. The
C.-E. MCMC behavior is comparable.
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FIG. 13. Posterior distributions of nonviscous parameters from
comparison to experimental data with Grad δ f (blue, lower triangle
of the subfigure matrix) and Chapman-Enskog δ f (red, upper trian-
gle). The quoted values along the diagonal are the median and 95%
C.I. of the one-dimensional marginal distribution.

the same viscous correction.3 This also provides a limit on
the lifetime over which the viscosity can act by reducing the
lifetime of the hydrodynamic phase during which the viscosity
acts. We do not constrain the viscosity to be small at par-
ticlization, which means there is potential for large viscous
corrections to influence final observables. As will be seen
shortly, in the temperature region probed by particlization—
approximately bounded by 0.14 and 0.18 GeV—the data itself
prefers the specific bulk viscosity to be small. In testing for
self-consistency, it was found that the model can recover large
viscosity at particlization (Fig. 10), meaning that the demand
for small viscous corrections is an authentic feature of the
data.

In Fig. 14, the temperature-dependent specific bulk vis-
cosity ζ/s demonstrates a clear peak, and the 99% C.I. is
inconsistent with zero for temperatures between 160 and
300 MeV for Grad viscous corrections, while for Chapman-
Enskog it is inconsistent with zero over the entire range
shown. Randomly drawn example samples from the Grad
posterior are shown in Fig. 16, demonstrating the diversity
of choices that are compatible with data. The constraint cer-
tainly weakens at high temperature, but the peaked specific
bulk viscosity is well constrained at low and intermediate
temperatures. The significant values of bulk viscosity favored
by the posterior contrasts with previous Bayesian studies,

3Note that the equation of state used in this work is fully described
by a hadron resonance gas up to a temperature of 165 MeV, and
subsequently matched to lattice calculations from Ref. [66] (see
Sec. III B). We thus highlight that a proper transition from hydro-
dynamics to hadronic degrees of freedom can be achieved somewhat
above the pseudocritical temperature 156 MeV.

FIG. 14. Viscous posterior with Grad viscous corrections (blue)
and Chapman-Enskog viscous corrections (red) from comparison to
experimental data.

which either favored small bulk viscosity or could not provide
precise constraints on its value. There is theoretical support for
a non-negligible value of bulk viscosity in the deconfinement
region [94,95,116], decreasing to zero at higher temperatures
[96]. The peak of the specific bulk viscosity shifts slightly
between the two viscous correction models, but the posteriors
are broadly consistent with each other, particularly the 60%
credible intervals.

An unexpected feature of the viscous posterior is a nega-
tively sloped specific shear viscosity at higher temperatures.
This is driven in part by peripheral v3{2}, a fluctuation-driven
quantity, and central v4{2}. As higher temperatures corre-
spond to earlier times in the fireball evolution, this decreasing
high-temperature η/s dissipates initial-state fluctuations more
slowly. However—and importantly—the high-temperature
η/s posterior is still statistically compatible with a flat line
through the 99% credible interval as will be discussed in
more detail throughout the remainder of this work. This is a
consideration worth investigating in more depth.4

To ensure the quality of the fit and to identify tension in
the model, one can inspect the posterior predictive distribution
(Fig. 17) and the ratio of the posterior predictive distribution
to experimental data (Fig. 18). It is clear from the posterior
predictive distributions that the model fits the data well but
exhibits tension, seen in the transverse energy and the three-
plane correlators.

The difficulty reproducing the three-plane correlators is
also not new, but the postdictions shown in Fig. 17 are
consistent with previous studies [118]. Of note is that the
Chapman-Enskog δ f is closer to reproducing these correla-
tions than the Grad viscous corrections. Insight can be gained
by investigating the sensitivity of these observables to various
parameters. These comparisons are shown in Appendix A.
The dominant sensitivities are to normalization and the shear
viscosity kink temperature, similar to the anisotropic flow
that naturally influence the correlations. The other potential
underlying cause of difficulty in matching these observables is

4Note that a decreasing specific shear viscosity is also the result of
a Bayesian analysis with parametric initial conditions which allows
for a varying nucleon size [117].
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FIG. 15. 11-dimensional posterior showing marginal and joint marginal distributions with Grad viscous corrections (blue, lower triangle)
and Chapman-Enskog viscous corrections (red, upper triangle) from comparison to experimental data. Values along the diagonal are the median
and 95% C.I. of the one-dimensional marginal distribution.

geometric; the observables match as well as they can, but the
prior predictive distributions do not cover the data. With the
geometry in IP-GLASMA fixed by nuclear configurations and
deep inelastic scattering, insufficient freedom remains. Before
leaving this to future analysis, it must be noted that δpT /〈pT 〉
is also at the edge of the prior predictive region. If the three-
plane correlators and the pT fluctuations are correlated, this
has potential to reveal further insight. The correlation between
these observables at mid-centrality is shown in Fig. 19 and re-
veals that these observables are uncorrelated, suggesting that

their tension is independent. A future analysis should attempt
to address this by revisiting the constraint from deep inelastic
scattering simultaneously with observables from heavy ion
collisions.

The posterior predictive distribution for the correlated pT

fluctuations produces the most accurate postdiction of any
IP-GLASMA calculation and yields the correct centrality de-
pendence, a feature not seen in other models. Investigating
this sensitivity, the overall magnitude is reduced by a larger
(ζ/s)max and constraints τ0 to early times. This suggests yet
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FIG. 16. Samples from the viscous posterior for Grad viscous
corrections after comparison to experimental data.

further that the bulk viscosity must be further investigated
for a narrower, taller peak to better reproduce experimental
results. This is beyond the scope of this work.5

The success of the model with respect to every other
observable must be highlighted: nearly every experimental
measurement in nearly every observable is consistent with the
posterior predictive distribution shown in Fig. 17. This was by
no means guaranteed. Bayesian studies in heavy ion physics
have broadly exhibited success with parametric models and
fewer observables. This success in describing measurements
provides strong support for the IP-GLASMA model of ini-
tial conditions. This represents a step forward in rigorously
constructing a hybrid model with each stage containing mi-
croscopic physics and testing it via comparison to data.

B. Postdictions and predictions with maximum
a posteriori parameters

Scientific models can be evaluated by how well they can
describe experimental measurements in systematic model-
to-data comparison, as performed up to this point, but also
by how well they predict quantities to which they were not
explicitly tuned. A model that can only describe quantities
to which it is systematically compared is less useful than a
model that, once compared to a carefully-selected set, makes
accurate predictions. The Bayesian inference performed in
this section was performed using a surrogate model trained
at a large number of design points, not the underlying model
itself. As a result, before moving on to predictions, it is im-
portant to explore the veracity of postdictions. The most likely
value in the 11-dimensional parameter space is the maximum
a posteriori estimate, determined by numerical optimization.
The full hybrid model is run at the MAP points in Table II, but
with 6000 collisions rather than 2500, with centrality selection
performed in the same manner as in [87,118]. This increase in
statistics allows for higher precision results.

5This narrower, taller peak is difficult to resolve without
reparametrization of the width of the bulk viscosity or carefully
constructing a scale-invariant prior. This too is beyond the scope of
this work, but should be strongly considered in future studies.

A variety of interesting features arise in Table II. First, the
lattice QCD estimate of crossover temperature, Tc = 156 ±
1.5 MeV, is consistent with both Grad MAP estimates of
the particlization temperature using Grad viscous corrections,
with the MAP estimate from constant η/s nearly identical to
the central lattice estimate. Using Chapman-Enskog viscous
corrections results in a slightly lower estimate of the parti-
clization temperature, but still close to the estimated crossover
temperature, suggesting that the hadrons may behave hydro-
dynamically for a brief period after recombination. Next, the
switching time τ0 is consistent with IP-GLASMA’s pressures
having come to a steady state (see Fig. 1) and with sufficient
time for the buildup of pre-equilibrium dynamics that was
hypothesized to be of critical importance in describing the
strongly interacting medium. The parameter μQs relating the
saturation scale Qs to the color charge density profile has a
posterior distribution shown in Fig. 15 corresponding to a
MAP estimate reported in Table II. Note the posterior distribu-
tion obtained here for μQs overlaps that reported in [119] for
a fixed number of hot spots. The value of the specific shear
viscosity is broadly consistent with other Bayesian results
and the constant η/s is very close to past “chi-by-eye” fits
of 0.13 [87]. The bulk viscosity maximum and width are
consistent with a large, peaked bulk viscosity, further sup-
porting a consistent picture between theoretical expectations
and prior modeling success. The asymmetry of the bulk vis-
cosity is of interest as it suggests a bulk viscosity peaked
at high temperature and slowly decreasing as it approaches
the particlization temperature, where it is well constrained by
the data to be small. While the MAP estimates for the bulk
viscosity differ in their parameters between η/s and η/s(T ),
the actual value at any temperature differs by a maximum of
≈10% below the region where it nears the lower peak location
at T ≈ 0.28 GeV.

The MAP estimates are used to make predictions of ob-
servables not used in the model-to-data comparison. Strictly
speaking, this is due to computational limitation: the most ap-
propriate comparison is a full posterior predictive distribution
with perhaps a surrogate model trained on a reasonable quan-
tity of high-statistics calculations. At the same time, the MAP
estimates are the recommended parameters for use in other
studies, such as hard sector studies of jet-medium interac-
tions or photon/dilepton calculations, and therefore represent
a faithful picture of how the model will be used in practice.

First, the veracity of the MAP points is determined
via postdiction, in which the underlying computationally-
expensive multistage model is compared to quantities used in
the inference above. In the following figures, the Grad and
Chapman-Enskog MAP results are shown in blue and red,
respectively. The MAP with temperature-dependent η/s is
shown as a solid line while constant η/s is shown as a dashed
line. Shaded regions denote aleatoric uncertainty.

The charged hadron multiplicity, Fig. 20, compares very
favorably with the MAP calculations within the experimen-
tal uncertainty for all viscous correction models. A variety
of identified particle multiplicities and transverse energy per
rapidity slice, Fig. 21, also compare very well, albeit the
proton and kaons are overestimated while the pions are un-
derestimated. This balancing act combined with the overall
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FIG. 17. Posterior predictive distribution with Grad viscous corrections (blue) and Chapman-Enskog (C.-E.) viscous corrections (red) after
comparison to data.

charged hadron multiplicity shows that aspects of the hadron
chemistry are imbalanced. The overestimation of the number
of higher-mass particles in turn results in an overestimation of
transverse energy. Nonetheless, the differences between the
MAP calculations imply an influence of viscous corrections
on the hadronic chemistry.

The mean transverse momentum of identified particles,
Fig. 22, further reveals the success of the model-to-data
comparison while demonstrating how overestimation of mul-
tiplicity combined with good estimation of the transverse
momentum results in overestimation of transverse energy.
The 〈pT 〉 shows less tension in the chemical makeup than
previous results with the same hydrodynamic equation of
state, revealing the role of bulk viscosity and a physically
motivated pre-equilibrium model with microscopic dynamics.
The primary difference between Grad and Chapman-Enskog
MAP calculations is in enhanced proton 〈pT 〉, in which the
Chapman-Enskog MAP better reproduces the experimental
results.

The two-particle integrated vn further reveal good, albeit
not perfect, reproduction of experimental results in Fig. 23.
Notably, v2{2} and v4{2} are well described, particularly in
central collisions, while v3{2} is underestimated. The under-
prediction of v3{2} is a feature of nearly every study and
remains an object of continuing study.

Peripheral v2{2} reveal that the MAP temperature depen-
dence of the Grad shear viscosity results in an overestimate,
while the constant shear more closely reproduces the exper-
imental centrality dependence, as do the Chapman-Enskog
MAP calculations. For all vn{2}, the MAP prediction of this
study performs better than the previous state-of-the-art calcu-
lation, and the tension revealed here produces useful insight
both into temperature-dependent η/s and remaining progress
required in describing the geometric fluctuations that drive
v3{2}. The four-particle integrated v2 is shown in Fig. 24,
showing agreement with data until the most peripheral bin
where it is overestimated, consistent with the two-particle v2

in Fig. 23, suggesting that these observables capture broadly
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FIG. 18. Posterior predictive ratio (theory/data) with Grad (blue) and Chapman-Enskog (red) δ f after comparison to data.

similar physics and are similarly well described by the model,
although less tension is observed in v2{4} compared to v2{2}.

The correlated momentum fluctuations δpT /〈pT 〉, also
denoted

√
Cm/M or

√
Cm/〈pT 〉, in Fig. 25 are the first calcu-

lations to successfully describe this observable from a model

with an IP-GLASMA pre-equilibrium state, and this description
is consistent. This study is able to simultaneously describe
both quantities with a variety of different viscosities and
viscous corrections, resolving tension previously seen with
the charged hadron multiplicity [120]. These fluctuations are

TABLE II. Maximum a posteriori estimates with Grad’s 14-moment and Chapman-Enskog RTA viscous corrections. Estimates with
[denoted η/s(T )] and without (denoted η/s) temperature-dependent specific shear viscosity are reported.

Parameter Grad δ f , η/s Grad δ f , η/s(T ) C.-E. δ f , η/s C.-E. δ f , η/s(T )

μQs 0.72341 0.70808 0.72654 0.70858
τ0 (fm) 0.52127 0.51291 0.40142 0.55159
Tη,kink (GeV) 0.150 0.22333 0.150 0.21123
aη,low (GeV−1) 0.000 −0.16259 0.000 0.65272
aη,high (GeV−1) 0.000 −0.80217 0.000 −0.89472
(η/s)kink 0.13577 0.13944 0.12504 0.14888
(ζ/s)max 0.28158 0.22085 0.17391 0.20117
Tζ ,c (GeV) 0.31111 0.29198 0.2706 0.25455
wζ (GeV) 0.02878 0.03625 0.05255 0.04506
λζ −0.96971 −0.56235 −0.14178 0.06408
Tsw (GeV) 0.15552 0.15429 0.15069 0.1513
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FIG. 19. Correlations between posterior predictive distributions for selected observables for central collisions. Dashed lines denote the
central experimental result and x- and y-axis units are the experimental uncertainty for the respective observables. Grad viscous corrections are
in blue while Chapman-Enskog viscous corrections are shown in red.

also sensitive to the temperature dependence of the specific
shear viscosity, where the constant η/s systematically over-
estimates the data while correctly reproducing the centrality
dependence (itself not seen in either other calculations with IP-
GLASMA or in the previous state-of-the-art calculation), while
the temperature-dependent η/s better reproduces the data be-
ginning in mid-central collisions. The Chapman-Enskog MAP
reproduces the fluctuations more closely, save for the η/s(T )
calculation in the most central bin, which is likely the impact
of statistical fluctuations.

The decomposition of higher order vn further reveals the
ability to simultaneously describe flow observables in Fig. 26.
For every quantity other than central vL

4 , both models pro-
duce successful predictions of the experimental data, with
the temperature-dependent η/s again overpredicting periph-
eral flow as seen in v4(�2). Although is often consistent
with the data within uncertainty, vL

4 is overpredicted by the
Chapman-Enskog MAP calculations. Nonetheless, this broad
reproduction of the experimental flow decomposition sug-
gests that the momentum-space geometry of the hybrid model
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FIG. 20. Postdictions of charged hadron multiplicity at maxi-
mum a posteriori.

successfully reproduces the physical picture in heavy ion col-
lisions.

The simultaneous reproduction of flow decomposition and
event plane correlation constrains both the initial state geome-
try and the hydrodynamic evolution. In Fig. 27, the correlators
are also well described by the postdictions and are consistent
with experimental uncertainty, save for central 〈cos(2�2 +
4�4 − 6�6)〉. The purely even correlations are particularly
well described and primarily relate the conversion of event
planes of initial state geometry to momentum space via hy-
drodynamics. The mixed even-odd plane correlations reveal
that the fluctuation structure is well described and correlates
properly with even planes. This postdiction is also well in line
with the posterior predictive distributions, further supporting
the accuracy of the surrogate modeling.

The postdictions show that MAP parameter values are able
to successfully describe the observables used in inference with
never-before-seen accuracy for a multistage model with an
IP-GLASMA preequilibrium stage. This alone is a resounding
success of the Bayesian inference in this study and conclu-
sively demonstrates the performance of the Gaussian process
emulators as well as the study design. Tension is seen in the
hadron chemistry, impacting the transverse energy, as well
as in some of the description of the flow harmonics, no-
tably v2{2} and v3{2}. However, the decomposition of higher
order flow is successful and the overwhelming majority of
observables are well described while the same tension is seen
in v2{4}, ensuring this effect is not a result of two-particle
correlations. In the case of δpT /〈pT 〉, successful description

FIG. 21. Postdictions of identified hadron multiplicity at maxi-
mum a posteriori.

FIG. 22. Postdiction of identified particle 〈pT 〉 at maximum a
posteriori.

is shown for the first time. The impact of viscous correc-
tions is minimal, showing that the different posteriors are
accurately accounting for differences in the underlying model
calculations.

1. Predictions

Having established the power of the surrogate modeling
and demonstrated successful description of a wide range of
observables, it is time to turn to predictions of quantities
not included in the calibration. Here, “predictions” is used
to highlight that these observables were not used in system-
atic comparisons. As a result, the model is blind to these
observables beyond information contained in other quantities.
If models are differentiable at this stage, perhaps it can shed
light on model quality not revealed in the more limited model-
to-data comparison. In the following comparisons, centrality
bins are chosen to match experimental results and predictions
for bins not shown are simply due to dominance by theoretical
uncertainty from a small number of events per bin.

The comparisons begin with measures of event plane cor-
relation from ALICE in Fig. 28 and ATLAS in Fig. 29. In both
cases, the model predictions are very well aligned with exper-
imental results. Both ρ532 and ρ633 are accurately predicted
within experimental uncertainty, while ρ6222 is accurately
predicted below 30% centrality. With respect to the ALICE
measurements, the MAP calculations are broadly indistin-
guishable. A similarly indistinguishable picture is painted
by comparison to ATLAS measurements, where 〈cos(2�2 +
3�3 + 4�4)〉SP, 〈cos 6(�2 − �3)〉SP, and 〈cos 6(�3 − �3)〉SP

are very well predicted by the model. Two predictions that
perform somewhat less successfully above 30% centrality are
〈cos 4(�2 − �4)〉SP and 〈cos 6(�2 − �6)〉SP. The consistent
picture drawn from comparison to both experiments suggests

FIG. 23. Postdiction of vn{2} at maximum a posteriori.
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FIG. 24. Postdiction of v2{4} at maximum a posteriori.

that the event planes produced by an IP-GLASMA initial state
are better suited to collisions below 30% despite successful
comparison to observables across the whole centrality range.
These predictions outperform previous predictions made by a
hybrid model with IP-GLASMA [87].

A motivation for the use of IP-GLASMA as a preequilib-
rium model was its success in simultaneous description of
next generation observables, particularly both the event plane
correlations and nonlinear response coefficients. With demon-
strated success in prediction of event plane correlations not
used in model-to-data comparison, predictions for nonlinear
response coefficients are shown in Figs. 30 and 31. These
broadly describe the experimental results within experimental
uncertainty, with slight overestimation in χ5,23 between 20 and
40% centrality and peripheral χ4,22. In this case, the model
with η/s(T ) slightly outperforms predictions with constant
η/s, although they are often consistent within standard error.
This demonstrates that a multistage model with an IP-GLASMA

preequilibrium stage is able to produce simultaneous, accurate
predictions of the event plane correlations and hydrodynamic
response with a initial geometry broadly fixed by low-energy
nuclear correlations. This strongly suggests that the hydrody-
namic phase is accurately described and the hydrodynamic
response to geometry matches that seen in experiment. The
centrality dependence is also often accurately captured, such
as in χ5,23, which was not the case in previous calculations.

Predictions for the final category of observables used in the
analysis are shown in Fig. 32 for the linear and nonlinear flow
decomposition. These predictions are accurate and are clearly
consistent with experimental results within uncertainties, save
for 30 − 40% vL

5 . This demonstrates the continuing success of
the hybrid model with IP-GLASMA as it is able to both describe
and predict a wide range of observables. In the vL

5 predictions,

FIG. 25. Postdiction of δpT /〈pT 〉 at maximum a posteriori.

FIG. 26. Postdiction of the decomposition of vn at maximum a
posteriori.

the constant η/s prediction is more consistent with the ex-
perimental measurement, further supporting an inconclusive
preference for one model over the other as the quality of
predictions depends on which observable is considered.

The final pT -integrated prediction is made for the modified
Pearson correlation between v2

2 and pT , shown in Fig. 33.
As no experimental results at this energy are available, pre-
liminary results for a higher Pb-Pb collision energy system
(
√

sNN = 5.02 TeV) are used [121] for comparison. The
predictions made at

√
sNN = 2.76 TeV describe the higher-

energy data and its centrality dependence well. The current
study has not utilized sub-nucleonic degrees of freedom.
There is no significant difference seen between predictions
with different viscous corrections or between η/s and η/s(T ).
Even with variation of the nucleon width in previous calcu-
lations of this quantity with IP-GLASMA and TRENTO-based
hybrid models, successful prediction of the value and cen-
trality dependence has proved elusive. Hybrid models with
TRENTO + freestreaming initial states, as well as previous cal-
culations with IP-GLASMA, have sign changes as they become
increasingly peripheral. This feature is not seen in the data,
nor in this prediction. Based on the prediction in Fig. 33, there
is no anticipated collision-energy dependence of this correla-
tion and the IP-GLASMA initial state at maximum a posteriori
is able to successfully describe this observable. The lack of
collision-energy dependence is supported by the compari-
son of Pb-Pb at

√
sNN = 5.02 TeV data compared to Xe-Xe

collisions at
√

sNN = 5.44 TeV data from ALICE [121]. Of
note is that it appears to not yield further constraint on the
temperature dependence of η/s. Nonetheless, comparing it
directly to the previous state-of-the-art Bayesian study using
a TRENTO + freestreaming initial state, it appears that the
microscopic physics of the IP-GLASMA preequilibrium stage

FIG. 27. Postdiction of event plane correlations at maximum a
posteriori. Data and calculations are shifted for clarity.
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FIG. 28. Prediction of ALICE event plane correlations at maxi-
mum a posteriori [107]. Data and calculations are shifted for clarity.

plays an important role. This represents a true prediction as
data at

√
sNN = 2.76 TeV has yet to be published.

Up to this point, only pT -integrated observables have been
considered. Differential observables also exist and provide
interesting and discriminating probes of the soft sector. How-
ever, the boundary between the soft sector and the hard sector
(such as jets and jet-medium interactions) is unclear. By con-
sidering the integrated quantities up to now, the sensitivity
of the inference to the precise location of this boundary is
reduced and predictions can be made. This sensitivity is re-
duced because integrated observables are weighted by the
multiplicity, which drops exponentially. By considering each
differential pT bin, this exponentially decreasing weighting
would be removed and each bin would be treated on an equal
footing, in turn giving the bins on the boundary of the soft and
hard sectors a higher proportional weighting.

The first differential observable investigated is the differen-
tial charged hadron vn{2}, with predictions shown in Fig. 34
compared to experimental measurements from ALICE [103].
Tension is clearly present in reproducing the spectra, with
predictions from integrated observables often undershooting
at lower transverse momentum and overshooting at higher
momenta. Nonetheless, the majority of predictions are con-
sistent with experimental measurements for the first time or
the distance from the prediction to measurement has been
greatly reduced from the previous IP-GLASMA state-of-the-
art calculations [87]. The greatest tension is observed in the
differential v2{2} in the 0–5% and 30–40% centrality bins
and low-pT v3{2} in more peripheral collisions. This low-
momentum region is expected to be the region best described
by hydrodynamics, suggesting that relevant physics remains

FIG. 29. Prediction of ATLAS event plane correlations at maxi-
mum a posteriori [105]. Data and calculations are shifted for clarity.

FIG. 30. Prediction of ALICE nonlinear response coefficients at
maximum a posteriori [107]. Data and calculations are shifted for
clarity.

missing from the hybrid model. As v3{2} is primarily fluctua-
tion driven, this suggests that fluctuation structure is missing.
The underestimate of v2{2} in contrast suggests that a geo-
metric aspect is not included or an aspect of the conversion
between position-space and momentum-space geometry re-
mains incomplete. This is not necessarily a concern for the
validity of the hydrodynamic description, as the higher-order
differential vn are well described, but instead suggests that
additional physics may be at play. Recent works including
the differential momentum spectra suggest that their inclusion
in systematic model-to-data comparison can yield insight,
but various analysis errors and inclusion of momentum bins
in regions where unincluded physics is relevant hinders the
interpretation of results [25,31]. The posterior predictive dis-
tribution, rather than single MAP predictions, may provide
more insight into the present apparent mismatch of the model
predictions and data.

The light hadron multiplicity spectra, shown in Fig. 35
for selected central and mid-central centrality bins, paints a
complementary picture to that of the integrated multiplic-
ity in Fig. 21. The integrated proton and kaon multiplicity
were overestimated, while the pion multiplicity was slightly
underestimated; the same is found here. The momentum de-
pendence of the spectra, however, remains well predicted until
the higher momentum region (pT > 1.75 GeV), where mini-
jets, jet showers, and other hard-sector considerations begin
to gain relevance. Beginning in this region, all the identified
light hadrons are underpredicted. To include these additional

FIG. 31. Prediction of the ALICE χ6222 nonlinear response co-
efficients at maximum a posteriori [107]. Data and calculations are
shifted for clarity.
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FIG. 32. Prediction of ALICE linear and nonlinear flow at max-
imum a posteriori [107].

effects is a matter of ongoing theoretical effort and is beyond
the scope of this investigation.

Postdictions and predictions using four MAP calculations
have been shown, comparing Grad and Chapman-Enskog
viscous corrections with and without temperature-dependent
shear viscosity. The inconclusive preference between viscous
correction models is consistent when comparing MAP pa-
rameter sets, as is the inconclusive preference for or against
temperature-dependent η/s, in keeping with the Bayesian
model comparison.

VII. BAYESIAN MODEL SELECTION

Bayesian model comparison can be used to determine if
data exhibit a preference for one model or another, if ad-
ditional complexity is justified by the model, or even if the
model can differentiate between pseudodata and experimental
data. This is extremely valuable as it does not attempt to
falsify a model, but rather puts it to a binary test to determine
which model is the most useful in describing the data.

To test, as always, with self-consistency, the first use of
Bayesian model comparison is to determine if the model can
differentiate between pseudodata used for the previous self-
consistency testing and experimental data. This hypothesizes
the following scenario: a “true” model underlies the experi-
mental data just as a known model underlies the pseudodata
generated to test self-consistency. A distinct model is never
expected to systematically defeat the true underlying model
and, if it did, would be a sign of systematic bias. As a re-
sult, the Bayes evidence for the pseudodata is expected to
be greater than the Bayes evidence for the experimental data,

FIG. 33. Prediction of correlation between v2
2 and pT at maxi-

mum a posteriori, compared to data from a higher-energy collision
[121] where uncertainties are shown by a shaded region. Note that
data are at

√
sNN = 5.02 TeV while the MAP predictions are at√

sNN = 2.76 TeV.

FIG. 34. Prediction of differential vn{2} at maximum a posteriori
for the 0–5% centrality bin (upper panel) and the 30–40% centrality
bin (lower panel).

and strong preference is expected from the Bayes factor. This
is found when comparing the model estimate of the Bayes
evidence for pseudodata and true data using Grad viscous
corrections: the natural logarithm of the Bayes factor (ln B)
determining which data the model is best suited to ranges6

from 118.7 ± 3.1 to 147.9 ± 2.3 in favor of the pseudodata,
corresponding to odds of around 2×1056 : 1 to 1062 : 1 dif-
ferentiating the two data sources. Comparable, albeit slightly
reduced preference is found using Chapman-Enskog viscous
corrections (ln B ≈ 90 ± 5). This is an overwhelming vali-
dation of the model’s ability to differentiate the data and
demonstrates the self-consistency of the Bayesian model se-
lection. It remains a sobering revelation of just how much
information is not yet captured by the model.

The self-consistent Bayesian model comparison can now
be used to determine if the model exhibits a preference for
a variety of features. For example, by fixing the high and low
temperature slopes to 0 (and fixing the kink temperature to any
value in the prior range, since it is meaningless with no change
in slope), Bayesian model comparison can be used to test if
the model demands a temperature-dependent shear viscosity
in the two viscous correction models considered. With Grad
viscous corrections, performing this comparison yields ln B =
0.3 ± 0.2 in favor of temperature-dependent shear viscosity;
the Bayes factor is ln B = 0.9 ± 0.4 when Chapman-Enskog
viscous corrections are used instead of Grad. On the Jeffreys’
scale (Table III), which provides an odds-based scale for
Bayesian model comparison, these are both consistent with
no preference. The evidence is thus inconclusive in favor
or against temperature-dependent η/s given the data consid-
ered in this study. The same conclusion had been reached in
Ref. [30]. This suggests that further studies are required to
conclusively demonstrate the temperature dependence (or lack

6There is a spread because pseudodata from different points in
parameter space have different Bayes factors.
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FIG. 35. Prediction of differential light hadron multiplicity spec-
tra at maximum a posteriori for the 0–5% centrality bin (upper panel)
and the 30–40% centrality bin (lower panel).

thereof) of η/s in heavy ion collisions. This inconclusiveness
arises from the balance between better explanation of the
data and a penalty for increased complexity in the form of
additional model parameters.

The lack of such preference for or against η/s(T ) is not
surprising. Hybrid models with IP-GLASMA have demonstrated
considerable success in describing experimental results using
a constant specific shear viscosity and the viscous posteriors
in this study are themselves consistent with a constant value.
In the study requiring a constant η/s, the result is well con-
strained: η/s = 0.137+0.025

−0.028 for Grad viscous corrections and
η/s = 0.125+0.021

−0.022 for Chapman-Enkog corrections, where the
uncertainty denotes the 95% C.I. By inspection, it is apparent
that this is entirely consistent with the η/s(T ) posteriors in
Fig. 13 and nearly spans the full width at the narrowest point.

As many Bayesian works require η/s(T ) to strictly in-
crease or be constant below a fixed kink temperature, this is
also a useful comparison and is performed with only Grad
viscous corrections as both models are consistently in agree-
ment. To do this, aη,low is fixed to zero as it is in those studies
and Tη,kink is fixed to 0.154 GeV. Finally, a′

η,highs prior range
is reduced to require it to be positive definite. Comparing
the evidence for this configuration to the full study produces
ln B = 3.8 ± 2.6 in favor of the full study allowing for a
negatively sloped η/s(T ). This corresponds to moderate-to-
strong evidence on the Jeffreys’ Scale in Table III. Comparing
the requirement of a positive-definite slope to η/s(T ) to a

TABLE III. The Jeffreys scale, reproduced from [122].

| ln B01| Odds Probability Strength of evidence

<1.0 �3 : 1 <0.750 Inconclusive
1.0 ≈3 : 1 0.750 Weak evidence
2.5 ≈12 : 1 0.923 Moderate evidence
5.0 ≈150 : 1 0.993 Strong evidence

constant η/s, the Bayes factor is ln B = 3.6 ± 2.6 in favor of
the constant specific shear viscosity. Because the Bayes factor
penalizes complexity, the additional complexity is not justified
by the data.

Next generation observables are employed in this study
in the hope of determining the features of η/s and ζ/s with
greater accuracy and precision. Some studies use next gen-
eration correlations that require much greater computational
expenditure to attempt to find this constraint, but use paramet-
ric initial conditions [123]. A conclusion from these Bayesian
model comparisons is that success in learning the physical
specific viscosity of strongly interacting matter will only come
from combining realistic initial conditions and well-chosen
observables. Promising candidates for increased constraint
are vn-pT correlations, which are not readily calculable at
the precision of this study, but further couple preequilibrium
geometry to the hydrodynamic evolution [124,125]. This is in-
vestigated later in this work as a prediction made at maximum
a posteriori.

Recent Bayesian works with a TRENTO+freestreaming ini-
tial state have been finding success with small specific bulk
viscosity [25,31,123], contrasting with prior non-Bayesian
studies using IP-GLASMA initial conditions that indicated a
need for a significant ζ/s to reproduce hadronic observables.
By fixing (ζ/s)max to zero and holding the other parameters
fixed to arbitrary values as they no longer have any impact, it
is straightforward to assess the demand for nonzero ζ/s. This
comparison results in ln B = 34.4 ± 2.4 in favor of nonzero
ζ/s when using Grad viscous corrections, corresponding to
odds of ≈8×1014 : 1. With Chapman-Enskog viscous cor-
rections, this preference for the inclusion of bulk viscosity
increases to ln B = 61 ± 5, conclusively demonstrating that
bulk viscosity is strongly justified when using IP-GLASMA

initial conditions, regardless of the viscous corrections at par-
ticlization. The physical impacts of the lack of bulk viscosity
are an enhancement of the identified particle 〈pT 〉 and the mo-
mentum fluctuations δpT /〈pT 〉 with simultaneous suppression
of v3{2} and the three-plane correlators. The particlization
temperature is also forced to the highest possible temperature
allowed in the prior while the hydrodynamic initialization
time is required to be as short as possible. This arises from
a need to preserve as many initial-state fluctuations as pos-
sible as they must reproduce fluctuation-driven final-state
observables. The high particlization temperature additionally
preserves fluctuations by allowing for less viscous dissipation
in the hydrodynamic phase.

Comparing the relative likelihood of the viscous correction
models is a useful way to assess model applicability and begin
to quantify the uncertainty introduced by the choice of viscous
correction. Comparing Grad and Chapman-Enskog viscous
corrections to data with none of the parameters held fixed,
the relative preference for the Grad over the Chapman-Enskog
RTA viscous corrections is ln B = −0.2 ± 0.3, in impercep-
tibly slight favor of Grad viscous correction, although this
should be interpreted as the models being indistinguishable
in this analysis as it does not rise to the level of even
weak evidence. When we hold η/s to be constant, the rela-
tive preference for Grad over Chapman-Enskog RTA viscous
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FIG. 36. Bayes model averaged viscous posterior shown with Grad 90% credible interval (blue) and Chapman-Enskog 90% credible
interval (red) and the Kullback-Leibler divergence quantifying information gain from the priors to the BMA posterior in bits (bottom panels).

corrections is ln B = 0.5 ± 0.3; again, no preference between
the two models even rises to weak evidence.

This indistinguishable nature of the viscous correction
models deserves further study. The posteriors, as shown previ-
ously, are quite similar but not identical, and are equally well
suited to experimental measurements. As a result, the viscous
corrections chosen in a study are an important source of
theoretical uncertainty to quantify and not doing so results in
an artificially precise posterior. Progress in adding additional
constraining observables must not neglect quantification of
uncertainty as a parallel goal lest analyses fall into the trap of
the bias-variance tradeoff. The goal is not to constrain these
quantities the most precisely, but to do so both accurately
and precisely. By not including sources of theoretical uncer-
tainties, an analysis focuses on the latter and sacrifices the
former.

Model preference between the Grad and Chapman-Enskog
viscous corrections was seen to be strong in previous work
[29,30], but is indeterminate in this study. In the earlier stud-
ies, the bulk viscosity was larger at particlization and, as a
result, enhanced the effect of the corrections. A role may also
be played by the more realistic initial state model.

As the Bayesian model comparison exhibits no preference
for or against temperature-dependent specific shear viscosity,
estimates of the MAP are provided for both temperature de-
pendence and a lack thereof in Table II.

A. Bayesian model averaging

In Bayesian model comparison, the question under inves-
tigation is, “which model is best suited to the data?” This
informs which model to use and how best to use it. A related
question is. “given two models, how does one best estimate
the truth?” For this, Bayesian model averaging (BMA) is
employed. In Bayesian model averaging, two posteriors are
combined using a weighted average in which the weights are

the Bayes evidence [126]. In a simplified example, if two
models are equally likely, then the truth is most likely to
be in the region where the model posteriors overlap. This is
formalized as

pBMA(x|y) ∝
∑

i

pi(y)pi(x|y) (13)

for models indexed i.
Bayesian model averaging was first used in heavy ion

collisions to perform model averaging of the transport coeffi-
cients and later for model averaging of nonviscous parameters
[29,45]. The BMA viscous posteriors are shown in Fig. 36
along with the Kullback-Leibler divergence, which quantifies
the distance between two distributions and is used here to
calculate the information gained from the prior to the BMA
posterior [127]. The BMA posterior for nonviscous parame-
ters is shown in Fig. 37.

The BMA viscous posterior clearly demonstrates the value
of accounting for the uncertainty due to viscous correc-
tions at particlization by showing the state of knowledge by
considering both simultaneously. The two models contribute
their constraint throughout the temperature evolution of both
ζ/s and η/s, although the impact is clearer in the specific
bulk viscosity due to the differences in constraint between
the two models. Particularly of interest is that BMA lever-
ages the information content of both models to produce a
more constrained 60% C.I. than either model independently,
demonstrating how to address the bias-variance tradeoff with
multiple models in a rigorous way.

The Kullback-Leibler divergence in Fig. 36 is non-zero for
the entire temperature range shown on the figure. This con-
trasts with the Kullback-Leibler divergence from Ref. [29],
which was small already at T ≈ 200–250 MeV, consistent
with the very limited constraints on the viscosities at these
higher temperatures. Since the hydrodynamic, particlization,
and hadronic cascade stages were intentionally chosen to be
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FIG. 37. Bayes model averaged posterior for nonviscous param-
eters (orange) shown with Grad (blue) and Chapman-Enskog (red).
The lowest contour shown is the 5th percentile.

identical to those of Ref. [29], this difference in constraints
can be ascribed to the difference between the prehydrody-
namic models, IP-GLASMA, and TRENTO with freestreaming.
This difference in dynamics is most pronounced at early times
in the evolution, roughly corresponding to higher tempera-
tures, where the increased constraints on the viscosities are
found.

The nonviscous posteriors for the Grad and Chapman-
Enskog viscous correction models are quite similar, demon-
strating that these are robust to a modeling choice intended to
be a small correction. The largest difference between the two
models is in the particlization temperature, which is robustly
accounted for in the BMA posterior, and the median value
remains consistent between the models.

VIII. SUMMARY AND CONCLUSION

This study has implemented rigorous Bayesian model-
to-data comparison with IP-GLASMA for the first time and
incorporated transfer learning for the first time in a full
Bayesian model-to-data comparison. It found inconclusive
evidence of temperature-dependent compared to temperature-
independent shear viscosity, as in Ref. [30]. However, unlike
this previous work, the current study did not find conclusive
preference for a model of viscous correction at particlization.
A large number of postdictions and predictions are shown
at maximum a posteriori and should be considered the new
state-of-the-art theoretical result to which future measure-
ments and calculations should be compared. The posterior
distributions are the main results of this study and are our
current best estimate of the properties of strongly-interacting
matter in ultra-relativistic heavy ion collisions. From a per-

formance point of view, the improved sampling procedure
(the ordered maximum projection Latin hypercube, compared
with the maximin Latin hypercube) resulted in a more rapid
sampling that covered the design space coupled with an in-
creased fidelity of the surrogate modeling. This large scale
simulation involved varying parameters of IP-GLASMA, the
transport coefficients of the relativistic fluid dynamics phase,
and the particlization temperature.

A hybrid model with an IP-GLASMA initial state was
constructed, and closure tests were able to recover input pa-
rameters of IP-GLASMA, demonstrating self-consistency. This
important step has shown that the sensitivity of the chosen fi-
nal state hadronic observables to the preequilibrium phase was
sufficient to establish to reliably extract accurate information.
The self-consistency of the subsequent phases and elements of
the hybrid model had been established in earlier studies, but
this work establishes the utility of IP-GLASMA in a large scale
statistical study.

We have used Bayesian model comparison and Bayesian
model averaging to establish the most likely values of the
physical quantities included in this work. Special emphasis
was put on the specific shear and bulk viscosity coefficients.
The temperature dependence of the specific shear viscosity
remains statistically indeterminate, i.e. statistically consistent
with being flat. Note that previously, several calculations with
viscous hydrodynamics following IP-GLASMA have produced
successful phenomenology with a constant specific shear
viscosity [7,36,37,84,87,128,129]. On the other hand, the spe-
cific bulk viscosity, ζ/s, was found to be larger than in similar
previous studies [25,28,31,123,130] and peaked during the
hydrodynamic phase. Importantly, this study concludes that
the bulk viscosity of strongly interacting matter is inconsistent
with zero.

It is clear that the theoretical effort in the field is moving
closer to true ab initio modeling of relativistic heavy-ion col-
lisions. What this works also makes clear is that the physical
quantities deduced from the analysis of the final states are in-
fluenced by the physics of the very early stages of the hadronic
reaction. This is true in the case of hadrons, as emphasized in
this study, as it is for electromagnetic variables [36,131–133].

As is often the case in fields with a plenitude of data,
Bayesian model averaging remains the current state of the
art in heavy-ion collisions for leveraging the information in
multiple models to best constrain the physical understanding
of strongly interacting matter without overfitting (see also
Bayesian model mixing [45,134]). This is only the second
study in this field, following [29] and elaborated in [45],
to utilize BMA for improving uncertainty quantification and
has further demonstrated its importance. Further sources of
unquantified uncertainty still exist in heavy ion collisions,
usually at the interface between models at each stage in the
evolution of the fireball, but how to incorporate such interface
effects in BMA is not yet clear. A strong focus in studying the
strongly interacting matter produced in heavy ion collisions
has been to improve the precision of the models; it should
be emphasized that the pursuit of arbitrary precision without
accounting for sources of uncertainty using techniques such
as BMA is a perilous path: it does not fully leverage the
information available, and could lead to bias. Simultaneous
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FIG. 38. First-order Sobol sensitivity of charged hadron multiplicity, identified particle multiplicity, and transverse energy to input
parameters.

consideration of observables and uncertainty quantification
are required for reliable inference of the physical properties
of strongly-interacting matter.
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APPENDIX A: SENSITIVITY ANALYSIS

First physics results can be produced once a surrogate
model has been trained and validated with a reliable set of
observables. Using the surrogate model, the global sensitivity
of the model to variation of input parameters is analyzed.
This analysis is an example of analysis of variance (ANOVA)

that decomposes the total variance of a model into vari-
ance of model parameters (at first order), pairs of model
parameters (second order), and so on. The first-order Sobol
indices quantify the global variance in model observable
due to variance in model parameters [135] and are readily
available [136,137].

For a given observable output y, suppose it can be rep-
resented as a function of model parameters x, y = f (x). A
prior predictive distribution p(y) is produced for each output
by marginalization,

p(y) =
∫

dxp(y|x)p(x). (A1)

The quantity of interest is, however, the variance associated
with a single parameter. In this case, suppose one fixed a
single parameter xi to take a particular value a. The variance of
the resulting distribution of outputs can be readily computed,

p(y|xi = a) =
∫

dx1 · · · dxi−1dxi+1 · · · dxn p(y|x)p(x),

(A2)
where x consists of n elements. The variance of this distri-
bution is Var(y)|a ≡ Var(p(y|xi = a)) and is the variance of
the observable y due to varying all parameters except xi, i.e.
conditional on xi = a. By marginalizing over possible values
of xi, determined in turn by the prior, the variance due to
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FIG. 39. First-order Sobol sensitivity of identified particle mean transverse energy and correlated momentum fluctuations to input
parameters.

variation of xi is found,

Var(y)|xi =
∫

da Var(y)|a p(a). (A3)

The first-order Sobol sensitivity index S1 for a parameter x j

and observable y is then

S1[x j] ≡ Var(y) − Var(y)|x j

Var(y)
, (A4)

the fractional variance in the observable from variation
of parameter x j alone. Therefore, if S1[x j] = 0.7, this is
interpreted as 70% of the global variation in this observable
being ascribed to variation of x j alone.

The first-order Sobol sensitivities of the observables in
the most central centrality bin are shown in Figs. 38–42.
Due to length, they are divided into the following groups of
observables: multiplicities and transverse energy in Fig. 38;
identified hadron mean transverse momentum and correlated
transverse momentum fluctuations in Fig. 39; anisotropic flow
in Fig. 40; flow modes vL

4 , v4(�2), v5(�23), v6(�2) in Fig. 41;
and the plane correlations ρ422, 〈cos(2�2 + 3�3 − 5�5)〉,
and 〈cos(2�2 + 4�4 − 6�6)〉 in Fig. 42. The similar sensi-
tivities of the two viscous correction models, almost always
overlapping, demonstrate that the models are similar, but not
identical, and that the viscous corrections are small compared
to the overall effect of parameter variation.

In these Sobol sensitivities, physical intuition is
confirmed—an important step in further verifying that
the model behaves as expected. The multiplicities and
transverse energy (Fig. 38) are dominantly sensitive to the
overall normalization (μQs ) and the viscosity presents a
small correction. The proton multiplicity, one of the most
sensitive observables to the chemistry of the system, is more
sensitive than the rest to the bulk viscosity and the switching
temperature.

The mean transverse momentum (Fig. 39) again confirm
the prior expectation that the dominant sensitivity is to the
overall normalization and the bulk viscosity. To date, however,
no study using an IP-GLASMA initial state has been able to
reproduce experimental results for δpT /〈pT 〉. This sensitivity
analysis reveals that, while the dominant sensitivity is to the
overall normalization, the fluctuations are primarily sensi-
tive to the shear viscosity, onset of hydrodynamics, and the
switching temperature. This study is the first with IP-GLASMA

to consider simultaneous variation of these parameters—in
concert with all observables—to learn what can be learned
about and from this observable.

The anisotropic flow coefficients (Fig. 40) reveal, as ex-
pected, that the dominant sensitivity is to shear viscosity and
overall normalization. The overall normalization is related
to the lifetime of the hydrodynamic phase, in turn allowing
for more time for the shear viscosity to act. Interestingly,
the difference in sensitivity between the two-particle and
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FIG. 40. First-order Sobol sensitivity of charged hadron anisotropic flow coefficients to input parameters.

four-particle anisotropic flows is isolated to an increased sen-
sitivity to overall normalization and a decreased sensitivity to
the high-temperature slow of the shear viscosity. However,
the vn{m} are broadly insensitive to the bulk viscosity and
particlization temperature, as anticipated.

In summary of the first generation observables, the ex-
pectations set by both hand tuning and previous studies
is confirmed: the normalization, shear viscosity, and bulk
viscosity are broadly sensitive to separate parameter fami-
lies, but yield constraints across the input parameter space.
Disappointingly perhaps, the switching time between the
preequilibrium and hydrodynamic stages does not appear to
be a dominant factor in the variance of any of these observ-
ables.

Consideration of the global sensitivity of next generation
observables begins with linear and nonlinear flow modes in
Fig. 41. These observables have less defined and smaller
sensitivity to the input parameters, alternately suggesting that
they are insensitive to the parameters or that the IP-GLASMA

initial state by construction contains the information needed to
reproduce these quantities. The exception in this case is to the
shear viscosity, whose kink value dominates the constraint of
these quantities. Nonetheless, physical expectations suggest
that these quantities couple the preequilibrium and hydrody-
namic stages in a way that similar first generation observables

do not—a feature that can be readily seen by their different
relations to the principal components in Fig. 6.

The correlators (Fig. 42) are also less sensitive to variation
of the parameters than the first generation observables. Addi-
tionally, the large uncertainties on the Sobol indices suggests
that the sensitivity is less uniform across the space than in the
first generation observables. Nonetheless, these observables
further couple the initial state geometry to the hydrodynamic
phase in a way poorly quantified by the first generation ob-
servables alone.

The sensitivity analysis provides the first glimpse into the
response of an IP-GLASMA + MUSIC + IS3D + SMASH hybrid
model to parameter variation. This result, with a validated sur-
rogate model, yields the first physics insights by calculating
the global sensitivity of these observables with the leading
physics model of the preequilibrium stage and how a realistic
hydrodynamic medium responds. The PCA and sensitivity
analysis confirm, before any inference has taken place, that
the model outputs will yield constraints and that there is infor-
mation in the next generation observables not contained in the
first generation observables that have been the focus of most
previous studies. Combined with a physical understanding of
the observables themselves, this suggests strongly that excit-
ing opportunities lie ahead for learning through model-to-data
comparison.
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FIG. 41. First-order Sobol sensitivity of charged hadron linear and nonlinear flow modes to input parameters.

FIG. 42. First-order Sobol sensitivity of charged hadron event plane correlators to input parameters.
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APPENDIX B: MCMC

This work uses PTEMCEE [138,139] to implement parallel
tempering Markov chain Monte Carlo (MCMC). This has
been found to give excellent convergence behavior to the
target distribution in heavy ion collisions [30] with low au-

tocorrelation. Low autocorrelation ensures that the model is
sampling from the target, which is further supported by visu-
alizing the trace of the MCMC chain to look for coordinated
walks. As demonstrated in Fig. 12, the chain is well behaved
for these applications.
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