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Polarization effects in elastic deuteron-electron scattering
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The differential cross section and polarization observables for the elastic reaction induced by deuteron scat-
tering off electrons at rest are calculated in the one-photon-exchange (Born) approximation. Specific attention is
given to the kinematical conditions, that is, to the specific range of incident energy and transferred momentum.
The peculiar interest of this reaction is to access very small transferred momenta. Numerical estimates are given
for polarization observables that describe the of single- and double-spin effects, provided that the polarization
components (both vector and tensor) of each particle in the reaction are determined in the rest frame of the
electron target.
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I. INTRODUCTION

In a previous work [1] we calculated the cross section in the
Born approximation for the elastic scattering of deuteron on
atomic electrons as well as the first order radiative corrections
for lepton emission. In the present paper we complete and
extend this study to a number of polarization observables.
Expressions for some of the observables have already been
published [2].

The main feature of the reaction d + e → d + e where
electrons are at rest is the inverse kinematics: the projectile
is much heavier than the target, transferring then an extremely
small squared momentum, Q2, compared to the incident en-
ergy. Reactions induced by proton and deuteron beams on
atomic electrons, give the possibility to measure the elec-
tromagnetic hadron form factors at very small transferred
four-momentum, that is unachievable by direct kinematics.

Inverse kinematics was used in a number of the exper-
iments to measure the pion or kaon radius in the elastic
scattering of negative pions (kaons) from atomic electrons in
a liquid-hydrogen target [3–8]. Recently, low-Q2 data were
used to determine the hadron charge radius, rc. In the cases of
protons and deuterons, renewed interest in the charge radius
is due to the discrepancy between several experiments based
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on different methods. The most recent CODATA evaluation
gives an updated value of the proton root mean squared (rms)
radius of 〈r2〉p = 0.8414(19) fm for the proton and 〈r2〉d =
2.12799(74) fm for the deuteron, see [9] and references
therein. Any revision of the static (and dynamic) properties
of the proton affects directly the description of light nuclei, in
particular of the deuteron. At relatively large internal distances
(small Q2 values) the deuteron is considered to be a bound
system of a proton and a neutron and any small correction
would introduce additional effects beyond this simple picture.

Large interest in inverse kinematics is related to polar-
ization phenomena. Polarization observables are essential to
disentangle the hadron structure and the reaction mechanism
so to be able to test the validity and the predictions of hadron
models having in addition interesting applications.

In the case of the p + e elastic scattering the possibility
to build beam polarimeters for high energy polarized proton
beams in the BNL relativistic heavy ion collider energy range
was put forward in Ref. [10]. The calculation of the spin
correlation parameters, for the case of polarized proton beam
and electron target, are sizable and a polarimeter based on this
reaction can measure the polarization of the proton beam [10].
Numerical estimations of other polarization observables were
done in Ref. [11]. They showed that polarization effects may
be sizable in the GeV range, and that the polarization transfer
coefficients for �p + e → �p + e could be used to measure the
polarization of high energy proton beams.

In this work we consider the scattering of a polarized
deuteron beam on a polarized electron target, assuming that
the electron target is at rest and the deuteron beam interacts
through the exchange of one photon with four-momentum
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FIG. 1. One photon exchange diagram of the process (1) and
chosen coordinate axes in the rest frame of the initial electron.

squared −k2 = Q2 > 0. We follow the formalism from
Ref. [11], which was developed in the one-photon-exchange
approximation for the process of the elastic proton-electron
scattering p + e− → p + e− and extended to unpolarized
deuteron in Ref. [1]. Numerical estimations are given for
various polarization observables. The possibility to build a
polarimeter based on elastic deuteron-electron scattering is
also discussed.

The paper is organized as follows. In Sec. II we give
the details of the order of magnitude and the range which
is accessible to the kinematic variables, as they are very
specific for this reaction (Sec. II A). The spin structure of
the matrix element and the unpolarized cross section are de-
rived and calculated in Sec. II B in terms of deuteron form
factors, which parametrization is discussed in the Appendix.
Section III is devoted to the calculation of the polarization
observables for the reaction d + e → d + e. Analyzing pow-
ers in the �d T + e → d + e reaction (when deuteron beam is
tensor polarized) are calculated in Sec. III A. The tensor polar-
ization coefficients in the d + e → �dT + e reaction (when the
scattered deuteron is tensor polarized) are given in Sec. III B.
The polarization transfer coefficients from a polarized target
to the polarized recoil electron are calculated in Sec. III C.
In Secs. III D–III G we give the expressions for double po-
larization observables and derive various combinations the
coefficients of the polarization correlation and polarization
transfer between deuteron and electron, provided they have
vector polarization. In Sec. III H the vector polarization trans-
fer from the initial deuteron to the scattered one is calculated.
Section IV is devoted to discussion and conclusion.

II. GENERAL FORMALISM

Let us consider the reaction (Fig. 1)

d (p1) + e−(k1) → d (p2) + e−(k2), (1)

where the particle momenta are indicated in parentheses, and
k = k1 − k2 = p2 − p1 is the four-momentum of the virtual
photon. The reference system is the laboratory (Lab) system,
where the electron target is at rest. A general characteristic
of all reactions of elastic and inelastic hadron scattering by
atomic electrons (which can be considered at rest) is the
small value of the four-momentum squared even for relatively
large energies of colliding hadrons. The derivation of the spin

structure of the matrix element and of the unpolarized and po-
larized observables is given below, following the description
of the specific kinematics and the illustration of the accessible
kinematical range and of the order of magnitudes involved.

A. Kinematics

In the Lab system the four-momentum transfer squared is
a linear function of the scattered electron energy ε2,

−k2 ≡ Q2 = −(k1 − k2)2 = 2m(ε2 − m), (2)

where m is the electron mass. The conservation of the four-
momentum in the reaction (1) leads to the following relation
between the energy ε2 and the scattering angle θe of the final
electron:

cos θe = (E + m)(ε2 − m)

p
√

ε2
2 − m2

, (3)

where E is the deuteron beam energy, p = √
E2 − M2 is the

modulus of the three-momentum (M is the deuteron mass).
From Eq. (3) one can see that cos θe � 0 (because ε2 > m)
and the electron can never scatter backward. The following
relations hold:

ε2 = m
(E + m)2 + (E2 − M2) cos2 θe

(E + m)2 − (E2 − M2) cos2 θe
,

Q2 = 4m2 p2 cos2 θe

(E + m)2 − p2 cos2 θe
, (4)

which show that final electron has maximal energy when it is
emitted forward (cos θe = 1),

ε2max = m
2E (E + m) + m2 − M2

M2 + 2mE + m2
, (5)

giving the maximum value of the momentum transfer squared
Q2

max,

Q2
max = 4m2 p2

M2 + 2mE + m2
. (6)

From Eqs. (5), (6) it appears that in the inverse kinematics
the available kinematical regions are reduced to small values
of ε2 and Q2 (compared with E and E2) which are propor-
tional to m and m2, respectively. For example, at E = 10 GeV
one has ε2 � 25 MeV and Q2 � 25 MeV2. The upper limits
of these quantities increase approximately as E2.

As in the proton case to one deuteron angle may correspond
two values of the deuteron energy with two corresponding
values for the recoil-electron energy and angle and for the
transferred momentum squared. This is a typical situation
when the velocity of the center of mass, where all angles are
allowed for the recoil electron, is larger than the velocity of the
projectile. The momentum conservation gives the following
relation between the energy and the angle of the scattered
deuteron E2 and θd :

E±
2 = (E + m)(M2 + mE ) ± p2 cos θd

√
m2 − M2 sin2 θd

(E + m)2 − p2 cos2 θd
.

(7)
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The two solutions coincide when the angle between the initial
and final hadron takes its maximum value, which is deter-
mined by the ratio of the electron and scattered hadron masses,
sin θd,max = m/M. Nevertheless, at fixed values of ε2 or Q2 the
energy of the scattered deuteron is unambiguous

E2 = E + m − ε2 = E − Q2

2m
. (8)

Summarizing, hadrons are scattered from atomic electrons
at very small angles: the larger is the hadron mass, the smaller
is the available angular range for the scattered hadron.

B. Unpolarized cross section

In the one-photon-exchange approximation the matrix ele-
ment M of the reaction (1) can be written as

M = − e2

k2
jμJμ, (9)

where jμ(Jμ) is the lepton (hadron) electromagnetic current
and e is the electron charge. The sign “minus” is not relevant
for the present derivation in frame of one photon exchange,
but it becomes important for radiative correction calculations,
as for example, for the two photon exchange term. The lepton
current is

jμ = ū(k2)γμu(k1), (10)

where u(k1) (u(k2)) is the bispinor of the incoming (outgoing)
electron. Following the requirements of Lorentz invariance,
current conservation, parity, and time-reversal invariance of
the hadron electromagnetic interaction, the general form of
the electromagnetic current for the deuteron (being a spin-one
particle) is fully described by three form factors. The hadron
electromagnetic current can be written as [12]

Jμ = (p1 + p2)μ

[
−G1(Q2)U1 · U ∗

2 + 1

M2
G3(Q2)

(
U1 · kU ∗

2 · k + Q2

2
U1 · U ∗

2

)]
+ G2(Q2)(U1μU ∗

2 · k − U ∗
2μU1 · k), (11)

where U1μ and U2μ are the polarization four vectors for the initial and final deuteron states. The functions Gi(k2), i = 1, 2, 3, are
the deuteron electromagnetic form factors, depending only on the virtual photon four-momentum squared. Due to the hermiticity
of the current these form factors are real functions in the region of space-like momentum transfer.

These form factors are related to the standard deuteron form factors GC (charge monopole), GM (magnetic dipole), and GQ

(charge quadrupole) by the following relations:

GM (Q2) = −G2(Q2), GQ(Q2) = G1(Q2) + G2(Q2) + 2G3(Q2),

GC (Q2) = 2

3
τ [G2(Q2) − G3(Q2)] +

(
1 + 2

3
τ

)
G1(Q2), τ = Q2

4M2
(12)

with the normalizations

GC (0) = 1, GM (0) = M

mN
μd , GQ(0) = M2Qd , (13)

where mN is the nucleon mass, μd = 0.857, [13] (Qd = 0.2857 fm2 [14]) is the deuteron magnetic (quadrupole) moment. Note
also that

G1(Q2) = 1

1 + τ

[
τGM (Q2) + GC (Q2) + τ

3
GQ(Q2)

]
,

G3(Q2) = 1

2(1 + τ )

[
GM (Q2) − GC (Q2) +

(
1 + 2τ

3

)
GQ(Q2)

]
. (14)

The matrix element squared is

|M|2 = 16π2 α2

Q4
LμνHμν, (15)

where α = e2/4π = 1/137 is the electromagnetic fine struc-
ture constant. The lepton Lμν and hadron Hμν tensors are
defined as

Lμν = jμ jν∗, Hμν = JμJ∗
ν . (16)

The lepton tensor, L(0)
μν , for unpolarized initial and final

electrons (averaging over the initial electron spin) has the
form

L(0)
μν = −Q2gμν + 2(k1μk2ν + k1νk2μ). (17)

The contribution to the lepton tensor from a polarized electron
target is

L(p)
μν (s1) = 2imεμνρσ kρsσ

1 , ε0123 = −1, (18)

where s1σ is the initial electron polarization four-vector satis-
fying the conditions k1 · s1 = 0, s2

1 = −1.
The hadron tensor Hμν is calculated in terms of the

deuteron electromagnetic form factors using the explicit form
of the electromagnetic current (11). The spin density ma-
trices of the initial and final deuterons have the following
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expressions:

ρ
(i)
αβ = −1

3

(
gαβ − 1

M2
p1α p1β

)
+ i

2M
εαβλρη

λ
1 pρ

1 + Q(i)
αβ,

ρ
( f )
αβ = −

(
gαβ − 1

M2
p2α p2β

)
+ i

2M
εαβλρη

λ
2 pρ

2 + Q( f )
αβ .

(19)

Here, η1α (η2α ) and Q(i)
αβ (Q( f )

αβ ) are the four vectors and
tensors describing the vector and tensor (quadrupole)
polarization of the initial (final) deuteron, respectively.
The four-vector of the vector polarization of the ini-
tial (final) deuteron satisfies the following conditions:
η2

1 = −1, η1 · p1 = 0 (η2
2 = −1, η2 · p2 = 0). The tensor Q(i)

αβ

satisfies the conditions Q(i)
αβ gαβ = 0, Q(i)

αβ = Q(i)
βα, Q(i)

αβ pα
1 =

0. The tensor Q( f )
αβ satisfies the same conditions, after substi-

tuting: i → f and pα
1 → pα

2 .
The hadron tensor Hμν (0), for the case of unpolarized

initial and final deuterons can be written in the standard form
in terms of two spin-independent structure functions:

Hμν (0) = H1(Q2)g̃μν + 1

M2
H2(Q2)PμPν, (20)

where g̃μν = gμν − (kμkν )/k2, Pμ = (p1 + p2)μ. Averaging
over the spin of the initial deuteron, the structure functions
Hi(Q2), i = 1, 2, can be expressed in terms of the electromag-
netic form factors as

H1(Q2) = − 2
3 Q2(1 + τ )G2

M (Q2),

H2(Q2) = M2[G2
C (Q2) + 2

3τG2
M (Q2) + 8

9τ 2GQ(Q2)
]
. (21)

The differential cross section is related to the matrix element
squared (15) by

dσ = (2π )4|M|2
4
√

(k1 · p1)2 − m2M2

d3�k2

(2π )32ε2

× d3 �p2

(2π )32E2
δ4(k1 + p1 − k2 − p2) (22)

with

|M|2 = 16π2 α2

Q4
Lμν (0) Hμν (0),

where �p2 (E2) is the three-momentum (energy) of the scat-
tered deuteron.

From this point on, the formalism differs from the standard
elastic electron-deuteron scattering because we introduce a
reference system where the electron is at rest. In this system
the differential cross section is written as

dσ

dε2
= 1

32π

|M|2
m p2

. (23)

The average over the spins of the initial particles has been
included in the lepton and hadron tensors. Using Eq. (2) one
can write

d σ

d Q2
= 1

64π

|M|2
m2 p2

. (24)

The differential cross section over the electron solid angle
can be written as

dσ

d�e
= 1

32π2

1

m p

|�k2|3
Q2

|M|2
E + m

, (25)

where d �e = 2π d cos θ (due to the azimuthal symmetry)
and we used the relation

dε2 = p

E + m

|�k2|3
m(ε2 − m)

d�e

2π
. (26)

The differential cross section over Q2 for unpolarized
deuteron-electron scattering (24) (in the coordinate system
where the electron is at rest) can be written as

dσ

dQ2
= π α2

2 m2 p2

D
Q4

, D = 1

2
Lμν (0) Hμν (0) (27)

with

D = (−Q2 + 2m2)H1(Q2)

+ 2[−Q2M2 + 2mE (2mE − Q2)]
H2(Q2)

M2
. (28)

The term D has the following form in terms of the deuteron
form factors:

D = 4
3τ [4m2(E2 − M2) − Q2(m2 − M2 + 2mE − 2M2τ ]

× G2
M (Q2) + 2[−M2 Q2 + 2mE (2mE − Q2)]

× [
G2

C (Q2) + 8
9τ 2G2

Q(Q2)
]
. (29)

To perform the numerical estimations one needs to know
the behavior all three form factors (GM, GC, GQ) in the re-
gion of small momentum transfer squared. We choose the
parametrization from Ref. [15], that is reported in the Ap-
pendix. At Q2 = 0 form factors are normalized to the static
values of charge, magnetic and quadrupole moments but they
are in principle functions of Q2 and their derivative becomes
important for some applications, typically for extracting the
hadron radius. We restrict ourselves to the maximum deuteron
beam energy E = 200 GeV, i.e., Q2

max does not exceed
0.012 GeV2.

III. POLARIZATION OBSERVABLES

Several polarization observables can be measured and cal-
culated for elastic deuteron-electron scattering. Besides the
electron polarization, the initial and final deuterons may have
vector and tensor polarizations. Let us focus here on sin-
gle and double polarization observables. Among single-spin
observables, we consider effects which arise within the one-
photon exchange approximation when the amplitude of the
process (1) is real. In such approximation, single-spin effects
arise due to the tensor polarization of the initial or final
deuteron only. In this respect we note that in presence of
the two photon exchange contribution the scattering ampli-
tude contains an imaginary part: additional single-spin effects
arise due to the target electron polarization or due to vector
polarization of the deuteron beam which lead to an azimuthal
asymmetry of the cross section similar to the one in elastic
electron-proton scattering [16,17].
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We calculate the following single- and double-spin ef-
fects due to the tensor polarization of the initial or final
deuteron:

(1) The analyzing powers (asymmetries) due to the
tensor polarization of the deuteron beam, �d T + e →
d + e.

(2) The tensor polarization of the scattered deuteron
when the other particles are unpolarized, d + e →
�d T + e.

(3) The polarization transfer coefficients which describe
the polarization transfer from the polarized electron
target to the recoil electron in the d + �e → d + �e
reaction.

(4) The spin correlation coefficients when the deuteron
beam is vectorially polarized and the initial electron
has arbitrary polarization, �d V + �e → d + e.

(5) The polarization transfer coefficients which describe
the vector polarization transfer from a polarized elec-
tron target to the scattered deuteron, d + �e → �d V + e.

(6) The spin correlation coefficients when the scattered
deuteron has vector polarization and the final electron
has arbitrary polarization, d + e → �d V + �e.

(7) The polarization transfer coefficients which describe
the polarization transfer from the vector-polarized
deuteron beam to the recoil electron in the �d V + e →
d + �e reaction.

(8) The depolarization coefficients which define the de-
pendence of the scattered deuteron vector polarization
on the vector polarization of the deuteron beam, �d V +
e → �d V + e.

The following orthogonal system is chosen: the z axis is
directed along the direction of the deuteron beam momentum
�p, the momentum of the recoil electron �k2 lies in the xz plane
(θe is the angle between the deuteron beam and the recoil
electron momenta), and the y axis is directed along the vector
�p × �k2 (see Fig. 1). So, the components of the deuteron beam
and recoil electron momenta are

px = py = 0, pz = p, k2x = k2 sin θe,

k2y = 0, k2z = k2 cos θe,

where p (k2) is the magnitude of the deuteron beam (recoil
electron) momentum.

To calculate the polarization observables, the polarization
three-vectors of all particles as well the components of both
deuteron tensor polarizations have to be defined in their rest
frames. All observables are calculated in the Lab coordinate
system shown in Fig. 1.

The corresponding polarization observables are analyti-
cally calculated as functions of Q2 at fixed deuteron beam
energy and their dependence on the kinematical variables is
plotted similarly to the unpolarized cross section discussed in
the Appendix.

A. Analyzing powers or asymmetries, Ai j , unpolarized
electrons, tensor polarized deuteron beam,�d T + e → d + e

We consider here the scattering of a tensor polarized
deuteron beam on an unpolarized electron target. The hadron
tensor can be written in the following general form:

Hμν (Q(i) ) = H3(Q2)Q̄(i)g̃μν + H4(Q2)
Q̄(i)

4M2
PμPν

+ H5(Q2)(PμQ̃(i)
ν + PνQ̃(i)

μ ) + H6(Q2)Q̃(i)
μν,

(30)

where

Q̃(i)
μ = Q(i)

μνkν + kμ

Q2
Q̄(i), Q̃(i)

μ kμ = 0,

Q̃(i)
μν = Q(i)

μν + kμkν

Q4
Q̄(i) + kνkα

Q2
Q(i)

μα + kμkα

Q2
Q(i)

να, (31)

Q̃(i)
μνkν = 0, Q̄(i) = Q(i)

αβkαkβ.

The structure functions Hi(k2) are related to the deuteron
electromagnetic form factors by

H3(Q2) = −G2
M ,

H4(Q2) = G2
M + 4

1 + τ
G GQ,

H5(Q2) = −τ (GM + 2GQ)GM, (32)

H6(Q2) = Q2(1 + τ )G2
M ,

G = τ GM + GC + τ

3
GQ.

In an arbitrary reference frame the contraction of the spin
independent lepton Lμν (0) and spin dependent hadron tensors
Hμν (Q(i) ) gives

C(Q(i) ) = Lμν (0) Hμν (Q(i) )

= a kμ
1 kν

1 Q(i)
μν + b kμ

1 kν Q(i)
μν + c kμ kν Q(i)

μν, (33)

where the functions a, b, and c are expressed in terms of the
deuteron electromagnetic form factors (in the rest frame of the
electron target) as

a = 4(1 + τ )Q2 G2
M,

b = −16τGM [(M2 + m E )GM + 2(m E − τM2) GQ],

c =
[

Q2 − 4m2 + 4
m2

M2
E2

]
G2

M + 16τm E GM GQ

+ 4

M2

GQ G

1 + τ
[−Q2(M2 + 2m E ) + 4m2 E2]. (34)

From the condition pμ
1 Q(i)

μν = 0 one can write the time
components of the quadrupole polarization tensor in terms
of the space components of this tensor. These relations
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are

Q(i)
00 = p2

E2
Q(i)

zz , Q(i)
0x = p

E
Q(i)

xz , Q(i)
0y = p

E
Q(i)

yz , Q(i)
0z = p

E
Q(i)

zz . (35)

The components of the quadrupole polarization tensor Q(i)
i j defined in the Lab system can be related to the ones defined in the

rest system of the deuteron beam (denoted as Ri j) by the following relations:

Q(i)
xx = Rxx, Q(i)

yy = Ryy, Q(i)
xz = E

M
Rxz, Q(i)

zz = E2

M2
Rzz.

The Q2 dependence of the differential cross section of the reaction (1) on the polarization characteristics of the (tensor polarized)
deuteron beam is

dσ

dQ2
(Q(i) ) =

(
dσ

dQ2

)
un

[1 + Axx(Qxx − Qyy) + AxzQxz + AzzQzz], (36)

where Ai j , i, j = x, y, z are the analyzing powers (asymmetries) which characterize the �d T − e scattering when the deuteron
beam is tensor polarized.

The expressions of these analyzing powers in terms of the deuteron electromagnetic form factors are

DAxx = x2

M2

[
(m2 p2 + τM4)G2

M + mE Q2 GM GQ + (4m2E2 − M2Q2 − 2mE Q2)

1 + τ
GQ G

]
,

DAxz = 2
xτ (M2 + mE )

mpE

{
M2Q2 G2

M − 2

[
m2 p2(4mE − Q2)

M2 + mE
− 2mE Q2

]
GM GQ + 4(4m2E2 − M2Q2 − 2mE Q2)

1 + τ
GQ G

}
,

DAzz = Q2

E2

{[
m2 p2

(
1 + Q2

Q2
max

)
+ Q4

8
− 3

4
M2 x2

]
G2

M +
[

Q4

2
+ mE [4τ (Q2 − 2mE ) − 3x2]

]
GM GQ

+ Q2(M2 + 2mE ) − 4m2E2

1 + τ

(
1 − 2τ − 3

Q2

Q2
max

)
GQ G,

}
,

x = k2x = −p2x =
[

Q2

(
1 − Q2

Q2
max

)]1/2

. (37)

The asymmetries due the tensor polarization of the deuteron beam are plotted in Fig. 2 for the chosen form factors.

B. Tensor polarization coefficients, Pi j , unpolarized electrons, tensor polarized scattered deuteron, d + e → �d T + e

We consider here the scattering of an unpolarized deuteron beam on an unpolarized electron target, when the polarization
of the recoil electron is not measured and the scattered deuterons becomes tensor polarized. The hadron tensor is written in the
following general form:

Hμν (Q( f ) ) = H̄3Q̄( f )g̃μν + H̄4
Q̄( f )

4M2
PμPν − H̄5(PμQ̃( f )

ν + PνQ̃( f )
μ ) + H̄6Q̃( f )

μν , (38)

where the structure functions H̄i, averaged over the spin of the initial deuteron, are written in terms of the deuteron electromag-
netic form factors: H̄i = Hi/3, i = 3, 4, 5, 6. Note that the tensor structures in this case can be obtained from Eq. (30) by the
substitution (p1 � −p2), wherein the structure accompanying H̄5 changes sign.

The contraction of the spin independent lepton L(0)
μν and spin dependent hadron tensors Hμν (Q( f ) ) (due to the tensor

polarization of the scattered deuteron) in an arbitrary reference frame, gives

C(Q( f ) ) = Lμν (0)Hμν (Q( f ) ) = ā kμ
1 kν

1Q( f )
μν + b̄ kμ

1 pν
1Q( f )

μν + c̄ kμkνQ( f )
μν , (39)

where the coefficients ā, b̄, and c̄ are written in terms of the deuteron electromagnetic form factors as

ā = 2

3
(1 + τ )Q2G2

M ,

b̄ = 8

3
τGM[(M2 + 2τM2 − k1 · p1)GM + 2(τM2 − k1 · p1)GQ],

c̄ = 2

3M2

{
[(k1 · p1)2 − Q2k1 · p1 − m2M2 + τ (1 + 4τ )M4]G2

M − k2(2τM2 − k1 · p1)GMGQ

+ (1 + τ )−1[4(k1 · p1)2 − Q2(M2 + 2k1 · p1)]GQ G
}
. (40)
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FIG. 2. Tensor asymmetries with unpolarized electrons, tensor polarized deuteron beam, Eqs. (36), (37), as functions of the deuteron beam
energy E for different θe values (left column): θe = 1 mrad (solid black line), θe = 5 mrad (red dashed line), θe = 20 mrad (dotted blue line)
and as function of the electron scattering angle θe for different values of the energy (right column): E = 5 GeV (solid black line), E = 50 GeV
(dashed red line), E = 100 GeV (dotted blue line), and E = 200 GeV (dash-dotted green line). The arrow with “minus” sign indicates that the
corresponding asymmetry may become negative and the absolute value is plotted.

From the condition pμ
2 Q( f )

μν = 0 one finds the time components of the scattered deuteron quadrupole polarization tensor in terms
of the space components of this tensor:

Q( f )
00 = x2Q( f )

xx − 2xzQ( f )
xz + z2Q( f )

zz

E2
d

, Q( f )
0z = zQ( f )

zz − xQ( f )
xz

Ed
,

Q( f )
0x = zQ( f )

xz − xQ( f )
xx

Ed
, Q( f )

0y = zQ( f )
yz − xQ( f )

xy

Ed
, Ed = E − Q2

2m
, (41)

where Ed is the energy of the scattered deuteron and

z = p2z = p

[
1 − (E + m) Q2

2m p2

]
.

The components of the quadrupole polarization tensor Q( f )
i j in the Lab system are related to

the corresponding ones in the rest system of the scattered deuteron, denoted as Vi j , by the
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relations

Q( f )
xx = (1 + x2y)2Vxx − 2xyz(1 + x2y)Vxz + (xyz)2Vzz, Q( f )

yy = Vyy,

Q( f )
zz = (xyz)2Vxx − 2xyz(1 + z2y)Vxz + (1 + yz2)2Vzz, (42)

Q( f )
xz = −xyz(1 + z2y)Vxx + [1 + y(x2 + z2) + 2(xyz)2]Vxz − xyz(1 + yz2)Vzz,

where y = [M(Ed + M )]−1.

In the Lab system, the Q2 dependence of the differential cross section on the polarization characteristics of the scattered
deuteron with unpolarized initial particles is

dσ

dQ2
(Q( f ) ) =

(
dσ

dQ2

)
un

[
1 + Pxx(Q( f )

xx − Q( f )
yy ) + PxzQ( f )

xz + PzzQ( f )
zz

]
, (43)

where Pi j , i, j = x, y, z are the components of the tensor polarization of the scattered deuteron and are written in terms of the
deuteron electromagnetic form factors as

DPzz = 2

3 M2d Ed

[
a1 G2

M + a2 GM GQ + a3 GQ G
]
, d = 2E2

d − x2,

a1 = (2z2 − x2) Ed{E2(m2 p2 + τM4) − Q2(E + m)[mp2 − τM2(E + m)]}
+ p d[−mzQ2(M2 + 2τM2 − mE ) + (pEd − 2Ez)(m2 p2 − mEQ2 + τM4 + τM2Q2)],

a2 = Q2
{ − p2d m E2

d − 2p d z[τM2(2E + m) − mE (E + m)] + (2z2 − x2)E Ed [2τM2(E + m) − mE (E + 2m)]
}
,

a3 = 4m2E2 − Q2(M2 + 2mE )

1 + τ
[(2z2 − x2)E2 Ed + p d (p Ed − 2E z)],

DPxx = 2 x2

3d M2
[b1 G2

M + b2 GM GQ + b3 GQ G],

b1 = mp2[mE2 − Q2(E + m)] + τM2[E2M2 + Q2(E + m)2],

b2 = −EQ2[2(mE − τM2)(E + m) − mE2],

b3 = E2

1 + τ
[4m2E2 − Q2(M2 + 2mE )],

DPxz = 2x

3dM2Ed

[
c1G2

M + c2GMGQ + c3GQ G
]
,

c1 = 4pQ2(E + m)Ed [2mp2 − Q2(E + m)] − 4zEd [Q2τM2(E + m)2 + E2(m2 p2 + τM4)

+ p2Q2m(E + m)] + pd[2E (m2 p2 + τM4 + τQ2M2) − mQ2(mE + E2 + p2 − 2τM2)],

c2 = −4zEQ2Ed [mE2 + 2(E + m)(τM2 − mE )] − pdQ2[2mE (E + m) − 2τM2(2E + m)],

c3 = 2E

1 + τ
[(4m2E2 − Q2(M2 + 2mE )](pd − 2zEEd ). (44)

The results for the tensor polarizations of the scattered deuteron are shown in Fig. 3.

C. Polarization transfer coefficients, ti j , polarized target, polarized recoil electron, d +�e → d +�e

We consider the scattering of an unpolarized deuteron beam on a polarized electron target when the polarization of the recoil
electron is measured and the polarization of the scattered deuteron is not measured.

The contribution to the lepton tensor due to a polarized target and a polarized recoil electron is

Lμν (s1, s2) = −
(

k1 · s2k2 · s1 − Q2

2
s1 · s2

)
gμν − Q2

2
(s1μs2ν + s1νs2μ) − s1 · s2(k1μk2ν + k1νk2μ)

+ k1 · s2(s1μk2ν + s1νk2μ) + k2 · s1(s2μk1ν + s2νk1μ), (45)
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FIG. 3. Same as Fig. 2 but for the tensor polarization coefficients Pi j , with unpolarized electrons, tensor polarized scattered deuteron,
Eqs. (43), (44).

where s2μ is the polarization four-vector of the recoil electron, satisfying the following conditions: k2 · s2 = 0, s2
2 = −1. In the

Lab system, where the target electron is at rest, the polarization four-vector of the recoil electron is

s2 =
( �k2 · �ξ2

m
, �ξ2 + �k2(�k2 · �ξ2)

m(m + ε2)

)
, (46)

where �ξ2 is the unit vector describing the polarization of the recoil electron in its rest system and ε2 is the recoil electron energy.
The contraction of the spin dependent lepton tensor Lμν (s1, s2) and the spin independent hadron tensor Hμν (0), is written in

an arbitrary reference frame as

C(s1, s2) = Lμν (s1, s2)Hμν (0)

= −2m2s1 · s2H1(Q2) + H2(Q2)

M2

{
− 2s1 · s2

[
(k1 · P)2 − P2Q2

4

]
− 4M2(1 + τ )k1 · s2k2 · s1 − Q2P · s1P · s2 + 2P · k1(k1 · s2P · s1 + k2 · s1P · s2)

}
, (47)

where the structure functions H1,2(Q2) are given by Eq. (21).
The differential cross section for polarized initial and recoil electrons has the following form:

dσ

dQ2
(�ξ1, �ξ2) = 1

2

(
dσ

dQ2

)
un

[1 + txxξ1xξ2x + tyyξ1yξ2y + tzzξ1zξ2z + txzξ1xξ2z + tzxξ1zξ2x], (48)
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where ti j , i, j = x, y, z are the coefficients of the polarization transfer from the target to the recoil electron. In the Lab system,
the polarization transfer coefficients are written in terms of the deuteron form factors as

Dtxx = (2m2 + Q2 sin2 θe)

{
H1(Q2) + 4

H2(Q2)

M2
[E2 − λ(M2 + 2mE )]

}
+ 4H2(Q2)|�k2| sin2 θe

M2
[4λmpE cos θe + |�k2|(M2 − 2E2)],

Dtyy = 2m2

{
H1(Q2) + 4

H2(Q2)

M2
[E2 − λ(M2 + 2mE )]

}
,

Dtzz = 4|�k2| cos θe
H2(Q2)

M2
[(M2 − 2E2)|�k2| cos θe + 4λmp(m + E + E cos2 θe)]

+ 2m2(1 + 2λ cos2 θe)

{
H1(Q2) + 4

H2(Q2)

M2
[E2 − λ(2E2 − M2 + 2mE )]

}
,

Dtxz = 4|�k2| sin θe
H2(Q2)

M2
[(M2 − 2E2)|�k2| cos θe + 2mpE ]

+ 4λ cos θe sin θe

{
m2H1(Q2) + H2(Q2)

M2
[4mE (mE + p|�k2| cos θe) − Q2(M2 + 2mE )]

}
,

Dtzx = 4|�k2| sin θe
H2(Q2)

M2
[(M2 − 2E2)|�k2| cos θe + 2mp(2mλ + 2λE − E )]

+ 4λ cos θe sin θe

{
m2H1(Q2) + H2(Q2)

M2
[4mE (mE + p|�k2| cos θe) − Q2(E2 + p2 + 2mE )]

}
, (49)

where λ = Q2/(4m2). We recall that sin θe and cos θe are functions of Q2 and of the deuteron beam energy E , namely,

|�k2| cos θe = Q2

2m

√
1 + 4m2

Q2
max

, |�k2| sin θe =
√

Q2

(
1 − Q2

Q2
max

)
, |�k2| =

√
Q2(1 + λ)

with Q2
max given in Eq. (6).

The electron polarization transfer coefficients ti j are plotted in Figs. 4 and 5.

D. Spin correlation coefficients, Ci j , polarized electron target, vector polarized deuteron beam,�d V +�e → d + e

Let us consider the scattering of a vector polarized deuteron beam where the polarizations of the final particles are not
measured. In the one photon exchange approximation, nonzero polarization effects arise only when the electron target is also
polarized. The part of the hadron tensor Hμν (η1) related to the vector polarized deuteron beam and unpolarized scattered deuteron
can be written as

Hμν (η1) = 2iM GM

[
(1 + τ )G̃εαβλρη

λ
1kρ + η1 · k

4M2
(GM − 2G̃)εαβλρ pλ

1kρ

]
,

G̃ = GC + τ

3
GQ. (50)

One can see that all correlation coefficients in �d V + �e → d + e, and polarization transfer coefficients in the reaction d + �e →
�d V + e when the deuteron is vector polarized are proportional to the deuteron magnetic form factor. This is also true for the
corresponding polarization observables in ed elastic scattering.

The contraction of the spin-dependent lepton L(p)
μν (s1) and hadron Hμν (η1) tensors, in an arbitrary reference frame, gives

C(s1, η1) = L(p)
μν (s1)Hμν (η1)

= 4mMGM{τk · η1(k · s1 + 2p1 · s1)GM + 2 G̃ [Q2(1 + τ )s1 · η1 + k · η1(k · s1 − 2τ p1 · s1)]}. (51)

In the frame where the target electron is at rest, the polarization four-vectors of the electron target, s1, and of the deuteron beam,
η1, are

s1 = (0, �ξ1), η1 =
(

�p · �S1

M
, �S1 + �p( �p · �S1)

M(E + M )

)
, (52)

where �S1 is the unit vector describing the vector polarization of the deuteron beam in its rest system.
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FIG. 4. Coefficients of polarization transfer from polarized target and recoil electrons, Eqs. (48), (49), as functions of energy for different
θe values: θe = 1 mrad (solid black line), θe = 5 mrad (red dashed line), θe = 20 mrad (dotted blue line).

Applying the P invariance of the hadron electromagnetic interaction, the Q2 dependence of the differential cross section on
the polarization of the initial particles is

dσ

dQ2
(�ξ1, �S1) =

(
dσ

dQ2

)
un

[1 + Cxxξ1xS1x + Cyyξ1yS1y + Czzξ1zS1z + Cxzξ1xS1z + Czxξ1zS1x], (53)

where Ci j , i, j = x, y, z, are the spin correlation coefficients which determine the �d V − �e scattering, when the deuteron beam is
vector polarized and the electron target is arbitrarily polarized.

The explicit expressions of the spin correlation coefficients, as functions of the deuteron form factors is

DCyy = −4mMQ2(1 + τ )GM G̃,

DCxx = 2τmMGM

[
x2 GM − 2Q2

(
1 + 4M2

Q2
max

)
G̃

]
,

DCxz = Q2

p
(mE + M2) x GM (τGM + 2G̃),
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FIG. 5. Same as Fig. 4, but as functions of θe, for different values of the energy: E = 5 GeV (black solid line), E = 50 GeV (red dashed
line), E = 100 GeV (blue dotted line), and E = 200 GeV (green dash-dotted line).

DCzx = −4m M p x GM

[
τ (GM − 2G̃) − Q2(E + m)

4mp2
(τGM + 2G̃)

]
,

DCzz = −2Q2GM

[
2(mE − τM2) G̃ + τ (M2 + mE )GM − τ (E + m)M2

mp2
(M2 + mE ) (τGM + 2 G̃)

]
. (54)

The spin correlation coefficients Ci j due to the vector polarizations of the target electron and the deuteron beam are shown in
Figs. 6 and 7.

E. Polarization transfer coefficients, Ti j , polarized electron target, vector polarized scattered deuteron, d +�e → �d V + e

The initial electron is arbitrary polarized and the scattered deuteron is vectorially polarized, therefore the contribution to the
hadron tensor Hμν (η2) is obtained from Eq. (50) with the substitutions: η1 → η2 and p1 � −p2 and the multiplication by a
factor 1/3. The same procedure applies to the calculation of the convolution of the spin dependent parts of lepton and hadron
tensors:

C(s1, η2) = L(p)
μν (s1)Hμν (η2)

= 4
3 mMGM{τk · η2(k · s1 − 2p2 · s1)GM + 2 G̃[Q2(1 + τ )s1 · η2 + k · η2(k · s1 + 2τ p2 · s1)]}. (55)
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FIG. 6. Spin correlation coefficients, with vector polarized electron target and deuteron beam, Eqs. (53), (54), as functions of energy for
different θe values. Notations as in Fig. 4.

In the Lab system, the four-vector η2 is

η2 =
(

�p2 · �S2

M
, �S2 + �p2( �p2 · �S2)

M(Ed + M )

)
, (56)

where �S2 is the three-vector of the scattered deuteron polarization in its rest frame.
The differential cross section can be written as

dσ

dQ2
(�ξ1, �S2) =

(
dσ

dQ2

)
un

[1 + Txxξ1xS2x + Tyyξ1yS2y + Tzzξ1zS2z + Txzξ1xS2z + Tzxξ1zS2x], (57)

where Ti j , i, j = x, y, z are the polarization transfer coefficients which describe the transfer of polarization from the initial
electron to the scattered deuteron, and their explicit expressions in terms of the deuteron form factors read

DTyy = −4

3
Q2mM(1 + τ )GM G̃,

DTxx = 2

3
mM GM{x2yM[2(M + E + 2τE )G̃ − τ (M + E + 2τM )GM] − 2Q2(1 + τ )G̃},

DTzx = xyM2 GM

3p
{(E + M + 2τM )[m(4p2 − Q2) − Q2E ]τ GM

− 2E [4mτ (p2 − EM ) − Q2(M + E + 2τE ) − Q2m(1 + 2τ )]},
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FIG. 7. Same as Fig. 6, but as functions of θe, for different values of the energy. Notations as in Fig. 5

DTxz = xm

3

{
τQ2 GM

mp
[m(E + m) − yM(E + M )(m + M )2]GM + 4M

[
(1 + 2τ )[p − yzM(M + E )] + yzQ2

2

]
G̃

}
,

DTzz = −Q2 GM

3

{
τ (z + p)

p
[m(E + m) − yM(E + M )(m + M )2]GM

+ E

m

[
Q2

[
y(m + M )2 + yz(m + M )

E + m

p
− (E + m)2

p2
− m

M

]
+ 4m2

]
G̃

}
, (58)

and are plotted in Figs. 8 and 9.

F. Correlation polarization coefficients, ci j , vector polarized scattered deuteron, polarized recoil electron, d + e → �d V +�e

The scattering of an unpolarized deuteron beam by unpolarized electrons is considered here. A correlation arises between the
vector polarization of the scattered deuteron and the polarization of the recoil electron. The part of the hadron tensor Hμν (η2) due
to the vector polarized scattered deuteron with unpolarized deuteron beam can be obtained from Eq. (50) with the substitutions
η1 → η2 and p1 � −p2, so that

Hμν (η2) = 2iM GM

[
(1 + τ )G̃εαβλρη

λ
2kρ − η2 · k

4M2
(GM − 2G̃)εαβλρ pλ

2kρ

]
. (59)
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FIG. 8. Polarization transfer coefficients from polarized electron target to vector polarized scattered deuterons, Eqs. (57), (58), as functions
of energy, for different values of θe. Notations as in Fig. 4.

The lepton tensor, Lμν , which corresponds to an unpolarized initial electron target and polarized recoil electron, has the form

Lμν = 1
2

[
L(0)

μν + L(p)
μν (s2)

]
, L(p)

μν (s2) = 2imεμνρσ kρsσ
2 . (60)

The contraction of the spin-dependent lepton L(p)
μν (s2) and hadron Hμν (η2) tensors, in an arbitrary reference frame, gives

C(s2, η2) = L(p)
μν (s2)Hμν (η2) = −4

3
mMGM

{
τk · η2(2p2 · s2 − k · s2)GM

+ 2
(

GC + τ

3
GQ

)
[k2(1 + τ )s2 · η2 − k · η2(k · s2 + 2τ p2 · s2)]

}
. (61)

All the spin correlation coefficients are proportional to the deuteron magnetic form factor. This is also true for the �dV + e →
d + �e reaction as well for the ed scattering for the corresponding polarization observables.

The differential cross section is

dσ

dQ2
(�S2, �ξ2) = 1

2

(
dσ

dQ2

)
un

[1 + cxxS2xξ2x + cyyS2yξ2y + czzS2zξ2z + cxzS2xξ2z + czxS2zξ2x], (62)
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FIG. 9. Same as Fig. 8, but as functions of θe, for different values of the energy. Notations as in Fig. 5.

where the explicit expressions of the correlation coefficients ci j are

Dcyy = −4

3
Q2mM(1 + τ ) GM G̃,

Dcxx = M

6m(1 + λ)

(
Bxx G2

M + 4B̃xx GMG̃
)
,

Bxx = yx2Mτ [Q2 − 4m(2E + m)][E + (1 + 2τ )M],

B̃xx = 2yx2M[(1 + 2τ )E + M](m2 − τM2) + 2yτm[E (E − M ) − 2(1 + τ )M2] − 2(1 + λ)(1 + τ )Q2m2,

Dcxz = 4xyτM2

3m2 p(1 + λ)

(
Bxz G2

M − 2B̃xz GMG̃
)
,

Bxz = [E + (1 + 2τ )M]{m[m2 p2 − τM2(mE + M2)] − τM2(E + m)[m(E + m) − τM2]},
B̃xz = τEM4[E (1 + 2τ ) + M] + m3[E2(E − M ) − 2E (1 + τ )M2]

+ m2M2[4τ (1 + τ )M2 − (1 − 2τ )EM − E2(1 + 4τ )] + τmM2[2M3 + 2EM2(2 + 3τ ) − E2(E − M )],

Dczx = 4xyτM3

3m2 p(1 + λ)

(
BzxτG2

M − 2B̃zx G̃
)
,

Bzx = [τM2 − m(2E + m)]{M2[E (1 + 2τ ) + 2m(1 + τ ) + M] − mE (E − m)},
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FIG. 10. Correlation coefficients from vector polarized scattered deuterons and recoil electrons, Eqs. (62), (63), as functions of energy for
different values of θe. Notations as in Fig. 4.

B̃zx = [E + (1 + 2τ )M][τM4 − mE (m2 − 3τM2)] + m2{(1 + 2τ )M[(1 + 2τ )M2 − E (2E − M )] − 2E2},

Dczz = 8yτM3

3m3 p2(1 + λ)

(
Bzzτ G2

M − 2[E + (1 + 2τ )M]GM G̃
)
,

Bzz = {M2[E (1 + 2τ ) + 2m(1 + τ ) + M] − mE (E − M )}{m3 p2 − τM2[(E + m)(mE + m2 − τM2) + m(mE + M2)]},
B̃zz = m4E (p2 − τM2) + τm2M2[M2(5τE + 2(1 + τ )m) − E2(E + 4m)] + τM4[EM2 + 2m(E2 + M2)]. (63)

The correlation coefficients ci j between the vector polarizations of the scattered deuteron and the recoil electron are shown in
Figs. 10 and 11.

G. Polarization transfer coefficients ˜Ti j , vector polarized deuteron beam, polarized recoil electron, e +�d V →�e + d reaction

The polarization transfer from the initial vector polarized deuteron to the recoil electron is calculated. The polarized part of
the hadron tensor is defined by Eq. (50) and the corresponding part of the lepton one by Eq. (60). The convolution of these
polarization dependent terms can be obtained from C(s1, η1) [see Eq. (51)] with the substitution s1 → s2.
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FIG. 11. Same as Fig. 10, but as functions of θe, for different values of the energy. Notations as in Fig. 5.

The corresponding differential cross section is written in terms of the polarization transfer coefficients T̃i j as

d σ

d Q2
= 1

2

(
d σ

d Q2

)
un

[1 + S1xξ2xT̃xx + S1yξ2yT̃yy + S1zξ2zT̃zz + S1xξ2zT̃xz + S1zξ2xT̃zx]. (64)

The explicit expressions of the T̃i j in terms of the deuteron form factors are

DT̃yy = −4mMQ2(1 + τ ) GM G̃,

DT̃xx = 4mM

{
x2τ

(
E + m

m(1 + λ)
− 1

2

)
G2

M −
[

x2

(
1 + 2(τE − m)

m(1 + λ)

)
+ Q2(1 + τ )

]
GM G̃

}
,

DT̃zz = 8τM2

m2

{[
mE (τM2 − m2) − m2M2(1 − τ ) + M2(E + m)2

p2

(
2M2 − mE − 2τ (τM4 − m3E )

m2(1 + λ)

)]
τG2

M

+
[

2τm2M2 + mE (τM2 − m2) + τM2(E + m)2

p2

(
2(m3E + τM4)

m2(1 + λ)
− mE − 2τM2

)]
2 GM G̃

}
,

DT̃xz = 4τxM

{[
τM2(E + m)

p

(
2(E + m)

m(1 + λ)
− 1

)
− mp

]
G2

M + 2

[
mp − M2(E + m)

p

(
2m(τE − m)

m2(1 + λ)
+ 1

)]
GM G̃

}
,
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FIG. 12. Polarization transfer coefficients from vector polarized deuteron beam and polarized recoil electrons, Eqs. (64), (65), as functions
of energy for different values of θe. Notations as in Fig. 4.

DT̃zx = 4τxM2

p

{[
M2 − Em + 2M2E

m
+ 2(E + m)(m3E − τM4)

m3(1 + λ)

]
τG2

M

+ 2

[
M2(1 − 2τ ) − mE − 2τM2E

m
+ 2(E + m)(m3E + τ 2M4)

m3(1 + λ)

]
GM G̃

}
. (65)

The polarization transfer coefficients T̃i j are plotted in Figs. 12 and 13.

H. Polarization transfer coefficients Vi j , vector polarized initial and scattered deuterons,�d V + e → �d V + e

Scattered deuterons from the collision of a vector polarized deuteron beam on an unpolarized electron target can be vector
polarized. The corresponding hadron tensor is

Hμν (η1, η2) = V1g̃μν + V2PμPν + V3(η̃1μη̃2ν + η̃1ν η̃2μ) + V4(Pμη̃1ν + Pν η̃1μ) + V5(Pμη̃2ν + Pν η̃2μ),

η̃iμ = ηiμ − k · ηi

k2
kμ, (66)
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FIG. 13. Same as Fig. 12, but as functions of θe, for different values of the energy. Notations as in Fig. 5.

where the structure functions Vi have the following expressions in terms of the deuteron electromagnetic FFs:

V1 = 1

2
G2

M[(1 + 2τ )k · η1k · η2 + 4τ (1 + τ )M2η1 · η2],

V2 = − 1

8M2
(1 + τ )−1

{(
2GC − 4

3
τGQ

)[(
GC + 4

3
τGQ

)
(k · η1k · η2 + 2(1 + τ )M2η1 · η2) + (GQ − GM )k · η1k · η2

]
+(1 + τ )G2

M (k · η1k · η2 + 4τM2η1 · η2)

}
,

V3 = −τ (1 + τ )M2G2
M,

V4 = −1

4
k · η2GM

(
GC + τGM − 2

3
τGQ

)
,

V5 = 1

4
k · η1GM

(
GC + τGM − 2

3
τGQ

)
. (67)

For this configuration of the hadron polarizations it is sufficient to have an unpolarized electron target since the hadron tensor in
this case is symmetrical over the μ, ν indices. Thus, the contraction of the (spin independent) lepton L(0)

μν and the (spin dependent)
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hadron Hμν (η1, η2) tensors, gives the following expressions that are valid in an arbitrary reference frame

C(η1, η2) = 4

M2
G2

M{(k · η1k · η2 − k2η1 · η2)[p1 · k1(2τM2 − p1 · k1) + M2((1 + τ )m2 − τ 2M2)]

+ τM2[m2 − (1 + τ )M2]k · η1k · ηs2 + 2τM2[(M2 + p1 · k1)k · η1k · η2

+ ((1 + 2τ )M2 − p1 · k1)k1 · η1k · η2 − 2(1 + τ )M2k1 · η1k1 · η2]}

+ 8

(1 + τ )M2

(
GC − 2

3
τGQ

){
GM (τM2 − p1 · k1)[k · η1k · η2(τM2 − p1 · k1)

− (1 + τ )M2(k · η1k1 · η2 − k1 · η1k · η2)] + [τM4 + 2τM2 p1 · k1 − (p1 · k1)2]

×
[

2(1 + τ )M2(GC + 4

3
τGQ)η1 · η2 +

(
GC +

(
1 + 4

3
τ

)
GQ

)
k · η1k · η2

]}
. (68)

The corresponding differential cross section is

dσ

dQ2
=

(
dσ

dQ2

)
un

[1 + VxxS1xS2x + VyyS1yS2y + VzzS1zS2z + VxzS1xS2z + VzxS1zS2x] (69)

with Vi j ,

DVxx = 2h

{
x2

(1 + τ )M3
[E − yM(p(p − z) + 2(1 + τ )M2)] − 2

}
G(−) G(+)

+2x2(τM2 − mE )

(1 + τ )M3
[yM p(z − p)(τM2 − mE ) + τM2(E + m) − mp2]GM G(−)

+{Q2[τM2(τM2 − 2mE − m2) + m2 p2] − x2yM[τM4(M + (1 + 2τ )E ) + mp2(m(E + M ) − 2τM2)]}G2
M

M2
,

DVyy = −4hG(−) G(+) + [τM2(τM2 − 2mE − m2) + m2 p2]τG2
M,

DVzz = yM

m2 p2

{
4(E − M )hh2

1 + τ
G(−) G(+) − 4τM4[E + (1 + 2τ )M][h + (1 + τ )m2M2]G2

M

− 2Q2(E − M )(τM2 − mE )[h + (1 + τ )m2M2]
h1 GM G(−)

(1 + τ )M2

}
,

DVxz = xyM

mp

{
2(E − M )

(1 + τ )M
[−2hh1G(−) G(+) + h2(τM2 − mE )GM G(−)]

− 2τM3(M2 + mE )[E + (1 + 2τ )M]G2
M

}
,

DVzx = xyM

mp

{
2(E − M )

(1 + τ )M
[2hh1G(−) G(+) − h2(τM2 − mE )GM G(−)]

− 2τ 2M3[M2(M + (1 + 2τ )E + 2(1 + τ )m) − mE (E − M )]G2
M

}
, (70)

where we introduced the short notation

G(−) = GC − 2τGQ

3
, G(+) = GC + 4τGQ

3
,

h = τM2(M2 + 2mE ) − m2E2, h1 = τM2 − mE − (1 + τ )mM, (71)

h2 = −2τM2(h1 + τmE ) − m2{(1 + τ )M[(1 + 2τ )M + 2E ] + (1 − τ )E2}.

The polarization coefficients Vi j describing the vector po-
larization transfer from the deuteron beam to the scattered
deuteron, also denoted as ‘deuteron depolarizations’, are
shown in Figs. 14 and 15.

IV. DISCUSSION AND CONCLUSION

In this work we calculated the differential cross section and
some polarization observables for the elastic reaction induced
by deuteron scattering off electrons at rest assuming the
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FIG. 14. Polarization transfer coefficients from vector polarized initial and scattered deuterons, Eqs. (69), (70), as functions of energy for
different values of θe. Notations as in Fig. 4.

one-photon-exchange approximation. We limited the study to
the estimation of one-spin effects when one deuteron (initial
or scattered) is tensor polarized, and to double-spin effects
when two particles are vector polarized. In the last case, all
possible polarization states are considered. Our analytical and
numerical results are obtained under the condition that all
components of the three-vector polarization for every particle
involved are defined in the Lab system, as shown in Fig. 1.
The same is required for the components of the deuteron
tensor polarization. In this respect, it should be noted that the
combination of the form factors included in the definition of
t20 as measured in e − d scattering [18] corresponds to the
z-axis along the unit three-vector of the momentum transfer
[19,20] in the rest frame of the initial deuteron. Our choice
corresponds to the direction opposite to the unit three-vector
of the initial electron three-momentum (in the Lab system, the
z axis is just along deuteron three-momentum). Therefore Azz

gets the contribution of a term GM GQ which is absent in t20.
Along the numerical calculation we used the parametrization

of the deuteron electromagnetic form factors suggested in
Ref. [15] and extrapolate it to the small Q2 region (Fig. 16).
Other form factor parametrizations exhibit very similar behav-
ior in this region, being all normalized to the static values for
Q2 = 0.

Our result can be applied to measure the polarization of or
to polarize the participating particles. Note, that the unpolar-
ized cross section is very large (see Fig. 17) indicating that the
number of events in the different polarization conditions can
be sufficient to perform fairly accurate measurements despite
of the fact that the corresponding effects are at the percent
level.

Our formalism is based on the symmetries of the strong and
electromagnetic interactions and it is very general. The lepton
and hadron tensors are obtained in terms of the deuteron
electromagnetic current Eq. (11) and the density matrices of
the initial and scattered deuteron, Eq. (19). All the coeffi-
cients which describe the single- and double-spin effects are
the ratio between the corresponding spin-dependent parts of
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FIG. 15. Same as Fig. 15, but as functions of θe for different values of the energy. Notations as in Fig. 5.

the matrix element squared and the spin-independent parts,
i.e., Hμν Lμν/(2D), according to the normalization of the
unpolarized cross section [Eq. (27)]. The additional factor
1/2 in the differential cross sections when the recoil electron
polarization is measured [see Eqs. (48), (62), (64)], arise from
the density matrix of the recoil electron. Our main results are
illustrated in Figs. 2–15 where we plot different coefficients
as functions of the electron scattering angle θe at fixed values
of the deuteron beam energy E and vice versa.

In the Lab system the tensor asymmetries Ai j (Fig. 2) and
the tensor polarization coefficients Pi j (Fig. 3) are small, not
exceeding the order of percent. Nevertheless this situation
leaves room for measurements due to the large cross section.
The coefficients of the polarization transfer ti j (Figs. 4, 5)
from the target to the recoil electron vary in the range −1 to
+1, making it possible to change the polarization of electrons.
The coefficients Ci j except Cxz (Figs. 6, 7) are on the level a
few tens of percent, thus the correlation between the vector
polarizations of the deuteron beam and the target electrons is
large and measurable.

The possibility to create vector polarized deuterons from
polarized target electrons is illustrated by the polarization
transfer coefficients Ti j (Figs. 8, 9). They are of the order
of 10%, except Txz, showing a realistic possibility of appli-
cations. The correlation between the vector polarization of
the final deuterons and electrons is noticeable although not
as large as for the initial ones (Figs. 10, 11). It is quite un-
expected that the vector polarization transfer coefficients T̃i j

(Figs. 12, 13) from the initial deuterons to the recoil electrons
are several times larger than Ti j . The large values of the co-
efficients Vi j , describing the vector polarization transfer from
the initial to the scattered deuterons (Figs. 14, 15) should also
be noted.

Our formalism, being very general, gives the essential
formulas for deuteron polarization and polarimetry stud-
ies. Formulas have been derived analytically and checked
within the Mathematica framework [21] that was also used
for plotting (the code is available upon request). The spe-
cific ingredients of the deuteron structure are contained
in the form factors. The sensitivity to different models is
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FIG. 16. Deuteron electromagnetic form factors, Eq. (A1), with
parameters as in the text.

expected not to be large, because of the low-Q2 involved and
the normalization constrains to the static deuteron properties
at Q2 = 0.
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APPENDIX: DEUTERON ELECTROMAGNETIC
FORM FACTORS

The deuteron form factors are measured through the dif-
ferential cross section of electron-deuteron scattering. While
the magnetic form factor is uniquely determined by the
cross section of unpolarized particles at backward angles, the

FIG. 17. Unpolarized differential cross section, Eqs. (27) and
(29), as a function of incident deuteron beam energy E for different
electron scattering angles (top panel) and as a function of the electron
scattering angle at different values of the incident energy E (bottom
panel).

separation of charge and quadrupole form factors requires
polarization measurements, either the tensor analyzing pow-
ers T20, T22, T21 or the recoil deuteron tensor polarization
t20, t22, t21 (the electron beam is unpolarized in both cases)
[22,23]. This has prompted the development of both polarized
deuterium targets and polarimeters for measuring the polar-
ization of recoil hadrons [24].

At storage rings, polarized internal deuteron gas targets
from an atomic beam source can be used [25–30]. The high
intensity of the circulating electron beam allows achieving
acceptable luminosities despite the very low thickness of
the gas targets. At facilities with external beams, polarime-
ters are used to measure the polarization of recoil deuterons
[18,31,32]. High beam intensities are a prerequisite because
the polarization measurement in this case requires a second
scattering, what leads to a loss of a few orders of magnitude
in the counting rate.

The angular distribution at a given momentum transfer
squared in unpolarized scattering allows to separate G2

M and
a combination (structure function) of the three form factor
squared A(Q2) = (2/3)τ G2

M + G2
C + (8/9)τ 2 G2

Q. The mea-
surement of T20 and T21, or t20 and t21, allows to separate also
some combination of GM GC, G2

Q, and G2
M and the product

GM GQ, respectively [33]. The three electromagnetic deuteron

065203-24



POLARIZATION EFFECTS IN ELASTIC … PHYSICAL REVIEW C 109, 065203 (2024)

form factors have been experimentally determined up to Q2 

1.7 GeV2 [18]. The structure function A(Q2) has been mea-
sured up to Q2 = 6 GeV2 [34] and G2

M (Q2) up to 2.8 GeV2

[35]. The measurements of the deuteron elastic scattering
differential cross section [34] and t20 [18] allow to extract GC

and GQ. This has been done in Ref. [36] where the world data
were collected and three different analytical parametrizations
were suggested with a number of parameters varying from 12
[37] to 33.

The description of these form factors is a challenge for
the deuteron models. The best representation, i.e., very good
χ2 with very small number of parameters, is based on a
generalization of the nucleon two-component picture from
Refs. [38,39] to the deuteron case [15]. The basic idea of
the model is the presence of two components in the deuteron
(proton) structure: an intrinsic structure, very compact, char-
acterized by a dipole or monopole Q2 dependence and a
meson cloud, which contains the light vector meson ρ, φ, and
ω contributions (not the ρ for the deuteron case, due to its
isoscalar nature). A very good description of the world data
on deuteron electromagnetic form factors has been obtained
with as few as six free parameters and few evident physical
constraints. The form factors are parametrized as (considering
only the contribution of the isoscalar vector mesons, ω and φ)

Gi(Q
2) = Nigi(Q

2)Fi(Q
2), i = C, Q, M (A1)

with

Fi(Q
2) = 1 − αi − βi + αi

m2
ω

m2
ω + Q2

+ βi

m2
φ

m2
φ + Q2

,

where mω (mφ) is the mass of the ω (φ) meson.

The terms gi(Q2) are written as functions of two param-
eters, also real, γi and δi, generally different for each form
factor:

gi(Q
2) = 1/[1 + γiQ

2]δi , (A2)

and Ni is the normalization of the ith form factor at Q2 =
0, NC = GC (0) = 1, NQ = GQ(0) = M2Qd = 25.83, NM =
GM (0) = M

mN
μd = 1.714, where Qd , and μd are the

quadrupole and the magnetic moments of the deuteron, mN

is the nucleon mass.
The expression (A1) contains four parameters, αi, βi,

γi, δi, generally different for different form factors. We
took here the most simple version where δ = 1.04 and γ =
12.1 are common parameters for the three form factors,
α(GC, GQ, GM ) = 5.75, 4.21 3.77 and β(GC, GQ, GM ) =
−5.11, −3.41, −2.86. With the chosen parametrization,
the extrapolation to small values of Q2 gives the electro-
magnetic deuteron form factors shown in Fig. 16. In the
region of small Q2 all three form factors are positive and
decrease almost linearly with increasing Q2. The energy de-
pendence of the differential cross section for different angles
and the angular dependence for different energies is illus-
trated in Fig. 17. We restrict ourselves to E � 200 GeV and
θe � 50 mrad.

The unpolarized differential cross section is divergent
at small values of the energy, as expected from the
one-photon exchange mechanism. It is monotonically de-
creasing not presenting minima when the deuteron energy
increases and increases when the electron scattering angle
increases.
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