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Lepton pair photoproduction in hadronic heavy-ion collisions with nuclear overlap
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Lepton pair photoproduction provides a unique probe of the strong electromagnetic field produced in ultrarel-
ativistic heavy-ion collisions. To map out the broadening behavior of the lepton pair transverse momentum with
respect to the back-to-back correlation structure, we present a theoretical model based on the equivalent photon
approximation, and then we update it to make direct comparisons with the recent experimental measurements.
We find that the model calculations can describe well not only the average transverse momentum squared of
e+e− pairs in Au-Au collisions at

√
sNN = 200 GeV, but also the acoplanarity of μ+μ− pairs in Pb-Pb collisions

at
√

sNN = 5.02 TeV. Furthermore, the model predictions are also able to reproduce the measured lepton pair
mass and transverse momentum squared distributions.

DOI: 10.1103/PhysRevC.109.064907

I. INTRODUCTION

In ultrarelativistic collisions of heavy nuclei such as Au
or Pb, extremely strong electromagnetic fields are generated
when the two nuclei pass through each other [1–3]. The result-
ing strong electromagnetic fields provide a unique opportunity
to investigate some quantum electrodynamics (QED) effects,
such as light-by-light scattering [4], which was confirmed
experimentally by the ATLAS [5] and CMS Collaborations
[6], and matter production (e.g., dileptons and J/�) directly
from photons [7–18].

Theoretically, in 1934 Breit and Wheeler first proposed
to study the creation of electron-positron pairs via the fu-
sion of two real photons, γ + γ → e+ + e−, which was
difficult to observe in laboratory experiments in that period
[19]. They calculated the relevant total cross section, in-
cluding photon polarization, and their results were further
extended and generalized in Ref. [20]. The above scattering
is called the Breit-Wheeler process for the photoproduction
of dilepton pairs. Indeed in 1924 Fermi described the electro-
magnetic particle production in terms of an equivalent photon
method [21], which was later improved by Williams [22]
and Weizsäcker [23]. Within this method, the electromagnetic
fields of a moving nucleus can be described as a cloud of
quasireal photons, and the electromagnetic production cross
section of lepton pairs in nuclear collisions can be computed
as

σ WW
A1A2→A1A2l+l− =

∫
dω1dω2 n1(ω1)n2(ω2) σγγ→l+l− , (1)

in which n1(ω1) and n2(ω2) are the equivalent numbers
of photons with energies ω1 and ω2 from the fields of
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nuclei A1 and A2, respectively; σγγ→l+l− is the elementary
two-photon fusion cross section from the Breit-Wheeler pro-
cess. This is known as the equivalent photon approximation
(EPA [24–37]), and it has been widely employed to interpret
photon-photon collisions in ultrarelativistic heavy-ion colli-
sions [9,10,38–41].

Concerning the photon-photon scattering process γ +
γ → l+ + l−, the momentum of the incoming photons is
predominantly along the beam direction and the relevant
transverse momentum is very small, kγ γ

⊥ < 0.03 GeV [29,42].
Thus, according to QED calculation at leading order in αEM,
the transverse momentum of the outgoing lepton pairs is also
small, pl+l−

⊥ ≈ 0, resulting in a nearly back-to-back correlation
structure in the azimuthal angle, |φl+ − φl−| ≈ π . Experimen-
tally, in recent years, the photon-photon scattering processes
have been measured at low pl+l−

⊥ in Au-Au and Pb-Pb col-
lisions with nuclear overlap [17,39–41], i.e., their impact
parameter b is smaller than twice the nuclear radius, b < 2R.
It is observed that the back-to-back correlation is broadened
and the lepton pair pl+l−

⊥ increases.
Various theoretical approaches and Monte Carlo (MC) gen-

erators were built to study the lepton pair photoproduction,
as well as its transverse momentum broadening in heavy-ion
collisions. The widely used model STARLIGHT [43] is a MC
generator with the traditional EPA approach [Eq. (1)]. It is
designed to simulate a variety of ultraperipheral collisions
(UPCs, b � 2R) without including the photon polarization
effects. SUPERCHIC3 [33] is a MC generator taking into ac-
count the screening effects. One can run this model without
the survival probability, to allow for photon-photon collisions
with nuclear overlap. The photon Wigner formalism [34,44–
46] allows one to provide the calculations of the lepton pair
transverse momentum and acoplanarity within a given im-
pact parameter range. GAMMA-UPC [47] computes the survival
probability of the ions using a parametrized Glauber MC
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simulation. One can run this model without requiring sur-
vival probability, to allow for photon-photon collisions with
nuclear overlap. It handles final states produced via photon
fusion. All models so far consider only leading-order (LO)
QED corrections for the Breit-Wheeler elementary process.
The calculations for the relevant production cross section are
complicated, and multidimensional integration is needed in
general to get the numerical results. Recently, the higher-
order (HO) QED effect for the vacuum pair production was
explored by introducing a screening of the Coulomb potential
in the photon propagator [48,49], which naturally incorporates
higher-order corrections [50,51]. It is argued that such cor-
rections enhance [(HO − LO)/LO ≈ 15% at maximum] the
transverse momentum broadening of lepton pairs at energies
available at the CERN Large Hadron Collider (LHC) [51].
See Ref. [35] (and the references therein) for a comprehensive
review of the theoretical models.

We note that, among the various approaches, the traditional
EPA model [Eq. (1)] is widely used due to its simplicity
[26,43,52]. Such a model allows us to provide a fairly direct
strategy for the calculations of the Breit-Wheeler process in
nuclear collisions. However, as pointed out in Ref. [35], the
traditional approach has difficulty in computing the kinematic
distributions of single lepton, which are challenged by the
recent measurements performed at energies available at the
BNL Relativistic Heavy Ion Collider (RHIC) and at the LHC.
In this work, we try to overcome this issue by utilizing a
Monte Carlo based strategy (see Sec. II B). The differential
cross section for the photon-photon scattering process, γ +
γ → l+ + l−, is calculated via the traditional EPA [Eqs. (8)
and (17)]. The relevant single photon transverse momentum is
sampled according to the differential form of the one-photon
distribution function [Eq. (A17)], which is obtained by in-
tegrating over the full transverse plane perpendicular to the
direction of the moving nucleus. After including the fusion
process for γ + γ → l+ + l−, a hybrid model is developed
to provide the impact parameter dependent calculations for
events with nuclear overlap. The latest experimental data, such
as the transverse momentum broadening and the invariant
mass spectrum, will be used to examine the relevant theoreti-
cal calculations.

In summary, the different models/MCs of the Breit-
Wheeler process mentioned above contain different correc-
tions to account for the finite (low) virtuality of the incoming
photon fluxes (and subsequent propagated k⊥ to the outgoing
l±), and in some cases too for the incoming polarization of
the photons (and subsequent azimuthal modulation of the
final-state dielectrons), and have implemented different meth-
ods to take into account the survival probability of the ions.
This work is just based on an alternative approach to model
the Breit-Wheeler process in photon-photon collisions with
nuclear overlap.

The paper is organized as follows: Sec. II is dedicated
to the description of the theoretical framework, including
the calculation of the electromagnetic field, the equiva-
lent photon spectra and the Monte Carlo based setup.
Sec. III shows the results of transverse momentum broadening
and the invariant mass spectrum. A summary section then
follows.

TABLE I. Nuclear density parameter for the charge density dis-
tributions of Au and Pb. Results adopted from Ref. [53].

Nucleus R (fm) a (fm) 	

197Au 6.380 0.535 0
208Pb 6.624 0.549 0

II. THEORETICAL METHOD AND CONFIGURATION

A. The equivalent photon approximation

To calculate the energy flux of the classical equivalent
photons, we first determine the electromagnetic field of a
charge distribution moving at high velocity (v ≈ c), and then
calculate the single-photon distributions. Here we just show
the final results, and the detailed aspects are relegated to the
Appendix.

In the observer’s frame, we assume a nucleus moves with
constant velocity v on a straight line along the z axis (i.e.,
longitudinal direction), and being located by the displacement
�b in the xy plane (i.e., transverse plane). The relevant poten-
tials A(x) = (t, �x⊥ − �b, z) of the electromagnetic waves are
determined by d’Alembert’s equation

∂μ∂μAν (x) = Jν (x) (2)

in the Lorentz gauge

∂νAν (x) = 0. (3)

We perform the Fourier transformation of Eq. (2), yielding
[Eq. (A3)]

Aν (k) = − 1

k2
Jν (k) = 2πZe δ(ku)

F (
√−k2)

−k2
uνei�k·�b, (4)

with u = γ (1, �v) = γ (1, �0⊥, v) and k = (ω, �k) =
(ω, �k⊥, ω/v). Z is the charge number of the nucleus, and
F is the corresponding form factor,

F (q2) ≡
∫ ∞

−∞
d3�r e−i �q·�rρ(�r), (5)

where the four-momentum transfer reads q2 ≡ −k2 .= �k 2
⊥ +

(ω/γ )2 in the ultrarelativistic limit v ≈ c = 1. The spatial
charge distribution ρ is quantified by the Woods-Saxon dis-
tribution [53]

ρ(r) = ρ0
1 + 	 · (r/R)2

1 + exp[(r − R)/a]
, (6)

where ρ0 is the normalization factor so that
∫

d3�r ρ(�r) = 1,
r = |�r| is the distance with respect to the nucleus center, R
is the nucleus radius, a is the skin depth, and 	 corresponds
to deviations from a spherical shape for a given nucleus. The
employed values of these three parameters in this work are
summarized in Table I.

The resulting form factor in Eq. (5) can be rewritten as [54]

F (q2) = 4π2ρ0a3

(qa)2 sinh2(πqa)
[πqa cosh(πqa) sin(qR)

− qR cos(qR) sinh(πqa)] + 8πρ0a3�∞
j=1(−1) j−1

× je− jR/a

[ j2 + (qa)2]2
, (7)
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in which the term on the third line is expected to
be much smaller than the others. We have checked
its validity and therefore neglected it in this analy-
sis. A similar approximation is widely employed in the
literature [55].

Here we treat the electromagnetic field of the two nuclei
classically by assuming both nuclei move with constant veloc-
ity on straight lines, being separated by the impact parameter
�b. The differential cross section for the photon-photon scatter-
ing process, γ + γ → l+ + l−, reads [26]

d4σ

dω1dω2d2�b = ns(ω1, ω2, �b)σs(ω1, ω2) + nps(ω1, ω2, �b)σps(ω1, ω2), (8)

in which ns(ω1, ω2, �b) and nps(ω1, ω2, �b) are the scalar and pseudoscalar two-photon distribution functions, respectively. Such
distribution functions can be expressed in terms of the electromagnetic fields,

ns(ω1, ω2, �b) = 1

π2ω1ω2

∫
d2�x⊥[ �E1⊥(ω1, �x⊥ − �b, z) · �E2⊥(ω2, �x⊥, z)]2

(A12)=
∫

d2�x⊥n(ω1, �x⊥ − �b) n(ω2, �x⊥)

[
(�x⊥ − �b) · �x⊥
|�x⊥ − �b| · |�x⊥|

]2

,

(9)

nps(ω1, ω2, �b) = 1

π2ω1ω2

∫
d2�x⊥[ �E1⊥(ω1, �x⊥ − �b, z) × �E2⊥(ω2, �x⊥, z)]2

(A12)=
∫

d2�x⊥n(ω1, �x⊥ − �b) n(ω2, �x⊥)

[
(�x⊥ − �b) × �x⊥
|�x⊥ − �b| · |�x⊥|

]2

,

(10)

in the ultrarelativistic limit v ≈ c = 1. n(ω, �x⊥) is the one-photon distribution function, as given in Eq. (A15). The scalar part ns

and the pseudoscalar part nps correspond to the electric fields that are parallel, �E1 ‖ �E2, and perpendicular, �E1 ⊥ �E2, respectively.
The elementary two-photon fusion cross section in Eq. (8) is expressed as [24]

σγγ→l+l−
s = 4πα2

EM

s

[(
1 + 4m2

l

s
− 12m4

l

s2

)
2 ln

( √
s

2ml
+

√
s

4m2
l

− 1

)
−

(
1 + 6m2

l

s

)√
1 − 4m2

l

s

]
�

(
s − 4m2

l

)
, (11)

σγγ→l+l−
ps = 4πα2

EM

s

[(
1 + 4m2

l

s
− 4m4

l

s2

)
2 ln

( √
s

2ml
+

√
s

4m2
l

− 1

)
−

(
1 + 2m2

l

s

)√
1 − 4m2

l

s

]
�

(
s − 4m2

l

)
(12)

at the leading order in αEM, where, s = 4ω1ω2 indicates the
center-of-mass squared-energy and ml denotes the mass of
single lepton l . The step function �(s − 4m2

l ) guarantees that
the center-of-mass energy of the two photons is no smaller
than twice the lepton mass.

The angular profile of the produced lepton pairs reads

G(θ ) = 2 + 4

(
1 − 4m2

l

W 2

)(
1 − 4m2

l
W 2

)
sin2 θ cos2 θ + 4m2

l
W 2[

1 − (
1 − 4m2

l
W 2

)
cos2 θ

]2
,

(13)

where θ is the angle between the beam direction and one of
the leptons in the local rest frame of the lepton pair. The result
is adopted from Refs. [43,56] by neglecting the effect of the
photon momentum on the angular distribution.

It is convenient to show the results in terms of the invariant
mass Mγ γ and rapidity Y γ γ of the γ γ system, so that we
implement further calculations by performing a simple change
of variables. The center-of-mass energy reads

W ≡ Mγ γ =
√

(Eγ γ )2 − ( �p γ γ )2 .=
√

4ω1ω2 (14)

and the rapidity is

Y ≡ Y γ γ = 1

2
ln

Eγ γ + pγ γ
z

Eγ γ − pγ γ
z

= 1

2
ln

ω1

ω2
. (15)

Therefore, the single-photon energy can be determined by

ω1 = W

2
eY , ω2 = W

2
e−Y (16)

and the right-hand side of Eq. (8) can be rewritten as

d4σ

dω1dω2d2�b = ∂ (W,Y )

∂ (ω1, ω2)

d4σ

dW dY d2�b = 2

W

d4σ

dW dY d2�b .

(17)

B. Monte Carlo based setup

It is realized that, in Eqs. (8) and (17), the theoretical
calculations explicitly integrated over the momentum and
(pseudo)rapidity of single lepton, which are restricted in the
available measurements. To better perform the comparison
with data, we propose a Monte Carlo based strategy to over-
come this issue.

In this subsection, we describe the numerical framework
utilized for the photoproduction of lepton pairs, γ γ → l+l−,
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in ultrarelativistic heavy-ion collisions. Generally, in the
center-of-mass (CM) frame of the γ γ system, the energy of
each photon can be obtained at a given rapidity, while its trans-
verse momentum is sampled according to the single photon
energy spectrum. Then, the fusion process for γ γ → l+l− is
performed by employing a Monte Carlo based setup. Finally,
we can boost the above results from CM to the laboratory
(LAB). The steps of this numerical procedure are

(1) Calculate the differential production cross section
d4σ

dW dY d2 �b [Eq. (17)] at a given range of (W,Y, b); note
that the varying ranges for W and Y are determined by
the corresponding measurements, while b for a desired
centrality class is given in Ref. [53].

(2) Sample a set of γ γ pairs according to the profile of
the above spectra via Monte Carlo, and then initialize
their four-momentum, in the CM frame of each pair, at
a given point (W,Y, b)
(a) the total energy of the γ γ system: ETot = ω1 +

ω2, with the energy of single photon i, ωi, given
by Eq. (16);

(b) the total transverse momentum: �PTot
⊥ = �k1,⊥ +

�k2,⊥, with transverse momentum of photon i, �ki⊥,
sampled according to the single photon energy
spectrum [Eq. (A17)] at a given energy ωi; the
azimuthal angle of �PTot

⊥ is assumed to be uniformly
distributed in the transverse plane, and it will be
constrained by the kinematics cuts on the decaying
lepton pairs;

(c) the total longitudinal momentum: PTot
z =√

(W )2 + ( �PTot
⊥ )2 · sinh(Y ).

(3) Perform the fusion process γ γ → l+l−:
(a) calculate the four-momentum for the ith lepton

(Ei, �pi,⊥, pi,z )
(i) initialize its three-momentum according

to the two-body decay kinematics | �pi| =√
W 2 − 4m2

l /2 in the CM of γ γ system, as
well as the energy Ei =

√
( �pi )2 + m2

l ;
(ii) sample the transverse momentum �pi,⊥ =

(| �pi| sin θ cos φ, | �pi| sin θ sin φ) and the longi-
tudinal momentum pi,z = | �pi| cos θ by assum-
ing that the polar angle (θ ) profile is described
by Eq. (13), while the azimuthal angle (φ)
is uniformly distributed; they will be further
constrained by the additional kinematics cuts,
which are imposed in the corresponding final
observable;

(b) boost the above results from the CM of γ γ system
to the LAB according to �β = (βx, βy, βz ), where
βi = −PTot

i /ETot (i = x, y, z); note that �PTot and
ETot are already determined in the previous step;

(c) boost further the obtained results from the LAB to
CM for the asymmetry colliding system A1A2, ac-
cording to �β = (0, 0, βz ), where βz = tanh(Yshift )
with the rapidity shift Yshift = 1

2 ln ( Z1
A1

A2
Z2

) and Zi

and Ai are the charge number and mass number of
nucleus i, respectively.

0 5 10 15 20
b [fm]

0.1

0.2

0.3

0.4
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/d
b 
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]

- e+
 e

→γγ σd
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Pseudoscalar
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Au-Au 200 GeV
2c<2.6 GeV/ee1.2<M

<1ee0.5<y

FIG. 1. Impact parameter dependent differential cross sec-
tion (solid red curve) for the electromagnetic production of an
electron-positron pair with scalar (dashed black curve) and pseu-
doscalar contribution (dotted blue curve), in Au-Au collisions at√

sNN = 200 GeV. See legend for details.

(4) Collect the four-momentum of lepton pairs l+l− and
single leptons within the desired acceptance, which
can be used to calculate observables such as dN

dW , dN
d p2

⊥
,

and
√

〈(p⊥)2〉, and then compared to the relevant mea-
surements within the same acceptance.

III. NUMERICAL RESULTS

Figure 1 depicts the impact parameter dependent cross
section for the electromagnetic production of an electron-
positron pair in Au-Au collisions at

√
sNN = 200 GeV. The

scalar and pseudoscalar contributions [Eq. (8)] are displayed
as dashed black and dotted blue curves, respectively, while the
combined result is presented as a solid red curve. We observe
that for the scalar component a dip structure lies at b ≈ 9 fm,
while for the pseudoscalar component a maximum is found at
b ≈ 12 fm. These behaviors may be induced by the two over-
lapping electromagnetic fields: (1) the electron-positron pairs
are more often produced in the vicinity of the nuclear surfaces,
where the strongest electric field densities of the two colliding
heavy ions exist [2]; (2) for the two colliding heavy ions AB
(see the illustration in Fig. 2), the overlap nuclear surface is
shown as the blue circle, with an arbitrary point P on top
of it to display the point of interest (b � RA + RB); the con-
stellation of the electric fields are mostly perpendicular, �EA ⊥
�EB, when b =

√
R2

A + R2
B; similarly, they are mostly parallel,

�EA ‖ �EB, when b = RA + RB. As mentioned in Eqs. (9) and
(10), the electric fields of the two colliding heavy ions have to
be parallel and perpendicular to produce the scalar and pseu-
doscalar two-photon fusion cross sections, respectively. Thus,
for the scalar contribution, one can expect that a dip structure
exists around b = √

2RAu ≈ 9 fm, while, for the pseudoscalar
part, its maximum falls into the dip of the double hump struc-
ture of the scalar cross section, i.e., the maximum lies below
b = 2RAu ≈ 13 fm in Au-Au collisions. Similar results can
be found in Refs. [26,57]. Figure 3 shows the normalized
differential yield as a function of the invariant mass of e+e−
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FIG. 2. Illustration of the electric field produced by two colliding
heavy ions.

in mid-central [40–60%, panel (a)] and peripheral [60–80%,
panel (b)] Au-Au collisions at

√
sNN = 200 GeV. The results

(curves) are restricted within the kinematics region (pe
⊥ >

0.2 GeV/c, |ηe| < 1, pee
⊥ < 0.15 GeV/c and |yee| < 1), as

applied in the STAR measurements, for direct comparisons
with the experimental data (points). Due to the conservation
laws of energy and momentum, the spectra are zero when the
invariant mass is less than twice the transverse momentum
of the single electron, Mee � 0.4 GeV/c2. It peaks at Mee ≈
0.5 GeV/c2 and then decreases exponentially towards larger
Mee. It can be seen that the model calculations provide a very
good description of the measured Mee-dependent spectra data

FIG. 3. The differential yield with respect to dielectron invariant
mass in mid-central (a) and peripheral (b) collisions, indicating the
centrality percentiles 40–60% and 60–80%, respectively, of Au-Au
collisions at

√
sNN = 200 GeV. The results are filtered within the

selected acceptance. The relevant data (solid black point [17]) are
shown for comparison. See legend and text for details.

FIG. 4. Same as Fig. 3 but in 50–70% (a) and 70–90% (b) Pb-Pb
collisions at

√
sNN = 5.02 TeV. The relevant data (solid black point

[39]) are shown for comparison.

in both 40–60% [panel (a)] and 60–80% [panel (b)] centrality
classes. Similar behavior was found for Pb-Pb collisions at√

sNN = 5.02 TeV in different centrality classes, as shown in
Fig. 4.

In Fig. 5, the differential electron-positron pair p2
⊥ spec-

trum d2N/(d p2
⊥dy) is calculated within three invariant mass

regions in 60–80% Au-Au collisions at
√

sNN = 200 GeV.
See the legend for details. The numerical calculations (curves)

FIG. 5. The dielectron pair p2
⊥ spectrum within the mass re-

gions 0.4 < Mee < 0.76 GeV/c2 (solid black curve), 0.76 < Mee <

1.2 GeV/c2 (dotted red curve), and 1.2 < Mee < 2.6 GeV/c2

(dashed blue curve) in 60–80% Au-Au collisions at
√

sNN =
200 GeV. The comparisons with available STAR measurements [17]
are plotted as well.
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FIG. 6. The dielectron pair
√〈p2

⊥〉 distribution as a function of
invariant mass in 60–80% Au-Au collisions at

√
sNN = 200 GeV.

The measurements [17] are also shown for comparisons.

are filtered with the STAR acceptance (pe
⊥ > 0.2 GeV/c,

|ηe| < 1 and |yee| < 1), allowing direct comparison with the
experimental measurements (points). Within the experimental
uncertainties, the measured p2

⊥ dependencies are compatible
with the model predictions, while a slightly larger discrepancy
observed in the range p2

⊥ � 0.002 (GeV/c)2.
Figure 6 presents the average transverse momentum

squared
√

〈p2
⊥〉 of electron-positron pairs as a function of

Mee in 60–80% Au-Au collisions at
√

sNN = 200 GeV. It is

observed that
√

〈p2
⊥〉 is more significant at larger Mee, where

the electron-positron pairs are generated predominantly in the
vicinity of the stronger electromagnetic field, which, in turn,
creates larger p⊥. The available STAR measurements [17]
are displayed as well for comparison. Both the shape and the
magnitude of the measured data can be described reasonably
well by this calculation, thereby reducing the available space
for the additional effects, such as the higher-order QED cor-
rections and the hot medium in collisions with nuclear overlap
[51]. This data-to-model comparison can be improved with
future high-precision measurements, which are important to
quantify the spread of dilepton p⊥ distributions, in particular
in more central collisions. Table II summarizes the

√
〈p2

⊥〉
measured in three different mass regions in Pb-Pb collisions
at

√
sNN = 5.02 TeV [39]. Within the experimental uncer-

tainties they are found to be in agreement with our results.
Note that the model predictions based on the lowest-order
QED calculations (“QED” [58,59]), the Wigner formalism

FIG. 7. The dielectron pair
√〈p2

⊥〉 distribution as a function
of impact parameter from various mass regions: 0.4 < Mee <

0.76 GeV/c2 (solid black curve), 0.76 < Mee < 1.2 GeV/c2 (dotted
red curve), and 1.2 < Mee < 2.6 GeV/c2 (dashed blue curve). The
relevant measurements performed in 60–80% Au-Au collisions at√

sNN = 200 GeV [17] are shown as well for comparison. For vis-
ibility, the data points are shifted horizontally.

(“Wigner” [34]), and the vanishing impact parameter effects
(“STARLIGHT” [43,52]) are shown as well for comparisons. All
the results from theory present an increasing behavior, while
the data are not yet precise enough to conclude such mass
dependence of

√
〈p2

⊥〉 [39].
To investigate further the broadening of p⊥ via

√
〈p2

⊥〉,
we study its impact parameter b dependence, as displayed
in Fig. 7. It can be seen that (1)

√
〈p2

⊥〉 increases with de-
creasing b and reaches a maximum value 1.5 times larger
than that in ultraperipheral collisions with b ≈ 2RAu ≈ 13 fm.
This result supports the statement [39] that the p⊥ broadening
originates predominantly from the initial electromagnetic field
strength that varies significantly with impact parameters; (2)
moreover, as discussed in Fig. 6, the broadening depends on
the invariant mass of the electron-positron pair, behaving with
an increasing trend with Mee. Similar results can be found in
Refs. [58,60]. In this figure, the STAR measurements [17] are
also plotted for comparison and show good agreement within
uncertainties.

With higher beam energy and intensity, the ATLAS
Collaboration utilizes the dimuon pair acoplanarity, α, to char-
acterize the p⊥ broadening effects.

α ≡ 1 − |φμ+ − φμ−|
π

, (18)

TABLE II. Summary of the different models for
√〈p2

⊥〉 at desired invariant mass regions in 70–90% Pb-Pb collisions at
√

sNN = 5.02 TeV.
The relevant data are presented as well for comparison.

Mass region ALICE data [39] QED [58,59] Wigner [34] STARLIGHT [43,52] This work
(GeV/c2) (MeV/c) (MeV/c) (MeV/c) (MeV/c) (MeV/c)

0.4 � Mee � 0.7 44 ± 28(stat.) ± 6(syst.) 44 45 30 39
0.7 � Mee � 1.1 45 ± 36(stat.) ± 8(syst.) 48 48 38 43
1.1 � Mee � 2.7 69 ± 36(stat.) ± 8(syst.) 50 50 42 45
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FIG. 8. The dimuon pair α distribution for the kinematics of the ATLAS measurements [40]. Panel (a) (upper left) shows the model
predictions within the different centrality classes with the curves in different styles, while the other ones display comparisons with the relevant
experimental data (solid black point).

where φμ±
are the azimuthal angles of the single muons.

The model predictions are shown in Fig. 8 with each dis-
tribution normalized to unity over the α range of interest,∫

dα( 1
N

dN
dα

) = 1. The results are also filtered with fiducial
cuts (pμ

⊥ > 4 GeV/c, |ημ| < 2.4 and 4 < Mμμ < 45 GeV/c2)
to allow a direct comparison with the ATLAS measurements
[40]. Panel (a) in Fig. 8 presents the model calculations within
various centrality classes. We observe that the α distributions
are narrower in peripheral collisions than those from more
central collisions, indicating that the transverse momentum
broadening effect is more pronounced for central collisions,
where the impact parameters are small. The same conclusion
was found in Fig. 7. This centrality-dependent broadening
behavior is compared with the available data for different
centrality classes, as shown from panels (b) to (f) in Fig. 8.
Within the experimental uncertainties, our calculations can
describe well the measured α dependencies. We note that,
even though the statistics of current ATLAS data is limited,
a centrality-dependent depletion of the dimuon yield is ob-
served at small α, where the discrepancy between model
and data is visible. Such behavior may be due to missing
effects such as the higher-order QED correction, which will
enhance (about 15% at maximum) the lepton pair transverse
momentum broadening in heavy-ion collisions with nuclear
overlap [51]. Furthermore, the background contributions from
dielectrons coming from hadronic collisions (the “hadronic
cocktail” subtracted in experimental measurements with nu-
clear overlap) are more pronounced at low mass, while the
ones from the thermal medium radiation dominate in the in-
termediate mass region [61]. These effects become important
in particular in more central collisions [31,62].

The centrality-dependent broadening of the α distribu-
tions is further studied according to the higher luminosity

measurement performed by ATLAS Collaboration [41].
Meanwhile, it allows us to investigate the α broadening be-
havior within different average transverse momentum p̄⊥,

p̄⊥ ≡ pμ+
⊥ + pμ−

⊥
2

, (19)

of the muons in the pair, where pμ±
⊥ are the transverse mo-

menta of single muons. We show in the left panels of Fig. 9 the
dimuon pair α distributions within three p̄⊥ ranges, 4 < p̄⊥ <

5 GeV (solid black curve), 5 < p̄⊥ < 6 GeV (long dashed
red curve), and p̄⊥ > 6 GeV (dashed blue curve), for three
centrality intervals, 0–20% [panel (a)], 20–40% [panel (b)],
and 60–80% [panel (c)]. The relevant data (points) are shown
as well for comparisons. We can see that (1) the centrality-
dependent broadening of the α distributions is confirmed, and
for a given p̄⊥ range the broadening is more pronounced in
central collisions, as observed in Fig. 8; (2) the α broadening
seems to have a visible p̄⊥ dependence with a considerable
decrease from lower toward higher p̄⊥; (3) the α distributions
show less depletion at α ≈ 0 at higher p̄⊥, which may be
attributed to the quantum interference effects [58]; (4) for
a given p̄⊥ range the depletion at small α becomes more
significant in peripheral collisions when comparing with that
in central collisions, i.e., there is a centrality-dependent de-
pletion at small α; furthermore, such depletion behavior is
underestimated by the relevant calculations. Consequently, the
broadening of the α distributions are affected by both the cen-
trality and the average transverse momentum. It is argued [41]
that the distributions of the transverse momentum scale k⊥,

k⊥ ≡ πα p̄⊥ = pμ+
⊥ + pμ−

⊥
2

(π − |φμ+ − φμ−|), (20)

which effectively quantify the component of the dimuon �p⊥,
show no significant dependence on p̄⊥. The relevant results
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FIG. 9. The dimuon pair α (left-hand panels) and k⊥ (right-hand panels) distributions within different p̄⊥ intervals, 4 < p̄⊥ < 5 GeV
(solid black curve), 5 < p̄⊥ < 6 GeV (long dashed red curve), p̄⊥ > 6 GeV (dashed blue curve), for three centrality intervals: 0–20% (upper),
20–40% (middle), and 60–80% (bottom). The relevant experimental data [41] (points) are presented as well for comparison.

are presented in the right panels of Fig. 9: the dimuon pair k⊥
distributions within three p̄⊥ ranges, 4 < p̄⊥ < 5 GeV (solid
black curve), 5 < p̄⊥ < 6 GeV (long dashed red curve),
and p̄⊥ > 6 GeV (dashed blue curve), for three centrality
intervals, 0–20% [panel (d)], 20–40% [panel (e)], and
60–80% [panel (f)]. The relevant data (points) are shown as
well for comparisons. We can see that (1) in a given centrality
range, the k⊥ distributions show a weak p̄⊥ dependence from
lower toward higher p̄⊥, confirming that k⊥ distributions
have trivial p̄⊥ dependence; (2) the k⊥ broadening is more
pronounced in central collisions; (3) within the experimental
uncertainties, the data can be well described by the relevant
model calculations, in particular at k⊥ � 20 MeV. Similarly
to the α distributions (left panels), the centrality-dependent
depletion is also observed at small k⊥ in the data, which
is underestimated by the model calculations. Thus, the k⊥
variable is better suited for assessing the centrality-dependent
modifications of the dimuon alignment, even though the
physical interpretations of the depletion behavior at small k⊥
are still challenging in general [40,41]. We plan to explore the
underlying mechanisms in the future.

IV. SUMMARY

In this work we have studied the photoproduction of lepton
pairs in high energy nuclear collisions by employing a theoret-
ical model with the equivalent photon approximation, which
can be derived from a full QED calculation at leading order in
αEM [26]. In the referenced work, the form factor is the one
for a homogeneously charged sphere. Moreover, the relevant

calculations, such as the production cross section, are obtained
by integrating over the full phase space of the single leptons.

We update the model by taking into account the widely
used Woods-Saxon distribution to reproduce the nuclear pro-
file more realistically. Furthermore, to filter with the fiducial
cut on the decaying leptons as applied in the current ex-
perimental measurements and allow direct comparisons, we
propose a Monte Carlo based strategy. The calculated results
can describe well the centrality-dependent broadening of both
the acoplanarity (α) and the transverse momentum scale (k⊥)
distributions, which are measured at the highest RHIC and
LHC energies. It is interesting to note that the α distributions
vary with the average transverse momentum p̄⊥ of muons in
the pair, while the k⊥ distributions do not. Therefore, the k⊥
variable is preferred for the study of the centrality-dependent
broadening effect. We also examine the updated model by
calculating the differential spectra as functions of pair mass
Mee and the transverse momentum squared p2

⊥, and it is
clearly found that the relevant experimental data can be well
described, indicating that the employed model is powerful for
characterizing the photoproduction of lepton pairs in ultrarel-
ativistic heavy-ion collisions.

ACKNOWLEDGMENTS

The authors are grateful to Prof. Jinfeng Liao and Prof.
Wangmei Zha for helpful discussions and communications.
This work is supported by the National Natural Science Foun-
dation of China (NSFC) under Grants No. 12375137 and No.
12005114.

064907-8



LEPTON PAIR PHOTOPRODUCTION IN HADRONIC … PHYSICAL REVIEW C 109, 064907 (2024)

APPENDIX: DERIVATION OF THE ENERGY
FLUX OF THE PHOTONS IN EQUIVALENT

PHOTON APPROXIMATION (EPA)

For the d’Alembert’s equation [Eq. (2)], one can perform
the Fourier transformation from momentum to position space,
resulting in [57]

Aν (k) = − 1

k2
Jν (k), (A1)

where the current density reads

Jν (k) = 2πZe δ(ku) ρ(
√

−k2) uν ei�k·�b, (A2)

with uν = γ (1, �0⊥, v) and k = (ω, �k⊥, kz ). ρ is the nuclear
charge density function. Here we have chosen the z axis as
the direction of the Lorentz-boost γ = 1/

√
1 − v2 between

the two frames. With the δ function in Eq. (A2), we have
−k2 = �k2

⊥ + ( ω
γ

)2.
The electromagnetic potential can be obtained by inserting

Eq. (A2) into Eq. (A1), yielding

Aν (k) = 2πZe δ(ku)
F (

√−k2)

−k2
uν ei�k·�b, (A3)

where Z is the nuclear charge number and F is the relevant
normalized form factor defined as the Fourier transform of the
charge distribution.

The electromagnetic field strength tensor in momentum
space reads [57]

Fμν (k) = −i[kμAν (k) − ikνAμ(k)]

=

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠.

(A4)

Note that

(1) the transverse components of the electric field is given
by

�E⊥ = (F 10, F 20) = −i[A0�k⊥ − k0 �A⊥] = −iA0�k⊥
(A5)

since �u⊥ = �A⊥ = 0 [Eq. (A3)]; the transverse compo-
nents of the magnetic field read

�B⊥ = �v × E⊥ = −ivA0 (−ky, kx, 0)T . (A6)

(2) The longitudinal component of the electric field is

Ez = F 30 = −i[k3A0 − k0A3]
.= 0, (A7)

since k3 .= k0 = ω and A0 .= A3 in the ultrarelativis-
tic limit (v ≈ c = 1); consequently, the longitudinal
components of the electromagnetic fields vanish in this
limit, resulting in relations

�E .= �E⊥, �B .= �B⊥,

| �E⊥| .= | �B⊥|, Ez
.= Bz

.= 0, | �E | .= | �B|,
�E ⊥ �B, �E ⊥ �v, �B ⊥ �v.

(A8)

(3) The energy flux of the electromagnetic field through
a plane perpendicular to the direction of the moving
nucleus, is provided by the Poynting vector

�S(�r, t ) ≡ �E (�r, t ) × �B(�r, t )
.= | �E⊥(�r, t )|2 (A9)

in the limit v ≈ c = 1.

As discussed above, the electromagnetic field of a charged
nucleus moving at high velocities becomes more and more
transverse with reference to the direction of propagation; see
Eq. (A8). As a consequence, an observer in the laboratory
cannot distinguish between the electromagnetic fields of a
relativistic nucleus and a bunch of equivalent photons. To
extract the equivalent photon spectrum n(ω, �x⊥) which de-
pends on the photon frequency ω and the displacement �x⊥
in the transverse plane, we can require that the energy flux
of the electromagnetic fields through a transverse plane is
identical to the energy flux of the equivalent photons [57], i.e.,
equivalent photon approximation (EPA):∫ ∞

−∞
dt

∫ ∞

−∞
d2�x⊥ �S(�r, t ) ≡

∫ ∞

0
dω ω

∫ ∞

−∞
d2�x⊥n(ω, �x⊥).

(A10)
With Eq. (A9), the left-hand side (LHS) of Eq. (A10) can be
expressed as

LHS = 1

π

∫ ∞

0
dω

∫ ∞

−∞
d2�x⊥| �E⊥(�r, ω)|2 (A11)

Compared with the right-hand side (RHS) of Eq. (A10), we
have

n(ω, �x⊥) = 1

πω
| �E⊥(�r, ω)|2 (A12)

in the ultrarelativistic limit v ≈ c = 1. The electric field in
Eq. (A12) is given by

| �E⊥(�r, ω)| (A3,A5)= Ze

2π

∣∣∣∣
∫ ∞

0
dk⊥ k2

⊥
F (

√−k2)

−k2
J1(x⊥k⊥)

∣∣∣∣
(A13)

with the Bessel function

Jn(z) ≡ 1

2π in

∫ 2π

0
dθ eiz cos θeinθ (A14)

of the first kind (n = 1). The energy flux of the equivalent pho-
tons can be obtained by inserting Eq. (A13) into Eq. (A12),
yielding

n(ω, �x⊥) = Z2αEM

π2ω

∣∣∣∣
∫ ∞

0
dk⊥k2

⊥
F (

√−k2)

−k2
J1(x⊥k⊥)

∣∣∣∣
2

(A15)

with the electromagnetic coupling factor αEM = e2/(4π ).
Similar results can be found in Ref. [26].

Note that

(1) the convergence of the integration part in Eq. (A15),
is guaranteed if the form factor vanishes fast enough
to zero at k⊥ → ∞ [26]; we take k2

⊥ � 1
R2 − ( ω

γ
)
2

in
the numerical calculations [63], where R is the nuclear
radius of the heavy-ion, see Eq. (6);
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(2) the transverse plane integrated energy flux in Eq. (A12), can be obtained via

n(ω) =
∫ ∞

−∞
d2�x⊥n(ω, �x⊥)

(A5,A3)= 2Z2αEM

πω

∫ ∞

0
dk⊥|�k⊥|3

[F (
√−k2)

−k2

]2

,

(A16)

resulting in

dn(ω, k⊥)

dk⊥
= 2Z2αEM

πω
|�k⊥|3

[F (
√−k2)

−k2

]2

. (A17)
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