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The correlation between the mean transverse momentum and the harmonic flow coefficients is an observable
which is of great interest; it is sensitive to shape fluctuations in the initial state of a relativistic nuclear
collision. The measurement of that correlation coefficient in central collisions allows one to infer about the
intrinsic deformation of the colliding nuclei. We propose to study the momentum-dependent covariance and
correlation coefficient between the mean transverse momentum and the harmonic flow in a given transverse
momentum bin. Two possible constructions of such observables are provided and predictions are obtained from
a viscous hydrodynamic model. We find that such momentum-dependent correlation coefficients between the
mean transverse momentum and the harmonic flow show a strong and nontrivial momentum dependence. We
also explore the effects of granularity (nucleon width) in the initial state, the nuclear deformation, and the shear
viscosity on this momentum-dependent correlation coefficient. The shape of the momentum dependence of the
correlation coefficient for the triangular flow is found to be sensitive to the size of small-scale fluctuations in
the initial state. On the other hand, the shape of the momentum dependence of the covariance between the
mean transverse momentum and the harmonic flow coefficients is found to be sensitive to the value of the shear
viscosity and to the granularity of the initial state.

DOI: 10.1103/PhysRevC.109.064910

I. INTRODUCTION

The dynamics of the dense fireball formed in relativistic
nuclear collisions can be studied using the collective flow
observables extracted from the spectra of emitted particles
[1–5]. An important part of such studies is devoted to the
understanding of event-by-event fluctuations of the collective
flow [6–10]. The fluctuations of the harmonic flow coefficients
could be due to fluctuations of the shape of the initial fireball,
as well as due to dynamical fluctuations in the expansion
dynamics. Analogously, fluctuations of the mean transverse
momentum of emitted particles can be related to the fluctua-
tions of the size of the fireball [11]. The Pearson correlation
coefficient between the mean transverse momentum and the
harmonic flow coefficients [12], ρ([pT ], v2

n ), has been found
to be sensitive to correlations present in the initial state
[13–15] and also been used as a tool to infer the deformation
parameters of the colliding nuclei [16–24].

Experimental and theoretical analyses of collective flow
observables include also the study of event-by-event fluctu-
ations, e.g., using higher moments or higher cumulants of
the measured quantities. Complementary information on the
multidimensional probability distribution of the considered
set of observables involves the covariances between different
observables. For the harmonic flow, the symmetric cumu-
lants can be used as observables measuring cross-correlations
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between harmonic flow coefficients [25]. The correlation co-
efficient ρ([pT ], v2

n ) measures the correlation between the
mean transverse momentum and the momentum-averaged
harmonic flow coefficient [12]. The class of observables
based on the covariance between harmonic flow observ-
ables and the mean transverse momentum can be generalized
also to momentum-dependent observables. In this paper, we
propose to measure the momentum-dependent correlation
coefficient between the mean transverse momentum in an
event and the harmonic flow coefficient in a given transverse
momentum bin.

Besides giving complementary statistical information of
the event-by-event distribution of observables, the study of
such momentum-dependent correlation coefficients could be
potentially helpful in elucidating several interesting issues.
There are several motivations to engage in studies of this
class of observables. The analysis of momentum-dependent
correlators involving the average transverse momentum and
the harmonic flow coefficients

(i) could clarify the observed dependence of the
momentum-independent coefficient ρ([pT ], v2

n ) on
the transverse momentum cut [26],

(ii) could provide information on specific modes in the
initial state related to the final transverse and har-
monic flow [27],

(iii) could give a measure of the correlation between the
transverse momentum and harmonic flow irrespective
of the shape of the specific momentum dependence of
the harmonic flow,
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(iv) could test a possible dependence of the hadronization
mechanism on the transverse expansion, when used
for identified particles,

(v) could help in identifying correlations between the
mean transverse momentum and the harmonic flow
from the color-glass-condensate dynamics [28], or

(vi) could be sensitive to the granularity of the initial
state [29].

In the next section, we write the possible definitions
of the momentum-dependent correlation coefficient between
the mean transverse momentum and the harmonic flow. We
show that the momentum-dependent correlation coefficients
have a robust, nontrivial momentum dependence. In Sec. III
we show that the momentum dependence of the correla-
tion coefficient is sensitive to the granularity of the initial
state of the collision. We consider simplified expressions for
the momentum-dependent correlation coefficient that might
be easier to use in experimental analyses (Sec. IV). The
momentum-dependent covariance is discussed as a possible
observable in Sec. V. The discussion is illustrated by the nu-
merical results obtained from a viscous hydrodynamic model
for Pb + Pb collisions at

√
sNN = 5.02 TeV and U + U colli-

sions at
√

sNN = 193 GeV.

II. MOMENTUM-DEPENDENT CORRELATION
COEFFICIENT BETWEEN MEAN TRANSVERSE

MOMENTUM AND HARMONIC FLOW

The azimuthal anisotropy of the momentum distribution of
the hadrons emitted in a heavy-ion collision can be described
by the Fourier expansion,

d2N

d pdφ
= dN

2πd p

(
1 + 2

∞∑
n=1

Vn(p)einφ

)
, (1)

where Vn(p) = vn(p)ei�n (p) is the flow vector for the nth-order
harmonic flow. The mean transverse momentum of particles
emitted in an event is defined as

[pT ] = 1

N

∫ pmax

pmin

d p p
dN

d p
(2)

and the momentum-averaged harmonic flow coefficient is

Vn = 1

N

∫ pmax

pmin

d pVn(p)
dN

d p
, (3)

where N is the multiplicity in the event, given by

N =
∫ pmax

pmin

d p
dN

d p
. (4)

The correlation coefficient between the harmonic flow and
the mean transverse momentum is defined as [12]

ρ
(
[pT ], v2

n

) = Cov
(
[pt ], v2

n

)
√

Var([pT ])Var
(
v2

n

) , (5)

where the covariance

Cov
(
[pT ], v2

n

) = 〈[pT ]VnV
�

n 〉 − 〈[pt ]〉〈VnV
�

n 〉, (6)

and the variances,

Var([pt ]) = 〈[pT ]2〉 − 〈[pt ]〉2, (7)

Var
(
v2

n

) = 〈(VnV
�

n )2〉 − 〈VnV
�

n 〉2, (8)

are obtained as averages, 〈. . . 〉, over the events in a given
centrality bin, with the self-correlations in the sum over
particles in an event excluded. In this paper, we use the boost-
invariant viscous hydrodynamic model MUSIC [9,30,31], with
the Glauber [32] or the TRENTO model [33] for the initial
conditions for Pb + Pb and U + U collisions. The details
of the calculation and the parameters used can be found in
Refs. [34,35].

The momentum-dependent correlation coefficient can be
constructed as the correlation coefficient between the mean
transverse momentum and the harmonic flow in a given trans-
verse momentum bin,

ρ([pT ],Vn(q)Vn(q)�) = Cov([pT ],Vn(q)Vn(q)�)√
Var([pT ])Var[Vn(q)Vn(q)�]

. (9)

The correlation coefficient is a function of the transverse
momentum q; it should not be confused with [pT ], which
is not a variable. Here, we use the notation Vn(q)Vn(q)� for
the momentum-dependent harmonic flow instead of vn(q)2 in
order to distinguish it easily from the quantity VnVn(q)� that
we discuss latter. The results for the correlation coefficient
in Eq. (9) for the elliptic and the triangular flow in Pb + Pb
collisions, obtained from event-by-event viscous hydrody-
namic simulations with Glauber initial conditions, are shown
in Figs. 1 and 2 for q < 2 GeV. Note that measurements at
higher q could be interesting for the study of nonflow effects
or correlations originating from the color-glass condensate.
For clarity, in the figures we show the statistical errors of the
simulation only for some points on the plot.

We notice a strong dependence of the correlation co-
efficients on the transverse momentum q for the elliptic
flow. This dependence explains the experimentally observed
dependence of the momentum-independent correlation coef-
ficient ρ([pT ], v2

n ) on the transverse momentum cuts [26].
The momentum-dependent coefficient ρ([pT ],Vn(q)Vn(q)�) is
a measure of the correlation between the mean transverse
momentum and the amount of harmonic flow at a definite
transverse momentum q, irrespective of the specific q de-
pendence of the harmonic flow, 〈vn(q)2〉. The momentum
independent correlation coefficients, ρ([pT ], v2

n ) are plotted
in Figs. 1 and 2, as horizontal solid lines. Please note that
the correlation coefficient for the momentum-averaged flow,
ρ([pT ], v2

n ), is not a momentum average of the momentum-
dependent correlation coefficient ρ([pT ],Vn(q)Vn(q)�). We
have checked that it is due to the construction of the cor-
relation coefficient as a ratio of two momentum-dependent
averages. In Sec. IV, we compare the two covariances
Cov([pT ],Vn(q)Vn(q)�) and Cov([pT ], v2

n ) directly.
The correlation coefficient between the mean transverse

momentum and the harmonic flow depends on the way the
centrality bins are defined. In our calculation, we use wide
bins with the total entropy deposited in the collision as
the quantity determining the centrality. Large multiplicity
fluctuations in each centrality bin influence the correlation
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FIG. 1. The momentum-dependent correlation coefficient
ρ([pT ],V2(q)V2(q)�) in Pb + Pb collisions at

√
sNN = 5.02 TeV

(solid lines), for three different centrality bins, 0–5% [panel (a)],
30–40% [panel (b)], and 60–70% [panel (c)]. The dashed lines
represent the correlation coefficients with the correction for
multiplicity fluctuations [Eq. (10)]. The horizontal lines represent
the correlation coefficients ρ([pT ], v2

2 ) between the mean transverse
momentum and the momentum-averaged harmonic flow.

coefficient. This can be corrected by removing the multiplicity
fluctuation from the statistical measures used [14,36]. Each
quantity O estimated in a given event is corrected as follows:

Ocorr = O − Cov(O, N )√
Var(O)Var(N )

(N − 〈N〉). (10)

The correlation coefficients for the mean transverse mo-
mentum and the harmonic flow coefficients corrected for
multiplicity fluctuations are shown with dashed lines in Figs. 1
and 2. Corrections for multiplicity fluctuations are numeri-
cally sizable and should be used depending on the centrality
definition used in the experiment. Unless stated otherwise,
we use quantities corrected for multiplicity fluctuations in the
following.

FIG. 2. The momentum-dependent correlation coefficients
ρ([pT ],V3(q)V3(q)�) in Pb + Pb collisions at

√
sNN = 5.02 TeV for

0–5% centrality. The legends are similar to those in Fig. 1.

The momentum-dependent correlation coefficient between
the mean transverse momentum and the harmonic flow can
also be defined as

ρ([pT ],VnVn(q)�) = Cov([pT ],VnVn(q)�)√
Var([pT ])Var[VnVn(q)�]

. (11)

The above correlation coefficient could be easier to mea-
sure experimentally. In the denominator, Var[VnVn(q)�], unlike
Var[Vn(q)Vn(q)�], is a four-particle correlator with only
two particles restricted to a limited transverse momentum
bin q. However, the correlation coefficient (11) does not
have such a simple interpretation like the coefficient (9).
The results for ρ([pT ],VnVn(q)�), from hydrodynamic sim-
ulations, are presented in Figs. 3 and 4. The qualitative
behavior on the transverse momentum (q < 2 GeV) remains
similar for the correlation coefficients ρ([pT ],VnVn(q)�)
and ρ([pT ],Vn(q)Vn(q)�). However, the dependence of the
correlation coefficients ρ([pT ],VnVn(q)�) on the transverse
momentum q is weaker than for the correlation coefficient,
ρ([pT ],Vn(q)Vn(q)�).

In collisions of deformed nuclei, averaging over the relative
orientation of the two colliding nuclei reduces the value of the
momentum-independent correlation coefficient [16]. This ef-
fect is visible in Fig. 5 as the difference between the horizontal
lines representing the results for the momentum-independent
correlation coefficient in collisions of spherical and deformed
nuclei. The corresponding momentum-dependent coefficients
are shown with the dashed and solid curves, respectively.
The momentum dependence is qualitatively similar for the
two cases for q < 2 GeV. It indicates that the momentum-
dependent correlation coefficient is not specifically sensitive
to the global shape fluctuations coming from the nuclear de-
formation.

In Fig. 6 are presented the momentum-dependent cor-
relation coefficients for three different values of the shear
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FIG. 3. Same as in Fig. 1, but for the correlation coefficient
ρ([pT ],V2V2(q)�).

FIG. 4. Same as in Fig. 2, but for the correlation coefficient
ρ([pT ],V3V3(q)�).

FIG. 5. The momentum-dependent correlation coefficients
ρ([pT ],V2V2(q)�) for U + U collisions at

√
sNN = 193 GeV for

0–5% centrality. The solid line is for collisions of spherical
nuclei, while the dashed line represents the results for deformed
nuclei.

viscosity to entropy density ratio η/s. Qualitatively the de-
pendence on shear viscosity is similar to the dependence on
nuclear deformation. The change in shear viscosity causes
a shift of the curves, without modifying strongly the shape
of their momentum dependence. The shift is much smaller
in magnitude than for the nuclear deformation shown in
Fig. 5. The value of the shear viscosity influences the corre-
lation coefficient, causing a shift of the curves. However, the
momentum-dependent version of the correlation coefficients
is not specifically sensitive to shear viscosity as compared to
the momentum average one (solid lines in Fig. 6), the shape
of the curves is similar for different values of shear viscosity.
We have checked that the dependence on bulk viscosity of
the considered correlation coefficients is similar to the depen-
dence on shear viscosity.

III. GRANULARITY IN THE INITIAL STATE

The correlation coefficient between the transverse momen-
tum and the harmonic flow is sensitive to the granularity of
the initial state for the hydrodynamic evolution [12,29]. In
models, the granularity of the initial state can be modified by
changing the size of the region, where each of the participant
nucleons deposits the initial energy. Experimental results sug-
gest that the size of that region is small, which corresponds
to an initial state with high granularity [29]. We study this
size dependence by changing the two-dimesional Gaussian
width associated with each nucleon in the TRENTO model, with
w = 0.3, 0.5, and 0.8 fm [33].

The momentum-dependent correlation coefficients
ρ([pT ],Vn(q)Vn(q)�) for 20–30% centrality are shown in
Fig. 7. The correlation coefficients show a strong dependence
on the transverse momentum q. The increase of the correlation
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FIG. 6. The momentum-dependent correlation coefficients
ρ([pT ],VnVn(q)�) for Pb + Pb collisions at

√
sNN = 5.02 TeV for

20–30% centrality, for the elliptic flow [panel (a)] and the triangular
flow [panel (b)]. Results for three different values of the shear
viscosity to entropy density are shown, η/s = 0.08, 0.12, and 0.16,
using solid, dashed, and dotted lines, respectively.

coefficient with q is less steep for a more granular initial
state (smaller w). This effect is stronger for the triangular
flow [Fig. 7(b)], and the correlation even decreases with q
for w = 0.3 fm. In particular, the correlation coefficients
show different momentum dependence for q = 0–1.5 GeV
for different values of w. The momentum-independent
correlation coefficients (baselines) follow a particular
dependence on the granularity; it decreases as the granularity
decreases (w increases).

The correlation coefficients ρ([pT ],VnVn(q)�) show a quite
similar dependence on the transverse momentum in Fig. 8.
Again, for the triangular flow the dependence on q is less
steep for the initial state with higher granularity and the
difference between different initial states is the strongest in
the range q = 0–1.5 GeV. It would be interesting to com-
pare model predictions and experimental results not only for
the momentum-independent correlation coefficients [29] but
also for the momentum-dependent correlation coefficients,
ρ([pT ],Vn(q)Vn(q)�) or ρ([pT ],VnVn(q)�), in order to con-
strain the parameters of the initial state in the hydrodynamic
modeling of heavy-ion collisions. Results in Fig. 8 indi-
cate that the momentum-dependent correlation coefficient
ρ([pT ],VnVn(q)�) serves as a good candidate to probe the
granularity, while being easier to measure in experiments
than ρ([pT ],Vn(q)Vn(q)�). The effect of granularity is fur-
ther discussed in Sec. V through the momentum-dependent
covariances.

FIG. 7. The momentum-dependent correlation coefficients
ρ([pT ],V2(q)V2(q)�) [panel (a)] and ρ([pT ],V3(q)V3(q)�) [panel
(b)] in Pb + Pb collisions at

√
sNN = 5.02 TeV for 20–30%

centrality. Three different values of the width of the nucleons
used for the energy deposition in the initial state, w = 0.3, 0.5,
and 0.8 fm, are denoted with solid, dashed, and dotted lines,
respectively. The horizontal solid lines with corresponding color
represent the momentum-independent correlation coefficients
ρ([pT ], v2

n ).

IV. OTHER MOMENTUM-DEPENDENT MEASURES
OF CORRELATIONS BETWEEN [pT ] AND Vn(q)

The experimental estimation of the momentum-
dependent correlation coefficients, ρ([pT ],Vn(q)Vn(q)�) or
ρ([pT ],VnVn(q)�), is more difficult than for the momentum-
independent correlation coefficient ρ([pT ],VnV �

n ). In
particular, the estimate of the variances, Var[Vn(q)Vn(q)�]
or Var[VnVn(q)�], requires the measurement of a four-particle
correlator in a restricted transverse momentum bin.
We check if alternative, approximate formulas for the
momentum-dependent correlation coefficients can be used
instead.

One possibility is to use the momentum-averaged variance
Var(v2

n ) in the denominator, since it is easier to estimate a
four-particle correlator in the full acceptance. The properly
rescaled formulas for such correlation coefficients are

ρa([pT ],Vn(q)Vn(q)�)

= Cov([pT ],Vn(q)Vn(q)�)
〈
v2

n

〉
√

Var([pT ])Var
(
v2

n

)〈Vn(q)Vn(q)�〉
(12)
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FIG. 8. The momentum-dependent correlation coefficients
ρ([pT ],V2V2(q)�) [panel (a)] and ρ([pT ],V3V3(q)�) [panel (b)] in
Pb + Pb collisions at

√
sNN = 5.02 TeV for 20–30% centrality.

Three different values of the width of the nucleons used for the
energy deposition in the initial state, w = 0.3, 0.5, and 0.8 fm,
are denoted with solid, dashed, and dotted lines, respectively.
The horizontal solid lines with corresponding color represent the
momentum-independent correlation coefficients ρ([pT ], v2

n ).

and

ρa([pT ],VnVn(q)�) = Cov([pT ],VnVn(q)�)
〈
v2

n

〉
√

Var([pT ])Var
(
v2

n

)〈VnVn(q)�〉
. (13)

The approximate formulas (12) and (13) are expected to repro-
duce closely the original momentum-dependent correlation
coefficient, because the factors

√
Var[Vn(q)Vn(q)�]

〈
v2

n

〉
√

Var
(
v2

n

)〈Vn(q)Vn(q)�〉
(14)

and √
Var[VnVn(q)�]

〈
v2

n

〉
√

Var
(
v2

n

)〈VnVn(q)�〉
(15)

are very close to 1 [34].
Another possible construction would be to scale the co-

variance between the mean transverse momentum and the
harmonic flow by the mean of the harmonic flow squared
instead of its standard deviation. The formulas for the scaled
correlation coefficients are

ρs([pT ],Vn(q)Vn(q)�) = Cov([pT ],Vn(q)Vn(q)�)√
Var([pT ])〈Vn(q)Vn(q)�〉)

(16)

FIG. 9. The momentum-dependent correlation coefficient
ρ([pT ],V2(q)V2(q)�) (solid lines), the approximate correlation
coefficient ρa([pT ],V2(q)V2(q)�) (dashed lines), and the scaled
correlation coefficient ρs([pT ],V2(q)V2(q)�) (dotted lines). The
results are obtained for Pb + Pb collisions at

√
sNN = 5.02 TeV

in two different centrality bins, 0–5% [panel (a)] and 30–40%
[panel (b)].

and

ρs([pT ],VnVn(q)�) = Cov([pT ],VnVn(q)�)√
Var([pT ])〈VnVn(q)�〉 . (17)

The scaled correlation coefficient ρs is expected to
be a good approximation of the original correlation
ρ for a fluctuation-dominated harmonic flow, when√

Var[Vn(q)Vn(q)�] � 〈Vn(q)Vn(q)�〉 and
√

Var[VnVn(q)�] �
〈VnVn(q)�〉, e.g., elliptic flow in central collision and triangular
flow in general. The momentum-independent version of the
scaled correlation coefficient,

ρs
(
[pT ], v2

2

) = Cov
(
[pT ], v2

2

)
√

Var([pT ])
〈
v2

2

〉 , (18)

is the normalized symmetric cumulant between the mean
transverse momentum [pT ] and the harmonic flow v2

n [37].
It has been used by the STAR Collaboration to analyze
the nuclear deformation in relativistic Au + Au and U + U
collisions [38].

The comparison between the full correlation coefficient
and the approximate expressions are presented in Figs. 9
and 10 for the momentum-dependent correlation coefficient
ρ([pT ],Vn(q)Vn(q)�) and in Figs. 11 and 12 for the coefficient
ρ([pT ],VnVn(q)�). In all cases and for q < 2 GeV, the ap-
proximate correlation coefficient ρa is close to the correlation
coefficient ρ and could be used as an experimental estimate
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FIG. 10. Same as in Fig. 9 but for the triangular flow.

FIG. 11. The momentum-dependent correlation coefficient
ρ([pT ],V2V2(q)�) (solid lines), the approximate correlation
coefficient ρa([pT ],V2V2(q)�) (dashed lines), and the scaled
correlation coefficient ρs([pT ],V2V2(q)�) (dotted lines). The
results are obtained for Pb + Pb collisions at

√
sNN = 5.02 TeV

in two different centrality bins, 0–5% [panel (a)] and 30–40%
[panel (b)].

FIG. 12. Same as in Fig. 11 but for the triangular flow.

thereof. The scaled correlation coefficient ρs is a good approx-
imation of the momentum-dependent correlation coefficient
ρ for the triangular flow and for the elliptic flow in central
collisions, i.e., in cases with a fluctuation dominated harmonic
flow. Please note that all of the momentum-dependent cor-
relation coefficients discussed in this section, ρa or ρs, are
well-defined observables that could be measured in experi-
ment and compared to model calculations, even if they are
not exactly the Pearson correlation coefficient of [pT ] and the
momentum-dependent harmonic flow.

V. SCALED COVARIANCE

The momentum-dependent correlation coefficients,
ρ([pT ],Vn(q)Vn(q)�) or ρ([pT ],VnVn(q)�), are defined as a
ratio of two quantities that strongly depend on the transverse
momentum q. It could be interesting to look directly at
the momentum-dependent covariances between the mean
transverse momentum and the harmonic flow. In particular, a
normalized covariance can be defined as

CovN ([pT ],Vn(q)Vn(q)�) = Cov([pT ],Vn(q)Vn(q)�)√
Var([pT ])

〈
v2

n

〉 (19)

or

CovN ([pT ],VnVn(q)�) = Cov([pT ],VnVn(q)�)√
Var([pT ])

〈
v2

n

〉 . (20)

The normalization is chosen in a way similar to that for the
normalized symmetric cumulant of the mean transverse mo-
mentum and the harmonic flow coefficients [25,37,39]. Also
please note that the baseline for CovN ([pT ],Vn(q)Vn(q)�) and
CovN ([pT ],VnVn(q)�) is given by ρs([pT ], v2

2 ) of Eq. (18).
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FIG. 13. The normalized covariance between the mean trans-
verse momentum and the momentum-dependent harmonic flow
[Eq. (20)] in Pb + Pb collisions, for the elliptic flow [panel (a)] and
for the triangular flow [panel (b)]. Three different nucleon widths
used for the energy deposition in the initial state, w = 0.3, 0.5, and
0.8 fm, are denoted with solid, dashed, and dotted lines, respectively.
The horizontal solid lines represent the momentum-independent val-
ues for the scaled correlation coefficient ρs([pT ], v2

n ) [Eq. (18)]

The normalized covariances (20) for the elliptic and trian-
gular flows in Pb + Pb collisions and for 20–30% centrality
are shown in Fig. 13. It is visible that the dependence on
the transverse momentum q of the normalized covariance
between the mean transverse momentum and the harmonic
flow is very sensitive to w, the size of the region of the
transverse plane, where each participant nucleon deposits the
initial energy. The effect is particularly strong for the trian-
gular flow, with the steepest dependence for w = 0.3 in the
range of transverse momentum q < 1 GeV making a striking
difference from the other two cases.

The momentum dependence of the covariance for different
values of the parameter w can also be directly compared by
looking at the ratio

Cov([pT ],Vn(q)Vn(q)�)

Cov([pT ],VnV �
n )

(21)

or
Cov([pT ],VnVn(q)�)

Cov([pT ],VnV �
n )

(22)

of the momentum-dependent and momentum-averaged co-
variances. This is possible whenever the denominator is not
close to 0. The simulation results for the covariance ratios
in Eqs. (21) and (22) with three different values of the

FIG. 14. The ratio of the momentum-dependent and momentum-
independent covariance for the elliptic flow in Pb + Pb collisions, for
Cov([pT ],V2(q)V2(q)�) [panel (a)] and Cov([pT ],V2V2(q)�) [panel
(b)]. Three different values for the width of the nucleons used for the
energy deposition in the initial state, w = 0.3, 0.5, and 0.8 fm, are
denoted with solid, dashed, and dotted lines, respectively.

parameter w are compared in Fig. 14. The transverse mo-
mentum dependence of the covariance ratio is even more
spectacular here. For both of the covariance ratios, all lines
cross the baseline, 1, at q � 〈[pT ]〉 and then they split at
higher momenta depending on the participant nucleon den-
sity deposition size w, producing a remarkable difference for
q � 1–2 GeV. This striking effect of the granularity on the
covariance ratio could be studied in experiments to constrain
the nucleon width with great precision.

In Fig. 15 is shown the dependence of the covariance ratios
on the ratio of shear viscosity to entropy density η/s. We find
that the momentum dependence of the covariance ratio shows
a dependence on the value of shear viscosity. The shape of
the momentum dependence could be used as an additional
constraint on the value of shear viscosity in Bayesian analysis
of model simulation and experimental data [40,41].

VI. SUMMARY AND OUTLOOK

We propose to measure momentum-dependent correlation
coefficients between the mean transverse momentum and the
harmonic flow. The measurement of quantities based on the
covariance between two observables, the mean transverse
momentum and the harmonic flow in a given transverse mo-
mentum bin, brings additional information on the statistical
multidimensional distribution of these flow observables. In
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FIG. 15. The ratio of the momentum-dependent and momentum-
independent covariance for the elliptic flow in Pb + Pb collisions, for
Cov([pT ],V2(q)V2(q)�) [panel (a)] and Cov([pT ],V2V2(q)�) [panel
(b)]. Three different values for the shear viscosity to entropy ratio
η/s = 0.08, 0.12, and 0.16 are denoted with solid, dashed, and dotted
lines, respectively.

the simplest version, it is the correlation coefficient of the
mean transverse momentum and the square of the harmonic
flow vector in a given transverse momentum bin. A modified
definition of such a correlation coefficient involves the first
flow vector taken in the whole acceptance and the second
flow vector in a given transverse momentum bin. Both quan-
tities would give new momentum-dependent observables for
correlations between the transverse flow and harmonic flow
variables.

The momentum-dependent correlation coefficient depends
on physics parameters used in the hydrodynamic model-
ing of the collision, e.g., the nuclear deformation, the shear

viscosity, or the initial-state granularity. We show that the
form of the momentum dependence of the proposed correla-
tion coefficients is sensitive to the granularity of the initial
state, especially, for the triangular flow. Such a measurement
could serve to additionally constrain small-scale fluctuations
present in the initial state of nucleus-nucleus or proton-
nucleus collisions. The proposed momentum-dependent cor-
relation coefficient or the momentum-dependent covariance
between the mean transverse momentum and the harmonic
flow can be sensitive also to other physical parameters in the
model, e.g., the value of shear and bulk viscosity. Therefore,
such a complete analysis could be done using a Bayesian
analysis combining experimental data on many observables,
besides the correlations and covariances discussed in this pa-
per, and a set of model parameters [40,41].

We suggest that a simplified formula for the momentum-
dependent correlation coefficient could be used in
experimental analyses instead of the exact formula for
the momentum-dependent correlation coefficient. The
simplified formula involves a four-particle correlator in
the denominator for particles in the whole acceptance and
not in a limited transverse momentum bin. We note that a
scaled or normalized covariance between the mean transverse
momentum and the harmonic flow in a given transverse
momentum bin is an interesting observable by itself, sensitive
to the granularity in the initial state. Lastly, the ratio of
the momentum-dependent and the momentum-averaged
covariance shows a nice splitting and a very strong difference
at higher momenta according to the granularity. The
experimental data on such simplified momentum-dependent
observables could be used to constrain parameters used in
hydrodynamic models of heavy-ion collisions.

It would be very interesting to measure the momentum-
dependent correlation coefficients in relativistic collisions
with heavy ions and/or protons. This could provide new in-
formation on the fluctuating initial state, the dynamics of the
collision, the hadronization, or color-glass correlations in such
collisions.
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[35] R. Samanta and P. Bożek, Phys. Rev. C 107, 054916
(2023).

[36] A. Olszewski and W. Broniowski, Phys. Rev. C 96, 054903
(2017).
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