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We calculate the elliptic flow of deuterons in Pb+Pb collisions at 2.76 TeV per colliding nucleon-nucleon pair
and show that it can be used to discriminate between direct statistical production and coalescence. The emission
from the fireball is parametrized and tuned to reproduce transverse momentum spectra and the elliptic flow of
protons and pions. Coalescence leads to higher deuteron elliptic flow than statistical production and agrees better
with experimental data. We attribute this observation to the varying size of the nucleon-producing region for the

emission in different azimuthal angles.
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I. INTRODUCTION AND MOTIVATION

Ultrarelativistic collisions of heavy atomic nuclei are
examined with the aim to probe matter at the highest tem-
peratures ever created in the laboratory. However, a few very
interesting results have been achieved in parallel to the main
line of research. One of them is the production of light nuclear
clusters. Even very exotic ones have been identified among the
produced particles, such as the antimatter 4He nucleus [1] or
the hypertriton as well as the antihypertriton [2]. Nevertheless,
while these measurements were crucial for the understanding
of the properties of the measured clusters, the results are still
inconclusive regarding the mechanism of their production.

The inconclusivity occurs already at the level of the sim-
plest nuclear clusters: deuterons and antideuterons. On one
hand, the yields of deuterons, antideuterons, and heavier clus-
ters alongside other types of hadrons including pions, kaons,
and protons can all be reproduced by the statistical model [3,4]
reasonably well. It seems as if the statistical model really pro-
vides a universal description for the bulk properties of matter
reflected in hadron species and their clusters. At first sight,
however, this is extremely puzzling, since the cluster binding
energy is two orders of magnitude below the characteristic
temperature, the former being a few MeV and the latter about
150 MeV. Quite naturally, production of deuterons from a
system at such a high temperature has led to the metaphor
“snowballs in hell” [3].

The results [3,5] show that both the statistical model and
the coalescence mechanism predict similar deuteron yields.
However, when using a blast-wave model as a representation
of thermal production of the proton p, spectra and v, and
simply replacing the proton mass by those of light nuclei, the
data on the elliptic flows of these light nuclei [6] are not well
reproduced.

Coalescence is a natural mechanism for the deuteron and
cluster production [7-21]. Due to their low binding energy it
is assumed that the clusters are formed by coupling nucleons
only after the latter have escaped the strongly interacting
fireball.
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The similarity of results from statistical production and
coalescence is intriguing and it provokes a question if such an
agreement of the different models is a robust feature based on
underlying physics processes or mere coincidence resulting
from fine tuning of a number of small contributing effects
[22]. Even though a bound cluster cannot really be produced
in a hot environment, an idea was put forward about an
existence of correlated nucleon n-tuples already at high tem-
peratures, that could later transform themselves into observed
clusters [3].

Deuteron production was described in dynamical mod-
els a long time ago [23]. Current data are addressed in
dynamical studies with transport models which focus on
the microscopic production and survival of deuterons within
the hot hadronic phase. Studies with SMASH [24,25] in-
cluded destroying and regenerating scattering of deuterons,
but ignored their very large formation time [26]. A newly con-
structed Parton-Hadron Quantum-Molecular Dynamics model
(PHQMD) [27] includes direct interaction between baryons
beyond the mean field and a cluster finding algorithm that
identifies the clusters during the evolution of the hot hadronic
phase. Experimental results on rapidity distributions and
transverse momentum spectra were successfully reproduced
for energies of few hundreds MeV up to 200 GeV per colliding
NN pair [28-31]. It was shown that coalescence, which is
applied only after the breakup of the hadronic phase, yields
similar results for the deuterons [29]. A kinetic approach to
production of lighter nuclei has also been applied for nucleon
reactions at intermediate energies [32].

Due to the finite size of the deuteron, coalescence depends
on the spatiotemporal extension of the source, which is mea-
sured by femtoscopy [12,33-35]. To more explicitly include
this feature, a quantum-mechanical formalism of [14] was
recently generalized [36]. Another extension, motivated also
by the need to explain antideuteron production in collisions of
cosmic ray particles, which are usually small systems, has also
been worked out [37-39] and implemented for computation
[40].

©2024 American Physical Society


https://orcid.org/0000-0003-0478-0609
https://ror.org/03kqpb082
https://ror.org/016e5hy63
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.064908&domain=pdf&date_stamp=2024-06-11
https://doi.org/10.1103/PhysRevC.109.064908

RADKA VOZABOVA AND BORIS TOMASIK

PHYSICAL REVIEW C 109, 064908 (2024)

The constraint of coupling coalescence to the source sizes
has been implemented in several analyses that aim at dis-
tinguishing the true production mechanism. Early simple
estimates of the coalescence parameter [41] were later im-
proved with a more advanced formalism [36,42] to the extent
that the model deuteron wave function could be optimized to
fit the experimental data best [43].

Other possibilities to discriminate between the two pro-
duction models include examining the production of very
exotic spatially extended and high spin isotope “Li [44],
and/or performing femtoscopic studies involving correlations
of deuterons to protons or other hadrons [45], or among them-
selves [46].

Recently, an enhancement of deuteron production within
jet cones [47,48] was also successfully interpreted within the
coalescence picture [49].

In [50], the cumulants of the deuteron number distribution
were argued to be enhanced for coalescence with respect
to the prediction from the statistical model. Measurements
from ALICE [51] and STAR [52] Collaborations indicate a
disagreement with the predictions from coalescence.

In this paper, we examine the idea of using v, measure-
ments of deuterons for the distinction between coalescence
and statistical production. The elliptic flow of deuterons from
coalescence has been simulated before [5,53-56] but a com-
parison of the models has not been done. By doing so, we
further explore the idea that deuterons from coalescence are
a femtoscopic probe, i.e., their production is determined by
the size of the homogeneity region from which their nucleons
were produced. This is mostly the case if the homogeneity
region is comparable to the typical size of the deuteron wave
function, which is about 2 fm. Based on this, we suppose that
the elliptic flow of deuterons may be a sensitive test of coales-
cence, because it measures the variations of deuteron yield in
different azimuthal directions. Deuterons produced in differ-
ent azimuthal directions are built from nucleons that originate
from corresponding different homogeneity regions, which in
noncentral collisions may differ by size. This may lead to
the sensitivity of coalescence to the direction of deuteron
production.

In a way, we propose to look at more detailed structure of
the source than was done so far in studies of deuteron produc-
tion. This will require devoting more attention to the modeling
of the source, which we will constrain from hadronic observ-
ables.

For the actual calculation we use a model with a
parametrized freeze-out hypersurface, including production of
hadrons from decays of resonances, and implementing correc-
tions to the momentum distribution function due to viscosity.
The parametrization is based on an extension and upgrade
of the blast-wave model. Our results indicate—in accordance
with the reasoning above—that thermal production and coa-
lescence indeed lead to different elliptic flows, provided that
the fireball anisotropy is large enough.

We explain this approach in more detail in Sec. II. The
model used here is introduced in Sec. III, together with its
calibration. Our results are summarized in Sec. IV and we
conclude in Sec. V. A technical description of the freeze-out
implementation is placed in the Appendix.

II. THE APPROACH

In this paper we are interested in the mechanism of
deuteron production, which happens at the kinetic freeze-out.
We will not try to link that production to previous evolution
of the bulk matter, its properties, and/or initial conditions.
The reason is that we chose to look at differential v,, which
is statistics hungry in simulations. Thus, getting it from a
dynamical simulation for various setups would easily become
practically intractable. Also, we want the freedom to explore
the production process at carefully chosen freeze-out while
not making the approach more complicated than necessary.
Therefore, we decided to use a parametrization of the kinetic
freeze-out state of hadrons which we can tune with the help of
a few parameters.

A representation of such a parametrization is the well-
known blast-wave model. Here, we extend this model further
in several aspects, guided by experimental data.

In the hadronic fireball, just before its kinetic freeze-out,
nucleons and pions interact strongly with each others. In fact,
pions are the mediators of nucleon-nucleon interaction. This
leads us to assume that they decouple from the fireball at
the same time and must be described by the same emission
function, with a different mass inserted. This sets the con-
straint for our modeling of the kinetic freeze-out: we require
that the model reproduces azimuthally integrated p; spectra of
protons and charged pions, as well as their v, as a function of
p:. During our work, it has turned out that the requirement
to fit all these data of the two identified species fixes the
parametrization rather uniquely.

Then, the subsequent calculation of the p, distribution and
the differential v, of the deuterons can be considered as a
prediction, since there is basically no freedom to re-adjust the
model, which has been set on protons and pions.

We can then directly generate the thermally produced
deuterons; we just need to set the mass to that of the deuteron
and use proper spin degeneracy factor.

Coalescence is simulated in two steps. The mechanism
can be understood from the formula for the single-particle
spectrum of deuterons [14],

dNy 3

‘PP, 8C2n)

/ Py-dS,(Ra)
Xf

P P
x fp(Rd, g)fn (Rd, §)Cd<Rd, Py, (1)

where we use a-b =a,b"* for the scalar product and the
factor C;(Ry, P;) represents

d*qd’r  fp(Ry, Py)fu(R-, P_)

Ci(Ra, Py) = (21)3 f,(Ra, Pa/2)f(Ra, Pa/2)

D, q).
@

The integration in Eq. (1) runs over the kinetic freeze-out
hypersurface, d%s(Ry) is the surface element along the hy-
persurface, and R; marks a position on that hypersurface,
ascribed to the deuteron. Distributions of protons and neutrons
in phase space are denoted f, and f,,. The actual mechanism
of coalescence is represented by the factor C;(Ry4, Py). The
integration in Eq. (2) runs over relative position 7 and relative
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momentum ¢ of the nucleon pair, in the rest frame of the
deuteron, and R, R_, P;, P_ are their positions and momenta
in that frame. Finally, D(7, ) stands for the deuteron Wigner
density,

D(F, §) = / dPee Ty, (7+ %)so; (7 - %) 3)

where @, is the deuteron wave function.

Hence, deuteron yield is given by the convolution of the
deuteron Wigner function with the distributions (Wigner func-
tions) of the protons and neutrons. Those distributions will be
provided by our model, tuned on protons and pions. The actual
Monte Carlo application will be explained in the next section.

Equation (1) allows one to better illustrate why the
deuteron is a femtoscopic probe. For nuclear collisions, we
will assume that the nucleon distributions vary with momen-
tum much slower than the deuteron Wigner density, so that the
integration over momentum difference in Eq. (2) is limited by
D(#, §).

If the homogeneity region for nucleons with given momen-
tum is much larger than the typical spatial extension of the
deuteron wave function, then the spatial integration in Eq. (2)
covers the whole wave function. Due to its normalization, the
whole integral tends to 1. In this case, deuteron production is
equivalent to the production of one proton and one neutron,
multiplied by the appropriate degeneracy factor.

On the other hand, if the emitting region is much smaller
than the size of the deuteron wave function, then the integra-
tion in Eq. (2) is limited by f,, - f, and gives a factor smaller
than 1, representing just how much of the deuteron wave
function is included. The interesting regime is where the size
of the emitting region is just about the size of the deuteron,
because this is when the former behavior changes into the
latter.

Deuteron production thus becomes sensitive to the size of
the emitting source and we want to use this dependence in our
study.

III. THE MODEL

In the statistical (thermal) model, particle yields are given
by the volume, temperature, and chemical potentials for the
conserved charges. Together with spatial distributions of the
emission points and the profile of the collective expansion
velocity these are all ingredients that determine the so-called
blast-wave (BW) model [57-59]. It will be extended here,
however.

A. Freeze-out hypersurface

We parametrize the momentum of a particle with the help
of transverse momentum p;, transverse mass m;, rapidity Y,
and the azimuthal angle ¢ as

p"* = (m, coshY, p, cos @, p, sin¢, m, sinhY). (@]

In this paper, we shall denote the rapidity with a capital letter
in order to distinguish it from the spatial coordinate.

In the position space, we shall use the polar coordinates, r
and the azimuthal angle ®, in the transverse plane. Hyperbolic

coordinates map the remaining two directions: the space-time

rapidity
1 t+z
s=—=In| —=), 5
n 2n(t_z> o)

and the longitudinal proper time T = +/t2 — z2. Then, one can
write for the coordinates

x* = (t cosh ny, rcos ©, rsin ©, T sinh ;). (6)

When trying to simultaneously reproduce the identified p,
spectra and v, (p; ) of protons and pions, we found out that the
usual formulation of the blast-wave model with the freeze-out
along constant longitudinal proper time hyperbola is insuffi-
cient. Thus we replace it with the quadratic dependence of the
freeze-out time on the radial coordinate,

T4(r) = s + 217, (7

where s¢ and s, are parameters of the model.
The three-dimensional element of the freeze-out hypersur-
face is given by

FE> A dx"dx 6 (8)
= Euvkp T T~ r 55
n= ST de dn, 7
where ¢,,44, 1s the Levi-Civita tensor.
Then, from Eq. (6) one gets
] 0
Pzt = <cosh Ns» o) cos 0, o) sin ®, sinh 17S>
r
X r1p(r)dnsdrd®, )]

and Eq. (7) leads to
d*=* = (cosh n;, 2551 cos ©, 2s,r sin O, sinh 7,)
x r1y(r)dnsdrd®, (10)

Note that Egs. (6) and (9) just show how the positions in
space and the freeze-out hypersurface are parametrized, re-
spectively, with the help of coordinates. They do not yet
describe the actual shape of the hot fireball.

We further extend the usual BW model to incorporate az-
imuthal anisotropies both in flow and spatial distribution. The
radial size shows second-order oscillation around the mean Ry
with an amplitude a; Ry

R(®) = Ry[l — az cos(20)]. (11)

Technically, R(®) sets the maximum value that the coordinate
r can attain. The azimuthal spatial anisotropy of the fireball is
set by the ® dependence of this maximum. The expansion
velocity is parametrized as

u"* = (cosh n; cosh p(r), sinh p(r)cos O,
x sinh p(r) sin ®,, sinh n, cosh p(r)), (12)

where the transverse rapidity grows linearly with (dimension-
less) radial coordinate

F=r/R(®) 13)
and exhibits an azimuthal oscillation parametrized by p,

p(F, ©p) = Tpo[l +2p2 c0s(20,)], 14
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with py being the average transverse rapidity gradient. The
velocity is directed along the angle ®;, = ©,(r, ®), which
points in the direction perpendicular to the elliptical surface
of the freeze-out,

dy

T\ _ 4y _ de
tm(®y—5>—za——i£, (15)

d®

where the derivatives are taken along an 7 = const curve.

B. Momentum distribution

Along the freeze-out hypersurface, hadrons are produced
according to the Cooper-Frye formula [60]
d*N
E— =

s Efzjvmpx (16)

where f(x, p) is the distribution of the emission points in po-
sition and momentum space. Thermal production of deuterons
is also calculated according to this formula.

In the simplest case, within the local rest frame of a moving
fluid, f(x, p) is assumed to be a Bose-Einstein or Fermi-Dirac
distribution (or their Boltzmann approximation) [57,58].

Nevertheless, if the freeze-out happens from a viscous
medium, that distribution must be modified [61]. Here, we
adopt the parametrization of [62] which is based on the
approach of [63]. It consists of modifying the momenta,
temperature, and the chemical potential term in the original
statistical distribution. The distribution for particles with mass
m,,, baryon number b,,, and spin degeneracy g, at temperature
T then becomes

fPTM _ Z18n
eq.n /12 2 I ’
exp p——i_lm"—bn<ag+—g> +0,
T+ B IIF m

a7
where o is the ratio of baryon chemical potential to temper-
ature, up/T, and ®, is 1 (—1) for fermions (bosons). Other
terms and symbols are explained in Appendix.

For the actual generation of hadrons we have adopted the
hadron sampler from the SMASH package [64,65]. The original
viscous corrections implemented there have been replaced by
Eq. (17), because in the original formulation the corrections
may outgrow the main term.

Resonance production is included in our model and SMASH
was used to simulate their decays. However, subsequent
rescatterings of hadrons were forbidden.

Chemical potentials for the hadrons at freeze-out have
been assumed according to the partial chemical equilibrium
scenario [66]. The chemical freeze-out is assumed to happen
at the temperature 156 MeV [67], but the hadronic system
stays together longer and cools down until it reaches the
thermal freeze-out. In partial chemical equilibrium, this leads
to the appearance of proper chemical potentials for all stable
hadrons. Chemical potentials for resonances are determined
from the condition that their production and decay keeps
them in equilibrium with ground state hadrons. The chemi-
cal potentials then depend on temperature. In general, at the

chemical freeze-out they coincide with the values determined
in chemical equilibrium and then they grow as the temperature
decreases. We took their values from [67].

C. Coalescence

Nucleons generated by the above procedure may subse-
quently couple to form a deuteron. In the simulation, this is
implemented with the following steps [20]:

(i) We consider protons and neutrons at the place of their
last interaction with the fireball or where their parent
resonance decayed (i.e., their freeze-out).

(ii) For each p-n pair, the momentum and position of the
proton and neutron are boosted to the center-of-mass
frame of the pair.

(iii) The particle that has decoupled earlier is propagated
to the time when the other particle was created.

(iv) We calculate the relative momentum Ap = |py —
p2| and the relative distance Ar = |r; — r,| at equal
times of the p-n pair in their center-of-mass frame.

(v) To create a deuteron, we require that Ap < Apmax
and Ar < Arpax.

(vi) Next, the statistical spin and isospin factor 3/8 due to
the spin and isospin projection to the deuteron state
(probability 1/2 x 3/4 = 3/8) is added.

(vii) Finally, the chosen p-n pair is marked as a deuteron
and its proton and neutron are removed from the list
of created hadrons.

D. Model calibration

Let us recall our goal, which is to test if the two potential
production mechanisms for deuterons can be discriminated by
their prediction for v,(p,). The p, spectra of deuterons must
be reproduced, but we do not aim at any resolving power here,
for the production mechanism.

In this study we plan to calculate v, for one semicentral,
one mid-central, and one peripheral centrality class. Data
on v(p;) of deuterons were published in [68] for centrality
classes 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%.
We chose 0-5% and 30-40% for the comparison with data and
50-60% for a prediction, where the effects may be strongest
due to higher degree of anisotropy, even though no experimen-
tal data are available there.

Unfortunately, the p, spectra of deuterons have been pub-
lished in different classes of centrality: 0-10%, 10-20%,
20-40% [68]. We will take this into account when simulating
them.

For each centrality class, parameters of our model are tuned
on p, spectra and v,(p,) for protons and pions. The spectra
were published in [69] and the v, in [70], and they were
divided into centrality classes that overlap with v,(p,) for
deuterons in [68].

Proceeding with the calibration of the model we note that
the azimuthally integrated p, spectra do not depend on the
anisotropy parameters a, and p,. This allows us to set the
temperature 7 and transverse flow, parametrized with pg, from
the comparison to p, spectra of identified hadrons. As a matter
of fact, we use here the results of [71] where spectra of pions,
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TABLE I. The parameters used for the generation of pions, pro-
tons, neutrons and direct deuterons from the hadron sampler for
centrality classes 0-5%, 30-40%, and 50-60%.

Centrality 7 (MeV) 15y Ro(fm) so (fm/c) a, 02

0-5% 95 0.98 15.0 21+2 0.016 0.008
30-40% 106 0.91 10.0 9+1 0.085 0.03
50-60% 118 0.80 6.0 6+05 0.15 0.02

kaons, (anti)protons, and A’s were fitted simultaneously. For
later simulations we use the centrality classes 0-5%, 30—40%,
50-60%. The transverse size parameter Ry is taken from [72]
and sy is determined so that the normalization of the p; spec-
tra comes out correct. The adopted parameters are listed in
Table 1.

The differential v, then depends on spatial anisotropy pa-
rameter a, and flow anisotropy p,, This dependence is also
different for protons and for pions [59]. Hence, the combina-
tion of proton and pion v,(p,) allows us to set both a, and p;
uniquely.

Figure 1 illustrates for centrality 30-40% the x2 that we
have obtained when we compared a few calculated v,(p;) of
protons and pions for various values of a, and p, with data.
Their anticorrelation is observed but we see that a best fit can
be obtained.

At this point we observed that we are unable to reproduce
v2(p;) reasonably when we stick to the assumption that the
freeze-out hypersurface is set by constant 7 and does not
depend on r. The reason is that v,(p,) requires rather strong
elliptic flow. Since py parametrizes the transverse rapidity,
the parts of the fireball at the edges move with velocities
close to that of light. To see a sizable effect on the elliptic
flow we need a variation in the transverse expansion velocity.

=
o
o

0

)/Ndof

(0]
o
o

2
pion

)

o O

o o
roton + X

N
o
o
xz

FIG. 1. The x? from comparing theoretical results for various
values of a, and p, with experimental data on v,(p,) of protons and
pions for the centrality class 30-40%.

025 F —— 0-5% calculation |
—<— 0-5% data

—+— 30-40% calculation protons 1 {

02— 30-40% data

—— 50-60% calculation

0.15 I —=— 50-60% data i
Y
> 01 L |
0.05 P i B2
of f
-0.05 ‘ ‘ ‘
0 0.5 1 15 2

FIG. 2. Elliptic flow of protons for centrality classes 0-5%,
30-40%, and 50-60% compared to data from Pb+Pb collisions at
JSny = 2.76 TeV by the ALICE Collaboration.

Close to the edge, the variation is rather limited since the
expansion velocity is close to ¢ and must remain below c,
The effect of expansion velocity variation is enhanced if the
freeze-out hypersurface bends downwards in the 7-r plane;
i.e., regions which are farther from the longitudinal symmetry
axis freeze out earlier.! Technically, this is expressed by the
value s, = —0.02 fm~2. The obtained anisotropy parameters
for centrality classes in which we calculated v,(p;) are listed
in Table I.

The resulting v,(p;) for protons and pions are plotted
together with the experimental data in Figs. 2 and 3, respec-
tively. This demonstrates that we tuned our parametrization
well in order to reproduce the second-order anisotropy. In this
paper we determined the v, with the event-plane method.

The scenario is sometimes referred to as “burning log.”

0.7

——=— 0-5% calculation
06l —— data 0-5% |
: ——<— 30-40% calculation .
o data 30-40% charged pions
0.5 | —— 50-60% calculation (x2)

——— data 50-60% (x2)

04 r 1
N
>
03 |
P
0.1 7.@/‘!'@ B
,@—'g//@,,®7.§7—®7<®—‘»®— afju.&—07*0"’*’“77@.7“7%/m
0 o SO ! L L
0 0.5 1 15 2

pr [GeV]

FIG. 3. Elliptic flow of pions for centrality classes 0-5%,
30-40%, and 50-60% compared to data from Pb+Pb collisions at
VSny = 2.76 TeV by the ALICE Collaboration.
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protons

10" |

10° b

d®N/2r Ny, py dpy dy

——=<— 0-5% calculation (x 4)

——e— data 0-5% (x 4)
5-10% calculation (x 3)

——e— data 5-10% (x 3)

2 —— 20-30% calculation (x 2.5)

10° I —=— data 20-30% (x 2.5) E

—~— 30-40% calculation (x 2)

—— data 30-40% (x 2)
40-50% calculation (x 1.5)

——+ data 40-50% (x 1.5)

—=— 50-60% calculation
—&— data 50-60%

1 0-3 ! ]

0 0.5 1 1.5 2

pr [GeV]

FIG. 4. Transverse momentum spectra of protons for centrality
classes 0-5%, 5-10%, 20-30%, 30-40%, 40-50%, and 50-60%
compared to data from Pb+Pb collisions at ,/syy = 2.76 TeV by
the ALICE Collaboration.

The transverse momentum spectra of protons are shown
in Fig. 4 and those of pions in Fig. 5. Since the deuteron
p; spectra are measured in wider centrality classes, we will
simulate those by merging the results from both smaller cen-
trality classes (e.g., 20-30% and 30-40% will be merged into
20-40% centrality class). To this end, we had to simulate
also those classes which we do not use for the v, analysis.
Figure 4 shows all resulting proton spectra. The parameters
were determined in the same way as for the other centrality
classes and are listed in Table II.

TABLE II. The parameters used for the generation of pions,
protons, neutrons, and direct deuterons from the hadron sampler for
centrality classes 5-10%, 20-30%, and 40-50%.

Centrality T (MeV) 00 Ry (fm) so (fm/c)
5-10% 97 0.97 13.0 17
20-30% 101 0.94 11.0 11
40-50% 112 0.86 7.0 7

10%
. '%@ charged pions

10° F E
b |
I &
’%E: R
,%% e

10% | 1

101 F ——+— 0-5% calculation
I —e— data 0-5%
—e— 30-40% calculation
—o— data 30-40%
—— 50-60% calculation
— data 50-(?‘0%

0 0.5 1 1.5 2
pr [GeV]

1072

FIG. 5. Transverse momentum spectra of pions for centrality
classes 0-5%, 30—40%, and 50-60% compared to data from Pb+Pb
collisions at ,/syy = 2.76 TeV by the ALICE Collaboration.

IV. RESULTS AND DISCUSSION

After having constructed and calibrated the model it is now
straightforward to simulate deuteron production. Thermal pro-
duction is obtained just by using the mass and degeneracy
factors of deuterons in the Cooper-Frye formula, Eq. (16).
Coalescence was described in Sec. III C. The maximum dis-
tance of proton and neutron to form a deuteron was chosen
as Ar < 3.5 fm, in accord with the investigation [20]. The
correct yield is then obtained with Ap < 0.26 GeV.

For each centrality class, 10° events were initiated in the
simulation chain. About 10% of them did not finish due to
computational issues.

In Figs. 6 and 7 we present the transverse momentum
spectra of deuterons produced thermally and by coalescence,
respectively. At all investigated centralities, both models re-
produce the yield (absolute normalisation of the spectra) and
also the shape of the spectrum. Some discrepancies appear
in thermally produced spectra, especially in noncentral colli-
sions, where the simulated spectra are flatter than data. The
similarities of results can be understood, since the product
of f, and f, in Eq. (1) gives approximately the emission
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FIG. 6. Transverse momentum spectra of thermal deuterons for
centrality classes 0—10%, 20-40%, and 40-60% compared with data
from Pb+4-Pb collisions ,/syy = 2.76 TeV as measured by the AL-
ICE Collaboration.

function of deuterons in the thermal model. The less detailed
the observable that one looks at, the better is this rough argu-
ment.

Therefore, we look at the more detailed observable and
examine the elliptic flow. In Fig. 8 the p, dependence of v; is
plotted. Experimental data are compared to both models used
here. Recall that there in no room for tuning at this stage, since
all parameters have been set by the comparison to protons and
pions and the last two parameters have been fixed by deuteron
spectra. Now, we see a clear difference between coalescence
and thermal production. Generally, in noncentral collisions
coalescence leads to higher elliptic flow than the statistical
production. In the 20-30% centrality class it is the preferred
model, particularly for p, above 1.5 GeV. In central collisions,
elliptic flow is almost zero and the simulation results are
strongly affected by statistical fluctuations.

As we wanted to confirm our hypothesis that in more
peripheral collisions coalescence may be more sensitive to the
azimuthal variation of the homogeneity region, we looked at
the 50-60% centrality class. This is just one decile beyond
the coverage by experimental data and we suppose that it

10 :
%Weuterons - coalescence
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©
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[
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©
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—=+— 0-10% calculation
—e— data 0-10%
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—e—i data 20-40%
—— 40-60% calculation
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10' | | | | |
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FIG. 7. Transverse momentum spectra of deuterons from coales-
cence for centrality classes 0—10%, 20-40%, and 40—-60% compared
with data from Pb+-Pb collisions /syy = 2.76 TeV as measured by
the ALICE Collaboration.

could be covered with better experimental statistics. Here,
the difference between coalescence and the thermal model
prediction is clear, beyond the applied error bars.

The elliptic flow—being actually the measure of transverse
flow anisotropy—is larger from coalescence, when the size
of the homogeneity region from which the deuterons come
varies just around the size of the deuteron. The yield from
coalescence is very sensitive to the interplay of these two
sizes. Hence, one might expect that the anisotropy will be very
sensitive to the spatial deuteron size, which is effectively set
by Ar, here. Such a dependence might limit the robustness
of our conclusions, since Ar is one of our model parameters.
In order to test this robustness, we run simulations in which
we lowered the value of Ar and increased Ap so that the
normalisation of the spectra stays unchanged. We decreased
Ar by as much as 1 fm, but stayed conservative and did not
go for lower values. The results for v, are plotted in Fig. 9
for the 30—40% centrality class. As the size of the deuterons
is effectively lowered, they become less sensitive to the vari-
ation of the homogeneity lengths and the anisotropy of the
deuteron distribution—measured by v,—decreases. With the
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FIG. 8. Elliptic flow coefficient v, calculated for thermal produc-
tion as well as coalescence for centrality classes 0-5%, 30-40%, and
50-60%, and compared to data from Pb+Pb collisions at /syy =
2.76 TeV, as measured by the ALICE Collaboration.

current variation of Ar the decrease is such that all obtained
curves for v, stay close to experimental data. We stick to our
conclusion that coalescence leads to larger v, than the thermal
production.

We stressed several times, already, that for the yield from
coalescence the size of the effective homogeneity region (also

0.25
—»— dp=0.260 gev, dr=35m
dp =0.290 GeV, dr = 3.0 fm
02 —a— dp=0.350GeV, dr=2.5fm —
—&— data 30-40%
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BN
01 i
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0 | | | |
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pr [GeV]

FIG. 9. Elliptic flow of deuterons from coalescence for differ-
ent values of Ar and Ap, compared to experimental data from
Pb+-Pb collisions at ,/syy = 2.76 TeV, as measured by the ALICE
Collaboration.
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FIG. 10. Variances of the homogeneity regions that produce pro-
tons with p, = 1 GeV and deuterons with p, = 2 GeV, divided into
eight bins by azimuthal angle of the momentum. Centrality class is
50-60%. The ellipses are centered around mean position of emission
of given sort of particles and their half-axes are given by the variances
of the emission points. We plot thermal protons (red dashed line),
thermal deuterons (blue dash-dotted line), all nucleons that merge
into deuterons via coalescence (green dotted line), and deuterons
from coalescence (purple solid line).

known as homogeneity length) in comparison to the deuteron
size is decisive. In order to explore this issue, we want to have
a look at the homogeneity lengths in Fig. 10. We examine
the centrality class 50-60%, so that the anisotropy is clearly
visible, and focus on deuterons with p, from the interval
2.0 £ 0.2 GeV and protons with p, from the interval 1.0 &= 0.1
GeV. They are divided into eight bins of azimuthal angle of
their momentum. For each type of particles we recorded the
positions from which they were emitted. For deuterons from
coalescence this means that we record the position where we
calculate that the nucleon pair merged into the deuteron. From
the obtained samples of emission points we determine the
mean positions and the variances in the outward direction and
in the direction perpendicular to it. Then, we draw ellipses
with centers given by the mean emission position and the
half-axes given by the variances. Thus, the ellipses represent
the information about the homogeneity regions and lengths.
Figure 10 reveals an important insight: the intuitive picture
based on the thermal production from the fireball must be
modified, because some of the nucleons comes from decays of
resonances. This shows up as a shift of the production region
in the outward direction. For nucleons, the shift is about 2.5
fm. This shift has an impact on the emission region of the
deuterons. Those from coalescence are produced also from
nucleons that stem from resonance decays. Their emission
region coincides with that of all nucleons. On the other hand,
statistical production of deuterons does not include resonance
decays. As a consequence, the source of statistically produced
deuterons must fit into the thermal fireball. Due to higher
mass of the deuterons with respect to protons, the thermal
source of deuterons is smaller than that of protons and it
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is pushed further towards the edge of the fireball. It might
be interesting to explore the sizes of the emitting regions
with the help of femtoscopy, as recently proposed in [45,46].
Figure 10 confirms that such a study may indeed also help
with the discrimination of the potential deuteron production
mechanism.

V. CONCLUSIONS

We conclude that the second-order azimuthal anisotropy of
deuterons, also known as elliptic flow v,, is larger in the case
of coalescence than it is for the direct statistical production of
deuterons. Our claim is based upon simulation with a carefully
calibrated model that is fixed by reproducing the available data
on proton and pion transverse momentum spectra and v;.

Let us recall the important features of our approach which
support the robustness of our conclusions:

(i) Our simulations include the decays of resonances.

(ii) We employ a fully developed parametrization of the
emission and overcome numerical difficulties with
integrating of the emission function by Monte Carlo
sampling of the events, so that all details of source
shape and flow are included.

(iii)) We acknowledge that there are two potential causes
for azimuthal anisotropy of hadron distribution:
anisotropic shape of the fireball and the anisotropy of
its expansion. We include them both and tune them
via comparison to proton and pion v, (p;).

(iv) We insist on reproduction of proton (nucleon) and
pion data for p, spectra and v;. In the hadronic fire-
ball, these are the most abundant species, and the
former interact through the exchange of the latter.
Hence, they form together the bulk of the fireball, and
deuterons can be produced when this bulk of nucleons
and pions decouples.

On the other hand, we remained on a simpler level with
the modeling of the deuteron wave function. In general, any
model wave function of the deuteron will include its size and
so we expect that our results will stay qualitatively valid with
any of them. The study [43] has shown the sensitivity of the
calculated deuteron yield to the model for the wave function
that is used, albeit with rather simple modeling of the source.
It will be very interesting, though beyond our scope in this
paper, to try other models for the deuteron wave function with
this approach.

Note that another use of the blast-wave model to reproduce
elliptic flow has been documented in literature [5,53,54]. To
achieve this, azimuthal variation of the transverse expansion
velocity of the bulk was implemented with dependence on
the p, of the produced particle. This may mimic continu-
ous freeze-out as it naturally occurs in transport models. In
our work, we stayed strictly within the framework of the
blast-wave model, which assumes common freeze-out for all
hadrons. We showed that it is possible to reproduce deuteron
spectra and elliptic flow within these constraints.

The method of using v, for the distinction between coales-
cence and statistical production makes use of the homogeneity
lengths that vary with the azimuthal angle of the emission. It

may work if the homogeneity lengths are comparable to or
smaller than the size of the deuteron, otherwise we would
expect similar v, from both production mechanisms. Hence,
the method should work best in collisions with larger impact
parameter when the spatial anisotropy can be largest. Whether
it works as well in collisions of smaller systems, when the
homogeneity lengths are always smaller than the typical size
of the deuteron wave function, remains to be studied.

It may appear as an attractive idea to apply the same kind of
study on v, of larger clusters, since their wave functions have
different sizes and may be more sensitive to the azimuthal
variation of the homogeneity lengths. On the other hand, the
applicability of the method will be limited by the available
statistics. This idea remains to be studied, as well.
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APPENDIX: THE MODIFIED DISTRIBUTION
OF PARTICLE MOMENTA

Here we explain the symbols that appear in the modified
momentum distribution displayed in Eq. (17). Note that it
accounts for the departure of the distribution from the perfect-
fluid equilibrium case due nonvanishing gradients. We chose
this version of correction because it is more robust than the
method of adding correction terms [61] which may make
the resulting distribution negative for too large momenta. We
closely follow here the formalism of [62].

For later reference, we start with some definitions and
preliminaries.

1. Definitions

To keep the notation less cumbersome, we use a - b for the
scalar product of two four-vectors (a - b = a,b") and also for
multiplication with tensors (e.g., a -t - b =t""a,b,). Trans-
verse projector to velocity is defined as

AW = g" —ytu®, (A1)
and the projector for tensors as
Abp = 5(ALAG + ARAY) — 5AM Ay (A2)
With its help, one can define the velocity shear tensor
Oy = A% gty (A3)

The fluid local rest frame (LRF) is the one in which spatial
components of " vanish. In LREF, the three spatial dimensions
can be spanned by three unit vectors X;. These vectors can
be boosted to any other reference frame and their compo-
nents will be X/*. With their help, one can project out from
four-vectors their components, which make up the spatial
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components in LRF,
w; = X w,, (A4)
and similarly for tensors,
tij = X/'X['1,,. (A5)

The locally equilibrated distribution function for species n
is the standard Bose-Einstein of Fermi-Dirac distribution,

8n

feq,n(x» P) = ) . (A6)
exp (% - a,l(x)) + 0,
Recall that g, is the spin degeneracy, o, (x) = w,(x)/T (x),

and ®, = 1 (—1) for fermions (bosons). One also defines

fegn=1—8,"Onfeqn. (A7)

A shorthand is introduced for thermal integrals of species n,

&’p (w-p)f(=p-A-p)

Jkgn = wfoqns (A8

kq’ Qn)YE 2g + ! Jeanfeqn, (A8)
and they are summed over all species in

kg = kaq,n, (A9)

Nig = budign: (A10)

(A1)

My, = Z bf,]kq,n'

The energy density and the net baryon density in equilib-

rium are
d3p 5
£= Z/ (27r)3E(u'p) Jeq.ns (A12)
d3p
B = an/ nE (- D) foqns (A13)
and the equilibrium pressure
Z/ (27r)3E A p)fean- (Al14)

We shall also use the following temperature-dependent
coefficients:

(5 + Peq )/\[ZO - nBc730
FJoMig =N

215Ny = (€ + Peg) Mo

ToMio — N20?

G=T (A15)

F=T (A16)

2. The formula for the momentum distribution

Now we can explain the formula Eq. (17), which we repeat
here for convenience:

fPTM _ Zn8n
eq.n /n/2 2 I
ex p——+_’nn b op + _g + @n
p 1
T+ g IIF Bn

(A17)

The thermal distribution works with the momentum p’. It is
related to the momentum in the local rest frame (LRF) p

through
pi = Aijp_/,- - Qim+ byTa;, (A18)
where
A = 3ij -I- (A19)
] ( 3pn ) ! ﬂn
Vp.ingT
o= VBT (A20)
Bv(E + Pey)
Vs,
a = B (A21)
By

For the bulk viscous pressure and the shear stress tensor we
assume the Navier-Stokes form

M= —¢d,ut, (A22)

= 2no™’, (A23)
nevertheless, in our application we set the bulk viscosity iden-
tically 0. For the shear viscosity we assume /s = 0.2. The
LRF spatial components of shear stress are 7;; = X/' X/ 7.
The Navier-Stokes expression for the baryon current would be

w_ va [ HX)
Ve = smat a”(T(x)>’

with kg = Top and op is the baryon conductivity. Then,
Vi = X/'Vg,, is its spatial component in the LRF. Neverthe-
less, our density profile and temperature do not vary with the
coordinates and so the baryon current vanishes.

Out of the ratios of bulk viscosity, baryon diffusion coeffi-
cient, and shear viscosity to the relaxation time—py, By, and
Br—we thus do not need the former two. The third one is
determined as

(A24)

_ In
Pr == (A25)

The factor Z, normalizes the distribution to fix the particle
density. It is chosen as [62]

I n(

., (A26)
detA neq (T + B;'TLF, ap + B ' TIG)

n =

where neq (T, ) is the equilibrium particle density and

Jao, n]:

I1
n = negn+ — 5 (neqn + byJ10.,G + ) (A27)
n

Nevertheless, since we do not have the bulk viscous pressure
in our simulations, the normalization simplifies to just

(A28)
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