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Nonmonotonic specific entropy on the transition line near the QCD critical point
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We investigate the effect of the quantum chromodynamics (QCD) critical point on the isentropic trajectories
in the QCD phase diagram. We point out that the universality of the critical equation of state and the third law
of thermodynamics require the specific entropy (per baryon) along the coexistence (first-order transition) line
to be nonmonotonic at least on one side of that line. Specifically, a maximum must occur. We show how the
location of the maximum relative to the QCD critical point depends on the parameters of the critical equation of
state commonly used in the literature. We then examine how the isentropic trajectories followed by adiabatically
expanding heavy-ion collision fireballs behave near the critical point. We find that a crucial role is played by the
sign of the isochoric temperature derivative of pressure at the critical point; this sign determines on which side
of the coexistence curve the specific entropy must be nonmonotonic (i.e., has a maximum). We classify different
scenarios of the adiabatic expansion that arise depending on the value of the discriminant parameter and the
proximity of the trajectory to the critical point.
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I. INTRODUCTION

Acquiring knowledge about the phase structure of quantum
chromodynamics (QCD) is one of the most important goals
of heavy-ion collision experiments [1]. A prominent feature
of the phase diagram is the QCD critical point where the
first-order phase transition line separating the hadron reso-
nance gas (HRG) and the quark-gluon plasma (QGP) phases
terminates. While various experimental signatures of the QCD
critical point have been proposed and are being searched for,
commensurate studies regarding the first-order phase transi-
tion are considerably less advanced. Therefore, it is essential
to establish an understanding of how the expanding QCD mat-
ter approaches and undergoes the first-order phase transition.

Ideal hydrodynamics provides the lowest-order approx-
imation of the expanding fireball created in heavy-ion
collisions [2]. Due to the scale hierarchy between the size of
the fireball and the microscopic QCD scale, the dissipation
accompanying the expansion can be considered small and
the entropy to be approximately conserved. Since the baryon
number is also conserved, the entropy per baryon number
ŝ ≡ s/n, which we refer to as specific entropy, is approxi-
mately constant, even though both densities of entropy, s, and
of baryon number, n, decrease due to expansion. Therefore,
given the equation of state (EOS), i.e., the dependence of ther-
modynamic quantities, such as pressure on temperature T and
baryon chemical potential μ, one can identify the trajectories
on the QCD phase diagram as lines of constant ŝ.

It is well known that the EOS near a critical point has
certain universal properties. Therefore, it is natural to ask what
universal properties of the isentropic (constant ŝ) trajectories
follow from the universality of the EOS. The goal of this work
is to address this question.

We start by pointing out that ŝ, as a function of the distance
from the critical point along the coexistence line, must exhibit
a maximum. This is a robust combined effect of the uni-
versal behavior of ŝ, whose discontinuity on the coexistence
line must vanish at the critical point, and the third law of
thermodynamics which dictates that ŝ must vanish at zero
temperature.

The behavior of ŝ satisfying these basic properties is
sketched in Fig. 1. The horizontal axis represents the distance
from the critical point along the coexistence line in terms of
the reduced temperature (Tc − T )/Tc, with 0 being the loca-
tion of the critical point and 1 of the T = 0 point. The critical
point is a branching point for ŝ, with the leading singular
behavior described by

ŝ − ŝc = ±Bφ

(
Tc − T

Tc

)β

+ . . . . (1)

This universal behavior stems from that of the order pa-
rameter field, φ ∝ ±[(Tc − T )/Tc]β , in the conformal theory
describing critical phenomena. The exponent β ≈ 0.326 is
universal, while the amplitude of the singularity is given by a
nonuniversal coefficient Bφ depending on the specific details
of the theory. The ellipsis refers to subleading terms.1 Close
to the critical point one of the branches is thus necessarily
an increasing function of the distance from the critical point.
However, at T = 0 this function must vanish by the third law.

1We shall see that when the maximum is sufficiently close to the
critical point these subleading terms are responsible for creating
that maximum. The third law is not even needed to establish the
nonmonotonicity in this case.
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FIG. 1. A schematic representation of the specific entropy (en-
tropy per baryon) ŝ on the phase coexistence line (first-order phase
transition) as a (double-valued) function of the distance from the
critical point in terms of reduced temperature. The entropy near
the critical point increases on one of the branches (in phase 1) but
vanishes at T = 0. The resulting maximum is denoted by the green
dot. The gray dot denotes the point on the branch where ŝ = ŝc, the
“critical double.”

Hence, on this branch, a maximum must occur, as illustrated
by the green point on Fig. 1.2

In order to study this effect quantitatively we consider the
range of parameters (relevant for the realistic QCD EOS) in
which the behavior of ŝ near the maximum is determined by
the competition between the leading term [shown in Eq. (1)]
and the subleading singular terms. We employ the critical EOS
proposed in Ref. [3] and reveal the universal properties of the
specific entropy, such as the nonmonotonic structure along the
first-order boundary (coexistence line).

We investigate the topography of the specific entropy
as a curved surface on a two-dimensional plane of baryon
chemical potential μ and T , ŝ(μ, T ), and demonstrate the
generic presence of a ridgelike structure (see the yellow re-
gions of Figs. 5 and 6). The nonmonotonic behavior, i.e.,
the maximum, along the coexistence line illustrated in Fig. 1
corresponds to the cross section of that ridge.

Such a ridge and the corresponding maximum on the coex-
istence line emerge either on the HRG side or on the QGP
side of the transition. A simple way to see which side is
nonmonotonic is to ask which of the coexisting phases has
higher specific entropy at the same temperature (see Fig. 1).
The answer to this question depends on the sign of Bφ—the
coefficient of the leading singularity in Eq. (1). We deter-
mine this coefficient in terms of the parameters characterizing
the mapping of the thermodynamic singularity of the three-
dimensional (3D) Ising model to that of the QCD critical
point, introduced in Ref. [3]. We also find that the sign de-
termining the nonmonotonic side is the same as that of the
temperature derivative of pressure at fixed baryon density [see
Eqs. (27) and (28) below].

2While Fig. 1 assumes the simplest scenario where the coexistence
line extends all the way to T = 0, it can be generalized to more
sophisticated phase diagram scenarios.

As an example, using the BEST Collaboration EOS with
default mapping parameter set choice from Ref. [3], we find
that the ridge giving rise to the maximum of the specific
entropy on the coexistence line emerges on the HRG side. For
this scenario, temperature decreases and chemical potential
increases as the isentropic trajectory traverses the coexistence
region. Such a scenario is different from the scenario where
the system is “reheated” on traversing the coexistence region
by the entropy released in the process of reconfinement (as
in, e.g., Ref. [4]), but it has been observed in some models
of the QCD phase transition without confinement (see, e.g.,
Ref. [5]).

The nonmonotonic structure can be characterized by two
points: the maximum (green point on Fig. 1) and the point
where the specific entropy again equals ŝc, which we call
“critical double” (gray on Fig. 1). Isentropic trajectories can
be classified based on the location of the point where they
enter the coexistence region (or if they enter it at all). An
interesting class is represented by trajectories that enter the
coexistence region between the critical point and its double.
Such trajectories emerge on the same side of the coexistence
line (see Fig. 8 below).3

The layout of this paper is as follows. In Sec. II, we calcu-
late ŝ near the QCD critical point by using the universal EOS
parameterized according to Ref. [3]. In Sec. III we show how
the competition between the leading and subleading terms in
Eq. (1) creates a maximum and determines how far it is from
the critical point. Section IV offers demonstrations of ŝ con-
tours on the (μ, T ) plane. In Sec. V, we closely examine and
classify isentropic trajectories near the first-order boundary.
We conclude in Sec. VI.

A series of Appendices complements our analysis.
Appendix A lists the critical susceptibilities used in Secs. III
and V. Appendix B reviews the EOS of the 3D Ising univer-
sality class. Appendix C derives specific values of the scaling
functions utilizing the findings from Appendix B. Appendix D
reviews the mathematical tools used to explore the topography
of ŝ on a two-dimensional plane, including the ridge line
definition. Appendix E analyzes the specific heat singularity
and relates it to the singularity in the specific entropy ex-
pressed in Eq. (1). In Appendix F, we present a geometric
description of the maximum specific entropy phenomenon and
the classification of isentropic trajectories in the (n, s) plane.

II. MAPPING 3D ISING MODEL AND QCD

A. The map

Let us assume the QCD critical point is located at (μc, Tc)
in the temperature vs baryochemical potential plane. This
point belongs to the 3D Ising universality class, which also
includes ubiquitous liquid-gas critical points. Universality
means that we can relate thermodynamics near the critical
point, i.e., for sufficiently small (�μ, �T ) ≡ (μ − μc, T −
Tc), to the thermodynamics of the Ising model for sufficiently

3Such trajectories were seen in the s vs n plane in Ref. [6] (see also
Appendix F) and possibly on the (μ, T ) plane in Refs. [7,8], although
not much attention was given to them.
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small relevant parameters (h, r) (ordering/magnetic field and
reduced temperature) related to (�μ, �T ) through a linear
map [3,7,9]:

�μ

Tc
= −w(rρ cos α1 + h cos α2), (2a)

�T

Tc
= w(rρ sin α1 + h sin α2), (2b)

where the notations for dimensionless mapping parameters w,
ρ, α1, and α2 follows Ref. [3].4 Under this map, close to the
critical point, the logarithm of the QCD partition function (i.e.,
pressure) is equal to the logarithm of the partition function
of the Ising model up to and including next-to-leading sin-
gularity (i.e., the singularity associated with the energy-like
variable ε.)

While the universal properties, such as critical scaling
exponents, are inherited from the Ising model, the mapping
parameters themselves are not universal. The parameters w
and ρ control the relative scale of the QCD and the Ising
variables each measured in terms of their respective critical
temperatures.

The angle α1 is the (negative of) the slope of the h = 0 line
on the QCD phase diagram at the critical point:

tan α1 = −(∂T/∂μ)h=0. (3)

This line is the “r̂-axis” tangent to the coexistence line, as
shown in Fig. 2. The slope of this line, estimated from lattice
calculations, is negative and small. That means α1 is positive
and small: 0 < α1 � 90◦. For example, Ref. [3] finds α1 ≈ 4◦
for their benchmark choice of μc ≈ 350 MeV.

Similarly, the angle α2 is the negative of the slope of the
r = 0 line (“ĥ axis”): tan α2 = −(∂T/∂μ)r=0. Although this
line cannot be described geometrically on the phase diagram
as easily as the h = 0 line, the angle α2 or, more importantly,
the angular separation α12 ≡ α1 − α2 plays an important role
in the structure of the EOS near the critical point.

We illustrate the mapping geometrically in Fig. 2 to
compare and contrast two scenarios different by the angle dif-
ference α12. The default scenario choice of Ref. [3], often used
in the literature, is α12 = 90◦ in Fig. 2(c). There is no motiva-
tion for this choice apart from simplicity. On the other hand, as
pointed out in Ref. [10], in the massless quark limit, mq → 0,
the angle difference α12 vanishes.5 Specifically: α12 → +0 as
α12 ∼ m2/5

q .
This fact, together with the smallness of quark masses,

suggests that α12 is small and α2 < α1 in nature. This is the
scenario illustrated in Fig. 2(d).

B. Specific entropy

We calculate the entropy density s and baryon number
density n by differentiating the QCD pressure P expressed,

4We define parameter α2 as in Ref. [10], which differs from α2 in
Ref. [3] by 180◦.

5The mapping becomes singular (noninvertible) in the α12 → 0
limit. This reflects the fact that the criticality in this limit corresponds
to a tricritical point, in a different universality class [4,10,11].

FIG. 2. Illustration of the role of the angles α1 and α2 in the
mapping of the Ising model coordinates (h, r) onto the phase dia-
gram of QCD in (μ, T ) plane given by Eq. (2). Panels (b)–(d) show
the mapping of the points in the four quadrants (color coded) of the
(h, r) plane onto (μ, T ) plane under two different scenarios for the
angle difference α12 = α1 − α2 used in the literature (see text).

near the critical point, via mapping to the Ising model Gibbs
free energy G:

P(T, μ) − Pc = AG(r(T, μ), h(T, μ)) + . . . , (4a)

s − sc = AGT + . . . = A(φhT + εrT ) + . . . , (4b)

n − nc = AGμ + . . . = A(φhμ + εrμ) + . . . , (4c)

with normalization factor A = T 4
c as in Ref. [3]. The “. . . ”

denotes less singular (and regular) terms also vanishing at the
critical point. These terms are negligible, sufficiently close
to the critical point compared to the singular terms we write
out. Specifically, along the coexistence line, φ ∼ |r|β and
ε ∼ |r|1−α , while the omitted terms are at most of order |r|.6
The leading and subleading singularities in Eq. (4) are due to
the two relevant operators of the conformal φ4 theory corre-
sponding to the magnetization, or order parameter, φ and the
energy density ε [12]:

φ ≡ Gh, ε ≡ Gr, (5)

whose (h, r) dependence will be discussed further later. Here
the subscripts denote partial derivatives with respect to one of

6Given the values of the exponents β ≈ 0.326 and α ≈ 0.110, for
sufficiently small |r|, the hierarchy |r|β 	 |r|1−α 	 |r| holds. We
shall focus on such a regime and revisit the justification for neglect-
ing the ∝ |r| term in Sec. III E.
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the independent variables in a set, such as (μ, T ) or (h, r),
while the other variable in the set is fixed. We have used the
chain rule, GX = GhhX + GrrX to obtain the last expression of
Eqs. (4b) and (4c). Partial derivatives of h and r with respect
to μ and T remain constant due to the linearity of the mapping
(2): (

hμ

hT

)
= − 1

Tcw sin α12

(
sin α1

cos α1

)
, (6a)

(
rμ

rT

)
= 1

Tcwρ sin α12

(
sin α2

cos α2

)
. (6b)

In Eq. (4), Pc, sc, and nc represent the constant baseline values
at the critical point. They are, of course, nonuniversal and
later, in Sec. III D, we will be using the values obtained from
extrapolating lattice data incorporated in the BEST Collabo-
ration EOS in Ref. [3].

It is straightforward to compute the total specific entropy
per baryon number, ŝ = s/n, using Eqs. (4b) and (4c). In the
regime on which we focus, in the vicinity of the critical point,
the leading terms are given by7

ŝ − ŝc = (ŝφ )cφ + (ŝε )cε + . . . , (7)

where

(ŝφ )c = A

nc
(hT − ŝchμ) = ŝc sin α1 − cos α1

w sin α12

T 3
c

nc
, (8a)

(ŝε )c = A

nc
(rT − ŝcrμ) = − ŝc sin α2 − cos α2

wρ sin α12

T 3
c

nc
. (8b)

The coefficients (ŝφ )c and (ŝε )c, and in particular their signs,
will play a central role in determining the global structure
of ŝ.

Since sin α12 > 0 as discussed at the end of Sec. II A, the
signs of (ŝφ )c and (ŝε )c are given by

sgn (ŝφ )c = sgn (ŝc − cot α1) · sgn (sin α1), (9a)

sgn (ŝε )c = −sgn (ŝc − cot α2) · sgn (sin α2). (9b)

Since α2 < α1, the coefficient (ŝε )c can be negative only
if α2 is in the range, arccotŝc < α2 < α1. This range does
not exist unless (ŝφ )c > 0 (i.e., ŝc < tan α1), and even in this
case this range is narrow since α1 is small. For this reason,
to simplify and focus the discussion, below we shall only
consider the scenario with (ŝε )c > 0, i.e.,

−90◦ < α2 < min(α1, arccotŝc). (10)

If needed, our analysis can be generalized to include less
likely scenarios with negative (ŝε )c.

7We shall consider the choice of parameters (see below) which
makes the coefficient (ŝφ )c controllably small. In this regime, the
two terms in Eq. (7) are of the same order, |r|1−α , while the leading
term in “...” is of order (ŝφ )cφ

2, which is smaller by a factor of order
φ ∼ |r|β .

FIG. 3. Specific entropy along the coexistence line given by
Eq. (14). The black curve represents the branch demonstrating a non-
monotonic behavior, which is one of the main results in the present
paper. The dashed curve is the branch that remains monotonic. The
black, gray, and green points denote the critical point, critical double,
and the maximum of the nonmonotonic branch (see text).

III. SPECIFIC ENTROPY ALONG
THE COEXISTENCE LINE

A. (r, h) plane

We shall examine ŝ given by Eq. (7) along the coexistence
line (first-order boundary), r < 0, h = ±0. Close to the criti-
cal point, φ and ε can be expressed in the well-known scaling
form (see, e.g., Ref. [13]):

φ = (−r)βφ̃(z), ε = (−r)1−αε̃(z), (11)

with the scale-invariant variable z ≡ h(−r)−βδ , where α 

0.110, β 
 0.326, and δ 
 4.80 are the critical exponents of
the 3D Ising model (βδ = 2 − α − β). We shall adopt the
same normalization as in Ref. [3], which fixes φ̃(±0) = ±1,
while ε̃(0) can be calculated numerically:

ε̃(0) ≡ ε̃−(0) ≈ −0.66 (12)

(see Appendix C). Throughout this work, a tilde denotes a
scaling function of scale-invariant variable z. For the scope
of this section, the explicit forms of φ̃(z) and ε̃(z) are not
important; we need only certain values (in particular, their
signs), such as the one given in Eq. (12).

The sign of ε̃(0) can be understood if we calculate the sus-
ceptibility, or specific heat, εr = Grr , which must be positive
for thermodynamic stability. At h = 0:

εr |± = −(1 − α)ε̃(0)(−r)−α > 0. (13)

Thus ε̃(0) < 0.
Substituting Eq. (11) into Eq. (7) we find:

ŝ|± − ŝc = ±(ŝφ )c(−r)β + (ŝε )cε̃(0)(−r)1−α + . . . . (14)

Here |± denotes evaluation at h = ±0, i.e., on the two sides
of the coexistence boundary, at given r. If the second term is
decreasing away from the critical point, then on the branch
where the first term is increasing there will be a maximum,
as shown in Fig. 3. We shall focus on this case, since, as
we discuss above, under Eq. (9a), it corresponds to the more
likely scenario, (ŝε )c > 0.
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The value of r at which the maximum is achieved is given
by (the green point in Fig. 3)

(−rmax)1−α−β = |(ŝφ )c|
|(ŝε )c|

β

ε̃r (0)
, (15)

where ε̃r (0) = −(1 − α)ε̃(0) > 0 is the amplitude of the spe-
cific heat singularity at the critical point (see Appendix A).

While rmax depends on the magnitude of (ŝφ )c, the sign of
(ŝφ )c determines the side of the coexistence line (high-T or
low-T ) where the maximum appears, as we discuss in the next
section. We can determine characteristics of the nonmono-
tonic behavior, such as the maximum value of the specific
entropy at r = rmax,

ŝmax = ŝc + |(ŝφ )c|1 − α − β

1 − α
(−rmax)β, (16)

and the value of r at the critical double (the gray point in
Fig. 3) where ŝ = ŝc,

(−rcd )1−α−β = 1 − α

β
(−rmax)1−α−β, (17)

which has been used for normalizing the horizontal axis in
Fig. 3.

There is a special choice of EOS parameters such that

ŝc − cot α1 → 0, (18)

where the coefficient (ŝφ )c vanishes (and changes sign), ac-
cording to Eq. (8). At this point rmax and rcd vanish. This is the
regime (sufficiently small |r|) where our quantitative analysis
based on the leading critical behavior of the EOS applies. It
should be kept in mind, however, that even outside of this
regime, i.e., when (|rmax| is not small), the existence of the
maximum is guaranteed, as discussed in the Introduction, by
the third law of thermodynamics.

The vanishing of the leading discontinuity of ŝ [�ŝ ∼ φ ∼
(−r)β] in the limit given by Eq. (18) is easy to understand.
In this limit, the ratio of discontinuities, �s/�n equals the
ratio s/n, so s/n is continuous. This follows from Clausius-
Clapeyron law, �s/�n = −(∂μ/∂T )h=0 = cot α1, according
to Eq. (3).

While angle α1 controls the magnitude of rmax in Eq. (15)
via (ŝφ )c, angle α2 also affects rmax, via (ŝε )c. Using Eq. (8)
we find

(−rmax)1−α−β = ρ

∣∣∣∣ sin(arccotŝc − α1)

sin(arccotŝc − α2)

∣∣∣∣ β

ε̃r (0)
. (19)

In the range of α2 we focus on, given in Eq. (10), |rmax|
is minimized for α2 = −90◦ + arccotŝc, and it is larger for
α2 → min(α1, arccotŝc).

B. (μ, T ) plane

We shall now translate the results of the previous sec-
tion into the (μ, T ) plane using the mapping Eq. (2). On the
coexistence line, h = 0, Eq. (2) reduces to

�μ

�μ1
= −�T

�T1
= −r, (20)

where, as before, �μ ≡ μ − μc and �T ≡ T − Tc, while
�μ1 and �T1 measure the distance of the point, −r = 1, from

the critical point along the μ and T axes, respectively:(
�μ1

�T1

)
≡ Tcwρ

(
cos α1

sin α1

)
. (21)

Replacing r in Eq. (14) with �T using Eq. (20) we obtain

ŝ|± − ŝc = ±Bφ

(−�T

Tc

)β

+ Bε

(−�T

Tc

)1−α

+ . . . , (22)

which is Eq. (1) with subleading singularity written out ex-
plicitly. We now find explicit expressions for the coefficients
Bφ and Bε:

Bφ = (ŝφ )c

(
�T1

Tc

)−β

= ŝc sin α1 − cos α1

w sin α12

(
�T1

Tc

)−β T 3
c

nc
, (23a)

Bε = (ŝε )cε̃(0)

(
�T1

Tc

)α−1

= − ŝc sin α2 − cos α2

wρ sin α12

(
�T1

Tc

)α−1

ε̃(0)
T 3

c

nc
. (23b)

The maximum of ŝ on the coexistence line occurs at tem-
perature Tmax given by [cf. Eq. (15)]

(−�Tmax

Tc

)1−α−β

= β

1 − α

|Bφ|
|Bε| , (24)

where �Tmax = Tmax − Tc = rmax�T1.
The critical double is at temperature Tcd given by

(−�Tcd )1−α−β = 1 − α

β
(−�Tmax)1−α−β, (25)

where �Tcd ≡ T − Tcd.
While we have written down the equations in this subsec-

tion in terms of �T , one can also express the location of the
maximum and the critical double in terms of the distance from
the critical point along the μ direction,

�μ = −�T cot α1. (26)

C. The nonmonotonic branch

As we discussed before, the branch exhibiting the maxi-
mum is the one where ŝ is increasing away from the critical
point (see Fig. 1). To determine whether it is the high-
T (QGP) or the low-T (HRG) branch, we turn back to
Eq. (7). The value of ŝ is increasing on the branch where
(ŝφ )cφ > 0. With the choice of the direction of the h axis
shown in Fig. 2, the HRG branch corresponds to h > 0.
Thus, given φh = Ghh > 0 (thermodynamic stability), φ > 0
on this branch. Hence, HRG branch (h → +0) is nonmono-
tonic when (ŝφ )c > 0. Using Eq. (9a) we conclude:

sgn (ŝc − cot α1) =
{+1 (low-T , HRG side)
−1 (high-T , QGP side) . (27)
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TABLE I. Two sets of EOS parameters that we use to illustrate
our findings. Set 1 is used in Ref. [3].

Set μc (MeV) Tc (MeV) w ρ α1 (deg) α2 (deg)

1 350 143.2 1 2 3.85 −86.15
2 350 143.2 1 2 3.85 −5

Note that, while the binary choice of the direction of the h
axis (i.e., the sign of sin α12) in Fig. 2 is arbitrary, the product
(ŝφ )cφ, and with it Eq. (27), is independent of that choice.

The quantity determining the nonmonotonic side of the co-
existence line in the (μ, T ) plane can be expressed in terms of
the isochoric temperature derivative of pressure at the critical
point,

ŝc − cot α1 = 1

nc

(
∂P

∂T

)
n,c

. (28)

This can be seen as a consequence of the fact that the critical
isochore [n = nc line for T > Tc] is tangential to the coexis-
tence line (h = 0 for r < 0) at the critical point, i.e., 8(

∂T

∂μ

)
n,c

=
(

∂T

∂μ

)
h,c

. (29)

Using Eq. (29) with dP = sdT + ndμ and Eq. (3), one ob-
tains Eq. (28).

We note that for typical liquid-gas critical points, such as
in water, (∂P/∂T )n,c > 0, which can be seen directly from the
slope of the phase diagram in the (T, P) plane.

D. Numerical values from BEST EOS

In this subsection, we shall estimate numerical values for
the key quantities we introduced and discussed in the previous
sections, such as rmax, ŝmax, etc. Since the QCD EOS is still
unknown, we shall use the parametric family of EOS intro-
duced in Ref. [3]. To facilitate comparison with literature, we
shall pick the benchmark parameter choice of Ref. [3] and will
refer to this set as “Set 1.” We shall also consider “Set 2,” in
which the angle α2 is small, since it is physically motivated in
Ref. [10], as we discussed at the end of Sec. II A. Each Set 1
and 2 is listed in Table I.

A crucial role is played by the value of the specific entropy
at the critical point, ŝc, which is determined from the extrapo-
lation of lattice data from μ = 0. Specifically, for Sets 1 and
2, one finds

ŝc ≈ 20.3, 19.3, (30)

respectively.
Substituting these values, we find the characteristic param-

eter values shown in Table II. Here rmax is given by Eq. (15),
ŝmax by Eq. (16), and �μ1, �T1, translating r into μ and T ,
by Eqs. (20) and (21).

8Indeed, the dominant term in n − nc is proportional to φ, accord-
ing to Eq. (4). Thus the line of constant n − nc = 0 is the same as the
line of constant φ = 0, or h = 0, at the critical point.

TABLE II. Parameters characterizing the maximum of ŝ on the
coexistence line for parameter Sets 1 and 2 from Table I.

Set �μ1 (MeV) �T1 (MeV) |rmax| ŝmax − ŝc

1 286 19.2 9.5 × 10−4 0.076
2 286 19.2 2.5 × 10−2 0.89

The value of |rmax| � 1 in both sets, which means the
maximum is close to the critical point, i.e., the approximation
assuming that |rmax| is small is reasonable. The smallness is
driven by the smallness of the numerator in Eq. (19), since
both arccotŝc and α1 are small.

The maximum is much closer to the critical point for Set
1. In fact, α2 in this set has a value close to the minimum
of |rmax| as a function of α2 shown in Eq. (19) (achieved at
arccotŝc − 90◦ ≈ −90◦ for ŝc 	 1).

On the other hand, the distance from the critical point is
significantly larger for Set 2, though it is still small. Here the
denominator in Eq. (19) is small as well as the numerator.

The value of cot α1 ≈ 14.9 means that the value of
ŝc − cot α1 ≈ 5 is positive. This parameter determines the
side of the coexistence line where the maximum oc-
curs. According to Eq. (27), the maximum occurs on the
HRG side.

To determine how robust this conclusion is, in Fig. 4, we
extend the comparison for each Set 1 and 2 to a range of μc.
It can be observed that ŝc − cot α1 > 0 across the entire range
of μc.

E. Justification for neglecting the regular terms

Let us check the validity of our assumption that the regular
terms ŝreg, i.e., the ellipsis in Eq. (7), are small. For small |r|,
its leading term is

ŝreg 
 −(ŝreg)r,c(−r) + O(|r|2). (31)

FIG. 4. Critical specific entropy ŝc in the parametric family of
EOS from Ref. [3] as a function of the critical parameter μc while w,
ρ, and α2 parameters are fixed as in Table I for Set 1 (solid line) and
Set 2 (dashed line). Black circles represent values in Eq. (30). The
dotted line represents cot α1 as a function of μc. Since ŝc > cot α1

these values support the scenario where the nonmonotonic side ap-
pears on the HRG side, according to Eq. (27).
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The Taylor expansion of the pressure around μ = 0 used
in Ref. [3] is given by Preg/T 4 = c0(T ) + c2(μ/T )2 +
c4(T )(μ/T )4. Here the coefficients ci(T ) (i = 0, 2, 4) are de-
termined from the lattice results (see Ref. [3] for details).9 We
compute sreg = (Preg)T and nreg = (Preg)μ, leading to (ŝreg)T ≈
−0.30 and (ŝreg)μ ≈ −0.066 for (μc, Tc) on Table I. Thus,

(ŝreg)r = (ŝreg)T �T1 − (ŝreg)μ�μ1 ≈ 13, (32)

where we have used the chain rule with Tr = �T1 and μr =
−�μ1, and the values of �μ1 and �T1 in Table II.

Putting together Eqs. (31) and (32) and using rmax from
Table II, we find an estimate for the amplitude of the regular
part of ŝ at r = rmax: ŝreg, max ≈ −0.01, −0.3 for Set 1 and
2, respectively. The values |ŝreg, max| are small compared to
ŝmax − ŝc, shown in Table II, i.e., our approximation in Eq. (7)
is reasonable. Furthermore, we find that the sign of the regular
part, ŝreg < 0, is the same as that of the energy term contribu-
tion, (ŝε )cε̃(0)(−r)1−α < 0, in Eq. (14). Therefore, including
the regular term can be seen as a quantitative correction that
behaves qualitatively similar to the energy term.

IV. ISENTROPIC TRAJECTORIES NEAR
THE QCD CRITICAL POINT

In this section, we illustrate the topography of the specific
entropy in the (h, r) and in the (μ, T ) planes around the
critical point (not only on the coexistence line). As discussed
in the Introduction, the ideal hydrodynamic evolution of an
expanding fireball follows the constant ŝ contour in the (μ, T )
plane. We shall therefore study the family of such isentropic
trajectories parameterized by the value of ŝ.

Given the EOS parameters—the parameters characterizing
the location of the critical point (μc, Tc, sc, nc) and the map-
ping parameters (w, ρ, α1, α2)—we use Eq. (7) to compute
ŝ over a two-dimensional plane, such as (r, h) and (μ, T ).

In addition, this analysis uses the expression of φ(h, r) and
ε(h, r) determined by the critical EOS. The derivation of these
can be found in Appendix B. To evaluate ŝ on the (μ, T ) plane,
we first solve Eq. (2), leading to

h(μ, T ) = −�μ sin α1 + �T cos α1

Tcw sin α12
, (33a)

r(μ, T ) = �μ sin α2 + �T cos α2

Tcwρ sin α12
. (33b)

Substituting these into φ(h, r) and ε(h, r), we can calculate
φ(h(μ, T ), r(μ, T )) and ε(h(μ, T ), r(μ, T )).

In the illustrations below, we use the same Sets 1 and 2
defined in Table I. As we observed in the previous section,
the values of ŝc for both Set 1 and 2 given by Eq. (30)

9More precisely, in Ref. [3], the regular contribution is defined
by subtracting the Ising contribution from the lattice Taylor series.
The net contribution is referred to as the non-Ising contribution.
Implementing this detail is straightforward and does not impact the
order of magnitude estimation in Sec. III E. The α2 dependence of
the curves in Fig. 4 can be attributed to this subtraction.

and cot α1 = 14.9 from Ref. [3] correspond to the scenario
with the specific entropy being nonmonotonic on the low-T
(HRG) side of the coexistence line, according to the criterion
in Eq. (27). To illustrate and compare with the scenario where
ŝ is nonmonotonic on the QGP side, we consider another alter-
native value, ŝc = 12 < cot α1, for both Sets 1 and 2. Thus, for
each Set 1 and 2 we now have two alternatives distinguished
by the value of ŝc:

ŝc = 20.3, 19.3 or 12, (34)

which correspond to sgn (ŝc − cot α1) = +1 (HRG) and −1
(QGP), respectively.

We present the contour plots for ŝc = 20.3, 19.3, and ŝc =
12 in Figs. 5 and 6, respectively. For each set of the parame-
ters shown at the top, we have depicted the contours on two
distinct planes, (r, h) and (μ, T ), represented as panels (a)
and (b) as well as (c) and (d), respectively. All the contours
exhibit a distinctive ridge structure. We have drawn character-
istic ridge lines and valley lines in magenta and cyan dashed
lines, respectively, whose mathematical definitions are given
by (D13) (see Appendix D for details).

The appearance of the nonmonotonic structure along the
coexistence line can be seen as a consequence of the coexis-
tence line cutting across the ridge of ŝ. The mixing between
φ and ε in Eq. (7) for ŝ modifies the ridgeline of ε(h, r) from
its symmetric location along the crossover line h = 0 shown
in Fig. 9(d). The ridge line for ŝ is bent and shifted along
the coexistence line, intersecting it away from the critical
point, at r = rmax. Since |rmax| is small (see Table II), the non-
monotonic structure (the maximum and the critical double) is
squeezed toward the critical point, especially for Set 1 with
large α2 (see Sec. III D for explanation). It is evident that the
nonmonotonic shape observed along the coexistence line in
Fig. 3 is a cross section of the ridge.

V. SLOPE FORMULA AND THE CLASSIFICATION
OF THE CONTOURS

A. The slope formula

To closely examine the contours near the coexistence line,
we calculate the slope of the fixed ŝ contours, expressed as

tan αŝ ≡ −
(

∂T

∂μ

)
ŝ

∣∣∣∣
±

= ŝμ

ŝT

∣∣∣∣
±
. (35)

We compute the ratio in Eq. (35) using

ŝr |± = (−r)β−1[(ŝφ )cφ̃r (±0) + (ŝε )cε̃r (0)x], (36a)

ŝh|± = (−r)−γ [(ŝφ )cφ̃h(0) + (ŝε )cε̃h(±0)x], (36b)

and Eqs. (6). Here we used β − 1 + γ = 1 − α − β and in-
troduced

x ≡ (−r)1−α−β, (37)

and the critical amplitudes, such as φ̃r (±0), defined in
Appendix A.

We consider the angle of the slope αŝ relative to that
of the coexistence boundary, α1, and obtain the following
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FIG. 5. Contours of ŝ computed using Eq. (7): [(a) and (b)] On the (r, h) plane; [(c) and (d)] on the (μ, T ) plane. We set ŝc in the first two
of Eq. (34) and use two sets of parameters (see Table I) different by the value of α2 shown at the top of each panel. Set 1 is used in panels
(a) and (c), while Set 2 is used in (b) and (d). The right legend summarizes the notations of points and curves used in the plots: The black, green,
and gray points depict the critical point, the maximum, and the critical double along the nonmonotonic branch as shown in Fig. 3; the red and
blue lines and the black dashed lines denote r̂ axis on h = +0 and h = −0, and the ĥ axis (r = 0); the black and green solid curves denote the
contours with ŝ = ŝc and ŝmax given by Eq. (16); the magenta and cyan dashed curves show the ridgeline and the valley lines generated based
on the mathematical definitions in Eq. (D13). The ridge line intersects the coexistence line away from the critical point, even though, due to
the smallness of rmax, it is hard to see, especially for large α2 case [(a) and (c)], as discussed in the main text. The nonmonotonic side appears
on the HRG side, according to Eq. (27), for the present parameter choice.

formula:

tan (αŝ|± − α1) = x(x ∓ xmax) sin α12

{[
xmax

φ̃h(0)

β
∓ x

β

ε̃r (0)

]
ρ − x(x ∓ xmax) cos α12

}−1

, (38)
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FIG. 6. Same as Fig. 5 with the only difference being the choice of ŝc = 12 from Eq. (34). Since sgn(ŝc − cot α1) = −1, the ridge and the
nonmonotonic behavior of ŝ along the coexistence line is now on the QGP side, according to Eq. (27).

where φ̃h(0) > 0 and ε̃r (0) > 0 and we introduced a signed
quantity,

xmax ≡ sgn(ŝc − cot α1)(−rmax)1−α−β, (39)

which carries information about how far from the critical point
the maximum occurs [see Eqs. (15) and (19)] and also about
which side of the coexistence curve is nonmonotonic [see
Eq. (27)]. As before, ± in Eq. (38) correspond to h → ±0
sides of the coexistence line, respectively.

Figure 7 illustrates the relative angle computed by (38) on
each side of the coexistence line for Set 2. The angle αŝ − α1

is nonmonotonic on the branch where ŝ is nonmonotonic. At

the maximum of ŝ, at x = xmax, the relative angle vanishes. In
other words, ŝ = ŝmax contour is tangential to the coexistence
line. For x > xmax the relative angle increases, crossing 90◦ at
the point where the denominator in Eq. (38) vanishes. At this
point, the isentrope is perpendicular to the coexistence line.

B. A cusp for small |rmax|
From the examples in Figs. 5(a) and 5(c) and Figs. 6(a)

and 6(c) (Set 1 parameters), we see that |rmax| is so small
that the resolution of the phase diagram is not sufficient
to distinguish points r = 0, rmax, and rcd, characterizing the
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FIG. 7. The angle between an isentropic curve and the coexis-
tence line at their intersection as a function of the distance of the
intersection point from the critical point. The angle is found from
Eq. (38) and plotted with h → +0 branch in red and h → −0 in blue
for the choice of parameters corresponding to Set 2 in Table I (small
α12) and xmax > 0 in Eq. (39). The inset shows the nonmonotonic
structure near the critical point.

nonmonotonic structure. There appear to be two isentropes
(solid black) meeting at the critical point and forming a cusp.
Such a cusp has indeed been observed in Refs. [3,8] and
subsequent literature, where Set 1 was used, as well as earlier,
in Ref. [7], where α12 = 90◦ choice was made.

We can understand the origin of this cusp if we remember
that small |rmax| is a consequence of (ŝφ )c � (ŝε )c. In this
case, neglecting the first term in the expansion of ŝ in Eq. (7),
we conclude that the critical isentrope corresponds to constant
ε:

ŝ = ŝc ⇔ ε = 0. (40)

The corresponding contour is defined in the (h, r) space by
z = zε, where ε̃(zε ) = 0.10 Such a constant z contour has a
cusp since it is given by h = zε|r|βδ with βδ > 1.

In the next subsection, we shall zoom into the region 0 >

r > rcd to study how the nonmonotonic structure there affects
the isentropes in more detail.

C. Classification of trajectories

We represent different types of isentropic trajectories near
the coexistence line schematically in Fig. 8. Figures 8(a) and
8(b) correspond to the scenarios where the nonmonotonicity
appears on the HRG and QGP side, sgn(ŝc − cot α1) = +1
and −1, respectively. These sample trajectories intersect the
coexistence line at a relative angle αŝ − α1 in agreement with
Eq. (38) (see also Fig. 7 for the nonmonotonic HRG side
scenario).

We can classify the isentropic trajectories based on their
initial specific entropy, ŝ = ŝini. Each trajectory falls into one
of the following three families depending on the relationship
between ŝini and the two characteristic values: ŝc and ŝmax

given by Eq. (16):

10In terms of θε discussed below Eq. (B12), zε = h̄(θε )/(1 − θ2
ε )βδ .

FIG. 8. Classification of isentropic trajectories near the QCD
critical point. In panel (a) the maximum of ŝ is on the HRG side,
while in panel (b) it is on the QGP side. The arrows point in the
direction the entropy density decreases (the system expands). The
gray curve is the critical isentrope (ŝ = ŝc). The contour ŝ = ŝmax

given by Eq. (16) is the green curve. The pink, purple, and blue
curves are representative contours in each range of ŝ shown in the
corresponding color in panels (c) and (d). The dashed lines in (a) and
(b) express details depending on the choice of α2, which can be seen
as a difference between, e.g., Figs. 5(c) and 5(d), away from the
coexistence line. Panel (d) summarizes the classification based on
the value of ŝ (see text).

(I) Trajectories with ŝini > ŝmax do not encounter the
first-order transition and pass through the crossover
region. These are shown as pink curves in Figs. 8(a)
and 8(b), corresponding to horizontal lines in the pink
area in Fig. 8(c).

(II) Trajectories with ŝc < ŝini < ŝmax enter the coexis-
tence region from one side (the nonmonotonic one)
and exit on the same side. These are shown as pur-
ple curves in Figs. 8(a) and 8(b), and correspond to
horizontal lines in the purple region in Fig. 8(c).

(III) Trajectories with ŝini < ŝc enter the coexistence re-
gion from one side and exit on the opposite side [the
blue curve in Figs. 8(a) and 8(b), and the blue region
in Fig. 8(c)].

The same three classes of trajectories exist in both sce-
narios distinguished by the location of the specific entropy
maximum – HRG or QGP side, as illustrated in Figs. 8(a)
and 8(b), respectively. The main difference between the two
scenarios is the direction of the T (and μ) change on crossing
the coexistence line. Under the “HRG-side scenario” the tem-
perature decreases, while under the “QGP-side scenario” the
temperature increases. Both scenarios have been discussed in
the literature (see, e.g., Refs. [4,5,14]).

The most notable are the class II trajectories, entering and
exiting the coexistence region on the same side. The detailed
dynamics of the transition are beyond the scope of this paper,
which only discusses adiabatic trajectories. However, it is
worth noting that even if non-negligible entropy is produced
during the traversal of the coexistence region, the additional
entropy will only move the exit point of the class II trajectory
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closer to the maximum of s/n, but still on the same side of the
transition.

VI. CONCLUSION

In this paper, we set out to understand the behavior of
the isentropic trajectories on the QCD phase diagram in the
(μ, T ) plane in the presence of the QCD critical point. The
hydrodynamic expansion of a heavy-ion collision fireball fol-
lows such trajectories as far as the entropy production is
negligible, i.e., specific entropy s/n is conserved, which is a
reasonable and often used approximation.

The main observation of this paper is that the specific en-
tropy as a function of the distance from the critical point along
the coexistence line must be nonmonotonic, and specifically
must exhibit a maximum. This is a robust and model-
independent consequence of the following two facts. First,
the universal critical behavior dictates that the specific entropy
must rise on one of the two sides of the coexistence line as a
function of |T − Tc|. Second, the third law of thermodynamics
dictates that the specific entropy must fall to zero at T = 0.

We find that the maximum could occur on either side of
the coexistence line: high-T (QGP) or low-T (HRG) side. We
find a criterion that determines which side is nonmonotonic.
It is determined by the sign of ŝc − cot α1, i.e., the difference
between the specific entropy and the inverse slope of the
coexistence line, both quantities evaluated at the critical point.

When this discriminant quantity is sufficiently small, the
maximum occurs close to the critical point, where the equa-
tion of state is determined universally, up to a small number of
nonuniversal parameters standardized by Ref. [3]. We use this
regime to demonstrate analytically how the maximum moves
as a function of the critical point parameters.

We also show that for the critical EOS parameters dis-
cussed in Ref. [3], and constrained by lattice data, the
discriminant parameter ŝc − cot α1 is positive, which accord-
ing to Eq. (27) means that the maximum is on the HRG side of
the coexistence line. Furthermore, we show the maximum oc-
curs in the regime where the EOS is universal, i.e., dominated
by the critical singularity.

Turning to the behavior of the isentropic trajectories in the
(μ, T ) plane, we demonstrate that the maximum on the coex-
istence line can be viewed as a cross section of a “ridge” of
s/n “landscape,” where the trajectories are contours or equal
elevation lines. The ridge topography also helps explain the
critical “focusing” or “lensing” effects observed in Refs. [7,8].

We classify the trajectories, or contours, according to how
they cross (if they do) the coexistence line, which represents a
“cliff” in the landscape. The most unusual trajectories are such
that the fireball enters and then exits the coexistence region on
the same side.

Incidentally, the same discriminant parameter ŝc − cot α1,
or (dP/dT )n [see Eq. (28)], determines whether the temper-
ature is higher or lower after the transition. For the scenario
where the maximum is on the HRG side, the temperature is
lower.

It must be emphasized, that we do not attempt to describe
the evolution inside the coexistence region, but only follow
the commonly used assumption that the entropy production

is negligible. It would be interesting to consider the effect of
entropy production, but this should be done within a more
detailed dynamical description of the first-order transition.
While such a study is beyond the scope of this paper, we hope
that our findings will help to advance the understanding of the
first-order transition dynamics in heavy-ion collisions.
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APPENDIX A: SUSCEPTIBILITIES IN A SCALING FORM

In this Appendix, we summarize the susceptibilities used
in Secs. III and V.

Using Eq. (11), we can write all four susceptibilities in
scaling forms of the z = h/(−r)βδ variable (for r < 0):

φh = Ghh = φ̃h(z)(−r)−γ , (A1a)

φr = Ghr = φ̃r (z)(−r)β−1, (A1b)

εh = Grh = ε̃h(z)(−r)β−1, (A1c)

εr = Grr = ε̃r (z)(−r)−α, (A1d)

with γ = β(δ − 1) and11

φ̃h(z) = φ̃′(z), (A2a)

φ̃r (z) = −βφ̃(z), (A2b)

ε̃h(z) = ε̃′(z), (A2c)

ε̃r (z) = −(1 − α)ε̃(z). (A2d)

Here the prime symbol indicates differentiation with respect
to the function’s argument, i.e., z. Among the four suscepti-
bilities, φh and εr represent the magnetic susceptibility and
the specific heat (at constant h), respectively, while φr and
εh denote cross susceptibilities. Note that thermodynamics
stability requires φh � 0, εr � 0, and (φhεr − φrεh) � 0.

For our discussion along the coexistence line in Secs. III
and V, we need the values of the scaling functions (A2) at
h = ±0, or, equivalently, z = ±0:12

φ̃h(0) = φ̃′(0), (A3a)

φ̃r (±0) = ∓β, (A3b)

ε̃h(±0) = ε̃′(±0), (A3c)

ε̃r (0) = −(1 − α)ε̃(0). (A3d)

11We shall numerically calculate, using the well-known parametric
representation of the EOS, φ̃(z), φ̃′(z), ε̃(z), and ε̃′(z) for r � 0
in Eqs. (C6b), (C8), (C11b), and (C13), respectively. The referred
equations, which are also valid for r > 0 branches, are labeled by
the sign of r (see also Fig. 11 for illustration).

12These coefficients are known as critical amplitudes and in the
common notation (see, e.g., Ref. [15]): ε̃r (0) = A−, |ε̃h(0)| = βB,
and φ̃h(0) = C− (where “-” refers to r < 0).
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The cross susceptibility incorporates the sign of h, whereas the
magnetic susceptibility and the specific heat are even under
h → −h.

Among four values of (A3), only two are unknown. This is
because the normalization of φ̃(±0) = ±1 have fixed one of
them and the Maxwell relation,

φr = εh, (A4)

yields ε̃′(±0) = ∓β.
For a detailed evaluation of the unknown values, we refer

to Appendix C, specifically, Eqs. (C9) and (C12):

φ̃′(0) ≡ φ̃′
−(0) ≈ 0.35, ε̃(0) ≡ ε̃−(0) ≈ −0.66. (A5)

where subscript “-” omitted in Eq. (11) refers to r < 0.

APPENDIX B: 3D ISING EQUATION OF STATE

This Appendix is a review of the 3D Ising EOS. Specifi-
cally, we show how to obtain φ(h, r) and ε(h, r) numerically,
used in Sec. IV. A summary can be found at the end.

We employ a parametric representation of the EOS that is
valid near an arbitrary critical point belonging to the 3D Ising
universality class [16,17], e.g., the liquid-gas and QCD critical
points, etc. The relevant parameters of the renormalization
group, namely the external field h and the reduced temperature
r, denoted as Y ≡ (h, r), can be transformed into coordinates
Z ≡ (θ, R) using the following relations:

h = Rβδ h̄(θ ), (B1a)

r = R(1 − θ2), (B1b)

where R � 0 and the magnetization φ is expressed as:

φ = Rβφ̄(θ ). (B2)

We use the scaling forms of φ and h as functions of θ , denoted
as φ̄(θ ) and h̄(θ ), respectively:

φ̄(θ ) = φ0θ, (B3a)

h̄(θ ) = h0θ (1 + aθ2 + bθ4), (B3b)

where the coefficients a ≈ −0.762 and b ≈ 0.008 are ob-
tained through renormalization group analysis using a non-
perturbative resummation [17,18]. To distinguish the scaling
functions of z introduced in Eq. (11), we use the bar notation
for the scaling form of θ . The normalization constants φ0

and h0 are fixed by the conditions 1 = φ(h = +0, r = −1) =
φ(h = 1, r = 0), which reduces to

1 = (
θ2

max − 1
)−β

φ0θmax, (B4a)

1 = φ−δ
0 h0(1 + a + b), (B4b)

where θmax 
 1.15 is a nontrivial root of h̄(θ ) = 0. By solv-
ing Eq. (B4) with the parameter values, a, b, etc., we obtain
φ0 ≈ 0.60 and h0 ≈ 0.36.13 One of the benefits of working
in Z coordinate is that the relation between φ and h is well
organized as Eq. (B3).

13These values are the same as the literature, e.g., Ref. [19].

We numerically solve Eq. (B1) over a specific closed range
of Y , yielding θ (h, r) and R(h, r) denoted by Z (Y ). Then,
we substitute Z (Y ) into (B2) to obtain φ(Y ). In Figs. 9(a)–
9(c), we present the contours of R, θ , and φ, respectively. As
observed from (a) and (b), R (R � 0) represents the distance
from the critical point at the origin, while θ (−θmax � θ �
θmax) measures the distance along the constant R contour from
the edges of the first-order boundary (h = 0, r < 0). Here
θ = ±θmax corresponds to h = ±0. With this parametrization,
we can describe the criticality as a function of the R variable,
and the thermodynamic quantities will exhibit smooth behav-
ior in the θ variable.

The critical part of the thermodynamic pressure p (or the
Gibbs free energy, p = G) also follows a scaling form:

p = R2−α p̄(θ ). (B5)

We will determine the scaling function p̄(θ ) below to match
with the relation between φ and h, Eq. (B3). With Eq. (B5)
as a starting point, we can calculate the equations for the
magnetization φ and the Ising energy ε as (5):

φ = Rβ[2(2 − α)θ p̄(θ ) + (1 − θ2) p̄′(θ )]/J̄ (θ ), (B6a)

ε = R1−α[(2 − α)h̄′(θ ) p̄(θ ) − βδh̄(θ ) p̄′(θ )]/J̄ (θ ). (B6b)

To derive the right-hand sides of Eq. (B6), we use the deriva-
tive formula for an arbitrary function, f ≡ Ra f f̄ (θ ), with the
scaling dimension a f :

fY ≡ ∂Y f = Ra f −1[R f̄ ′(θ )θY + a f f̄ (θ )RY ], (B7)

where ZY is the following inverse of Jacobian matrix J = YZ :(
θh θr

Rh Rr

)
= 1

J̄ (θ )

[
R−βδ (1 − θ2) −R−1βδh̄(θ )

2R1−βδθ h̄′(θ )

]
, (B8)

with the Jacobian J ≡ |J | = Rβδ J̄ (θ ) and its scaling form:

J̄ (θ ) = (1 − θ2)h̄′(θ ) + 2βδθ h̄(θ ). (B9)

We combine the original definition of φ (B2) and its rela-
tion to p̄(θ ) (B6a), yielding

2(2 − α)θ p̄(θ ) + (1 − θ2) p̄′(θ ) = φ̄(θ )J̄ (θ ), (B10)

which determines the form of p̄(θ ). Given that this is a
first-order nonhomogeneous equation, it includes both spe-
cial and general solutions. The special solution is relevant
to our current analysis concerning the critical exponents be-
yond the mean-field level: p̄(θ ) = ∑3

n=0 Cn(1 − θ2)n, where
Cn are functions of the critical exponents and the parameters
in Eq. (B3) (for those explicit forms, refer to Ref. [3]). The
constant of integration associated with the general solution
∝ (θ2 − 1)2−α is determined to be zero so that any singularity
does not arise in the scaling part of the pressure, p̄(θ ).

We substitute the solution p̄(θ ) into its relation to the Ising
energy density (B6b), and obtain ε with its explicit scaling
form:

ε = R1−αε̄(θ ), (B11a)

ε̄(θ ) = φ0h0[cε0 + cε1(1 − θ2) + cε2(1 − θ2)2], (B11b)
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FIG. 9. Contours on the (r, h) plane with fixed (a) R, (b) θ , (c) φ, and (b) ε. Red (θ = θmax) and blue (θ = −θmax) lines at r < 0 represent
each side separated by the first-order boundary. The magenta and cyan dashed lines on (d) are the ridgeline and the valley lines whose
mathematical definition will be given by (D13).

with

cε0 = −(α − 2)(a + b + 1) − 2β(2a + 3b + 1)

2(α − 1)
, (B12a)

cε1 = (α − 2)(a + 2b) + 4β(a + 3b)

2α
, (B12b)

cε2 = −b(α + 6β − 2)

2(α + 1)
. (B12c)

Using the actual values of α, β, a, and b we can estimate
the coefficients as (cε0, cε1, cε2) ≈ (−0.4, 2.0, −2 × 10−4).

Thus, ε̄(θ ) is roughly a convex parabola whose maximum
and zero points are located at θ = 0 and θ = ±θε ≈ ± 0.88,
respectively.

We highlight the qualitative distinction in behaviors for φ

and ε, in Figs. 9(c) and 9(d), respectively. The former exhibits
a monotonic increase as θ rises while keeping R constant [also
refer to Figs. 9(a) and 9(b) for tracking R and θ ]. In contrast,
the convex nature of ε(θ ) results in a nonmonotonic ridge
structure of ε. The distinctive ridgeline and the valley lines are
illustrated in the magenta and cyan dashed lines according to
the mathematical definition given by Eq. (D13). Specifically,
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the ridgelines form a straight line with θ = 0 parametrized by
an arbitrary R > 0, due to symemtry of ε under h → −h.14

We shall also compute the susceptibilities in the (R, θ )
scaling form. By applying the derivative formula Eq. (B7) to
φ and ε given by (B2) and (B11a), respectively, we obtain

φh = R−γ [2βθφ̄(θ ) + (1 − θ2)φ̄′(θ )]/J̄ (θ ), (B13a)

φr = Rβ−1[βh̄′(θ )φ̄(θ ) − βδh̄(θ )φ̄′(θ )]/J̄ (θ ), (B13b)

εh = Rβ−1[2(1 − α)θ ε̄(θ ) + (1 − θ2)ε̄′(θ )]/J̄ (θ ), (B13c)

εr = R−α[(1 − α)h̄′(θ )ε̄(θ ) − βδh̄(θ )ε̄′(θ )]/J̄ (θ ). (B13d)

One can check that the the Maxwell relation (A4) holds for
the expressions (B13b) and (B13c), using Eq. (B6).

In summary, we determined φ(h, r) and ε(h, r) using the
auxiliary variables (θ, R) through the following steps:

(1) We derived analytic expressions for φ(θ, R), Eqs. (B2)
and (B3a), and ε(θ, R), (B11), respectively.

(2) We numerically solved Eq. (B1) with (B3b), within
a specified range of h and r, and obtain θ (h, r) and
R(h, r).

(3) Finally, through substitution, we derived

φ(h, r) = φ(θ (h, r), R(h, r)),

and

ε(h, r) = ε(θ (h, r), R(h, r)).

The corresponding contour plots are presented in Fig. 9.

APPENDIX C: EVALUATION OF φ̃′(0) AND ε̃(0).

In this Appendix, we utilize the scaling functions φ̄(θ ) and
ε̄(θ ) given by Eqs. (B3a) and (B11b), respectively, to compute
those variables in the scaling form with another argument, z =
h/|r|βδ , utilized in Eq. (11).

Before we delve into the specific derivation and expla-
nation of the scaling function of z, there is a key general
remark that needs to be highlighted: This function cannot
be expressed as a global function but rather as a piecewise
function, dependent on the sign of r, specifically φ̃sgn(r)(z)
and ε̃sgn(r)(z). In the main content of this paper, our focus has
primarily been on the scenario where r � 0, the region where
the coexistence line emerges. As a result, the negative sign
has been conventionally omitted, representing φ̃(z) as φ̃−(z).
However, in this Appendix, we restore this subscript and ex-
tend our discussion to encompass the entire z plane, including
the r > 0 region, for a more comprehensive understanding.

We begin by converting the parametric form from (R, θ )
in Appendix B to (r, θ ). To do so, we eliminate R from the
expression for h and φ provided by Eqs. (B1a) and (B2),
respectively. This is accomplished using the parametrization
of the r variable as stated in (B1b). Consequently, we get

φ = |r|β |1 − θ2|−βφ̄(θ ) ≡ |r|βφ̄2(θ ), (C1)

h = |r|βδ|1 − θ2|−βδ h̄(θ ) ≡ |r|βδ h̄2(θ ). (C2)

14This is in contrast to ŝ as we discuss at the end of Sec. IV.

FIG. 10. A plot of h̄2(θ ).

It is imperative to retain the condition R � 0 which acts as
constraints on θ and r:

1 � |θ | < θmax (r � 0)
0 < |θ | < 1 (r > 0). (C3)

As shown in Fig. 10, h̄2(θ ) intersects an arbitrary hori-
zontal line z at multiple points, suggesting the existence of
multiple solutions. To identify a unique solution for θ , we
apply the condition given in Eq. (C3). We introduce a specific
function for each r condition h̄−1

2,sgn(r):

θ = h̄−1
2,sgn(r)(z) ≡ h̄−1

2 (z), s.t., Eq.(C3). (C4)

Here the solution of the inverse function h̄−1
2 (z) restricted to

(C3) depends on the sign of r. If r � 0, then h̄−1
2,− chose the

solution of h̄−1
2 (z) satisfies 1 � |θ | < θmax; if r > 0, then h̄−1

2,+
chose 0 < |θ | < 1. Using (C4) on the r � 0 branch, we derive

±θmax = h̄−1
2,−(z = ±0), (C5)

which will be used to calculate φ and ε along the first-order
phase transition boundary (r � 0).

Let us determine the scaling function. Due to the patch
structure of the inverse function h̄−1

2,sgn(r) as described in (C4),
the scaling functions are defined piecewise based on the sign
of r.

For magnetization, we express

φ ≡ |r|βφ̃sgn(r)(z), (C6a)

φ̃sgn(r)(z) = φ̄2
[
h̄−1

2,sgn(r)(z)
]
, (C6b)

which extends the scaling form for the negative r region, (14).
Note φ̃(z) employed in the main part is equivalent to the minus
branch of Eq. (C6b). From the scaling function (C6b), we
immediately have

φ̃−(±0) = φ̄2(±θmax) = ±1, (C7)

which is referenced in the main part [below Eq. (11)]. To
derive Eq. (C7), we utilize Eq. (C5) to convert specific z value
to its corresponding θ value. Furthermore, we have used the
normalization condition for φ0 from Eq. (B4a).
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FIG. 11. Scaling functions φ̃sgn(r)(z) and ε̃sgn(r)(z) along with their derivatives. The solid black line corresponds to sgn(r) = + while the
dashed line represents sgn(r) = −.

We can calculate the derivative for each region defined by
sgn(r) = ±:

φ̃′
sgn(r)(z) = φ̄′

2(θ )

h̄′
2,sgn(r)(θ )

∣∣∣∣∣
θ=h̄−1

2,sgn(r) (z)

= |1 − θ2|−γ φ̄h(θ )
∣∣
θ=h̄−1

2,sgn(r) (z), (C8)

where φ̄h(θ ) is defined by φh = R−γ φ̄h(θ ) with Eq. (B13a).
For the middle expression, we have used the formula for the
derivative of an inverse function, df −1/dy = 1/ f ′(x), where
y = f (x).

Using the explicit form of the derivative given in Eq. (C8),
we compute a specific value used in the main part and (A5)
(note we have dropped off the minus label):

φ̃′
−(±0) = ∣∣1 − θ2

max

∣∣γ φ̄h(±θmax) ≈ 0.35. (C9)

We can apply the same method to the Ising energy density
ε. Eliminating R from the scaling form in terms of (θ, R)
variable, as given by (B11), we have

ε = |r|1−α|1 − θ2|α−1ε̄(θ ) ≡ |r|1−αε̄2(θ ). (C10)

This can be further expressed as

ε ≡ |r|1−αε̃sgn(r)(z), (C11a)

ε̃sgn(r)(z) = ε̄2
[
h̄−1

2,sgn(r)(z)
]
. (C11b)

Note that the scaling form ε̃sgn(r)(z) is applicable across the
entire r region. Evaluating it, we obtain

ε̃−(±0) = ∣∣1 − θ2
max

∣∣α−1
ε̄(θmax) ≈ −0.66, (C12)

which completes the derivation of Eq. (A5).

The derivative can also be computed:

ε̃′
sgn(r)(z) = ε̄′

2(θ )

h̄′
2,sgn(r)(θ )

∣∣∣∣∣
θ=h̄−1

2,sgn(r) (z)

= |1 − θ2|1−β ε̄h(θ )
∣∣
θ=h̄−1

2,sgn(r) (z). (C13)

Using this expression along with Eqs. (C6b) and (C8), the
Maxwell relation (A4) can be verified by evaluating both hand
sides:

sgn(r)β[φ̃sgn(r)(z) − zδm̃′
sgn(r)(z)] = ε̃′

sgn(r)(z). (C14)

This implies

ε̃′
−(±0) = −βφ̃−(±0) = ∓β, (C15)

which has been used under Eq. (A4).
In Fig. 11, we display the scaling functions φ̃±(z), ε̃±(z)

along with their derivatives φ̃′
±(z), ε̃′

±(z).

APPENDIX D: TOPOGRAPHY

We briefly review mathematical tools for exploring the
topographic structure of ŝ on a general two-dimensional co-
ordinate, (u, v) = (μ, T ) or (r, h) (see, e.g., Ref. [20] for
detailed information).

The three-dimensional vector S = (u, v, ŝ(u, v)) corre-
sponds to arbitrary points on the curved surface with a height
function ŝ(u, v). Let us consider an arbitrary parametric curve
embedded on this surface, C(l ) = S(u(l ), v(l ), ŝ(u(l ), v(l )))
(as depicted in Fig. 12). The unit tangent vector t along C(l )
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FIG. 12. Geometric description of the normal curvature κn (red
dashed line) with a normal vector n (red arrow), unit tangent vector t
(blue arrow), and the principal normal vector t ′ (green arrow). Note
that t ′ is out of the normal surface (blue shaded area). The dashed
lines correspond to the projection of t ′ to the normal vector (red) and
the normal surface (blue), respectively.

(represented by the blue arrow) is given by

t = S′ ≡ dS
dl

= Suu′ + Suv
′, (D1)

where we define the line parameter l with a certain normaliza-
tion, |t2| = 1. The tangent plane (blue shaded area) is spanned
by Su = (1, 0, ŝu) and Sv = (0, 1, ŝv ). The unit surface normal
vector (red arrow) can be expressed as

n = Su × Sv

|Su × Sv| = (−ŝu,−ŝv, 1)√
1 + ŝ2

u + ŝ2
v

. (D2)

We can also define a normal vector perpendicular to t , t ′ (green
arrow) associated with the curve C(l ) at the same point that
we have defined n. It is important to note that t · t ′ = 0 and
t · n = 0 but t ′ · n �= 0 in general (the red dashed line denotes
the projection of t ′ to n).

To determine a tangent vector for ridgelines, we calculate
the curvature of the surface ŝ along an arbitrary curve. A
curvature along the curve has been given by t ′ so we can
take its projection to the normal vector of the surface n and
know its strength for the surface. This feature is characterized
by the normal surface curvature, κn ≡ t ′ · n. By using the fact
that t · n = 0 and t2 = 1, we can express the normal surface
curvature into

κn = −S′ · n′ = −dS · dn
dl2

= II

I
. (D3)

Here, the first and second fundamental forms are defined as

I ≡ dS · dS = Edu2 + 2Fdudv + Gdv2, (D4a)

II ≡ −dS · n = Ldu2 + 2Mdudv + Ndv2, (D4b)

where dS = Sudu + Svdv and Su · n = Sv · n = 0. We can
compute each component of I and II using an explicit form
of the height function ŝ given by (7) as follows:

E = 1 + ŝ2
u, F = ŝuŝv, G = 1 + ŝ2

v, (D5)

and

(L, M, N ) = (Suu, Suv, Svv ) · n = (ŝuu, ŝuv, ŝvv )√
1 + ŝ2

u + ŝ2
v

, (D6)

where Suu = (0, 0, ŝuu), etc.

Substituting the fundamental forms (D4) into (D3), the cur-
vature κn becomes a function of the slope λ = dv/du between
two infinitesimally separated points (u, v) and (u + du, v +
dv):

κn = L + 2Mλ + Nλ2

E + 2Fλ + Gλ2
. (D7)

As the direction of the infinitesimally separated point can be
adjusted arbitrarily (due to a 360◦ rotation), the curvature (D7)
varies as a function of this direction λ. The surface’s curvature
generally has maximal and minimal values in different direc-
tions, denoted as κextr. = κmin, κmax (κmin � κmax), which are
referred to as the principal curvatures. In what follows, we will
examine the general case, except for κmin = κmax. By evaluat-
ing dκn/dλ = 0, the expression for the normal curvature (D7)
reduces to:

κextr. = M + Nλ

F + Gλ
= L + Mλ

E + Fλ
, (D8)

from which we can determine the extremum values. By elim-
inating λ from these equations, we arrive at the quadratic
equation:

κ2
extr. − 2Hκextr. + K = 0, (D9)

where H = (κmax + κmin)/2 and K = κmaxκmin are referred to
as the mean and Gaussian curvatures, respectively:

K = LN − M2

EG − F 2
, H = EN + GL − 2FM

2(EG − F 2)
. (D10)

By solving the quadratic equation (D9), we obtain the maxi-
mum and minimum curvatures:

κmax/min = H ±
√

H2 − K (κmin � κmax). (D11)

The directions λ corresponding to these curvatures refer to
the principal directions and can be written in a vector form as
pmax/min = p(κmax/min) with p(κn) given by

p(κn) ≡
(

u
v

)
=

[
N − κnG

−(M − κnF )

]
,

[
M − κnF

−(L − κnE )

]
, (D12)

where κn takes κmax or κmin.
Ridgelines are the lines that an observer who walks along

sees the low levels on the left and right sides. The direction
across a ridgeline must simultaneously exhibit an extremum
and have negative curvature. This local maximum should
occur in either of the directions where the curvature is extrem-
ized, pmax/min = p(κmax/min). Consequently, ridge lines (which
are not flat along them) are defined as follows [21]:

gmax/min ≡ ∇ŝ · pmax/min = 0, κmax/min < 0, (D13)

where ∇ = (∂u, ∂v ). The line represents a valley if the same
equality holds for κmax/min > 0. A geometric approach to iden-
tifying ridgelines can be deduced from Eq. (D13): It involves
a curve in which the surface’s gradient direction is perpendic-
ular to the principle directions.

APPENDIX E: SPECIFIC HEAT

In this Appendix, we elucidate the relationship be-
tween specific heat at constant volume and the temperature
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derivative of specific entropy along h = ±0,

Tc

(
∂ ŝ

∂T

)
h=±0

= ∓Bφβ

(−�T

Tc

)β−1

+Bε(α−1)

(−�T

Tc

)−α

,

(E1)

which is a derivative of the key expression of ŝ|± as introduced
in Eq. (1) or its detailed form Eq. (22).

The first and the second terms of (E1) correspond to the
leading and subleading fluctuations generated in the response
to the variance of the r variable, the cross susceptibility φr and
the specific heat (at constant h) εr , given by (A1b) and (A1d),
respectively. Since the h variable is fixed, the channel with the
strongest criticality in Eq. (A1), φh is absent.

1. Preliminary: (∂ŝ/∂T )n and (∂ŝ/∂T )h

The relationship between the T derivative of ŝ at fixed h
and n can be understood based on(

∂ ŝ

∂T

)
n

=
(

∂ ŝ

∂T

)
h

−
(

∂ ŝ

∂n

)
T

(
∂n

∂T

)
h

. (E2)

Using Eq. (7), we compute the leading (and subleading) order
terms of each factor as follows:(

∂ ŝ

∂T

)
h

= (ŝφ )cφr

(
∂r

∂T

)
h

+ (ŝε )cεr

(
∂r

∂T

)
h

, (E3a)

(
∂n

∂T

)
h

= Ahμφr

(
∂r

∂T

)
h

+ Arμεr

(
∂r

∂T

)
h

, (E3b)

(
∂ ŝ

∂n

)
T

= (ŝφ )c(
∂n
∂φ

)
ε

+ · · · = (ŝφ )c

Ahμ

+ · · · . (E3c)

These expressions show that the contributions from the cross
susceptibility φr on the first term and the second terms of
(E2) cancel each other. Consequently, the leading term in
the specific heat at constant volume behaves as the subdom-
inant term along the r-axis fluctuation, cV = T n(∂ ŝ/∂T )n ∼
(−r)−α , i.e., the subleading term on Eq. (E1).

In the subsequent sections, we derive a detailed expression
for cV in Appendix E 2. Additionally, in Appendix E 3, we
calculate the specific heat at constant P, cP = T n(∂ ŝ/∂T )P,
which exhibits different leading behavior cP ∼ (−r)−γ , com-
pared to those of cV and Eq. (E1).

2. Specific heat at constant volume

To complete the leading-order expression of cV , we focus
on computing (E3c), incorporating the next-to-leading-order
term. To do this, we rewrite it into(

∂ ŝ

∂n

)
T

= ŝμ

nμ

= (ŝφ )c(φhhμ + φrrμ) + (ŝε )cεhhμ

Ahμ(φhhμ + φrrμ) + Arμεhhμ

, (E4)

where higher-order terms proportional to ∝εr have already
been neglected. Keeping in mind that φr = εh, we can expand
the right-hand side of Eq. (E4) in terms of φr/φh:(

∂ ŝ

∂n

)
T


 (ŝφ )c

Ahμ

+ hμ(ŝε )c − rμ(ŝφ )c

Ah2
μ

φr

φh
+ · · · . (E5)

The rest of the analysis parallels Appendix E 1. Substitut-
ing Eq. (E5) into the expression of (∂ ŝ/∂T )n given by Eq. (E2)

with Eqs. (E3a) and (E3b), we obtain(
∂ ŝ

∂T

)
n

= A

T 2
c‖n2

c

(
∂r

∂T

)2

h

φhεr − φ2
r

φh
+ · · · , (E6)

where (φhεr − φ2
r )/φh ∼ (−r)−α and we have used(
∂r

∂T

)
h

= hμrT − hT rμ

hμ

= 1

�T1
, (E7)

with �T1 given below Eq. (23).
Let us apply Eq. (E6) along the coexistence line by setting

h = ±0 with the susceptibilities given by Eq. (A3). Specif-
ically, it describes the slope of the curve with a constant
n on the (T, ŝ) plane at the point where it intersects with
the coexistence line. It becomes clear from the analysis in
Appendix E 1 that the slopes of curves with constant n and
at h = ±0 may differ at the same point, except at the critical
point where both become vertical.

The specific heat at constant volume will be

cV |±
T 3

c

= K

ρ2w2 sin2 α1
(−r)−α, (E8)

which is independent of the sides h = ±0. The universal fac-
tor:

K = (α − 1)ε̃(0)φ̃′(0) − β2

φ̃′(0)
, (E9)

is determined by the critical exponents and the values of the
scaling function, Eq. (A5), to be K ≈ 0.28.

3. At constant pressure

We shall extend the analysis of specific heat by considering
a different fixed variable, cP = T n(∂ ŝ/∂T )P. We begin with(

∂ ŝ

∂T

)
P

= (ŝφ )c

(
∂φ

∂T

)
P

+ (ŝε )c

(
∂ε

∂T

)
P

. (E10)

Considering φ = φ(μ, T ), we can write(
∂φ

∂T

)
P

= φT + φμ

(
∂μ

∂T

)
P

= φT − φμŝ, (E11)

where we have used dP = sdT + ndμ. Substituting this ex-
pression and a similar one for ε into the starting point, we
arrive at a bilinear form,

cP 
 n2
c

T 3
c

((ŝφ )c, (ŝε )c)

(
φh φr

εh εr

)[
(ŝφ )c

(ŝε )c

]
, (E12)

whose positivity is obvious from the thermodynamic stability.
The leading criticality emerges from the (1,1) component, ∝
φh. Therefore, the specific heat is approximated as

cP ∼ n2
c

T 3
c

(ŝφ )2
cφh, (E13)

where φh ∼ (−r)−γ .
Along the first-order boundary, we obtain

cP|±
T 3

c

= (cos α1 − ŝc sin α1)2

w2 sin2 α12
φ̃′(0)(−r)−γ , (E14)

which is also positive since φ̃′(0) > 0 checked by Eq. (A5).
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FIG. 13. Two possible scenarios for the location of the maximum
of the specific entropy (green dot) with respect to the critical point
(black dot): (a) ŝc > cot α1 and (b) ŝc < cot α1 (see text).

APPENDIX F: SPECIFIC ENTROPY MAXIMUM
ON THE (n, s) PLANE

We can also understand the maximum of the specific en-
tropy on the coexistence region boundary in the (n, s) plane.

An isentrope with a fixed value of ŝ is a straight line passing
through the origin. In Fig. 13, we illustrate two isentropes,
s = ŝcn (dashed line) and s = ŝmaxn (green line).

The boundary separating the coexistence region (shaded)
from the uniform phases is represented by a black curve on
this plane, defined by h(n, s) = ±0, r < 0 near the critical
point.15 The critical point (black dot) divides the curve into
two branches, each serving as the boundary for a different
uniform phase. The critical isentrope and the boundary also
intersect at another point, the “critical double” (gray dot), as
introduced in Fig. 1.

The maximum specific entropy on the coexistence bound-
ary is demonstrated by the existence of an isentrope tangential
to the boundary. In Fig. 13, this tangent line and its corre-
sponding tangent point are shown as a green line and a green
dot, respectively. It is straightforward to compute the max-
imum specific entropy by identifying the tangent isentrope
from the critical EOS given in Sec. II (see also footnote 15).
The results agree with what we discussed in Sec. III on the
(μ, T ) plane.

Figures 13(a) and 13(b) show the two scenarios where
the maximum specific entropy can occur. Each illustrates the
maximum on a different branch which can also be classified
according to the formula (27). On the (n, s) plane, ŝc and
cot α1 have a geometric interpretation: the former represents
the slope of the critical isentrope (dashed line), while the latter
represents the slope of the tangent line to the boundary at the
critical point (dotted line). One can show(

∂s

∂n

)
h

∣∣∣∣
c

= cot α1, (F1)

in contrast to the vertical or horizontal slopes on a different
plane including one intensive variable, e.g., (T, ŝ) (see Fig. 1)
or (n, T ) diagrams, respectively.

Contour classification becomes more intuitive on the (n, s)
plane: straight lines above s = ŝmaxn do not intersect the
boundary (class I); lines between s = ŝmaxn and s = ŝcn in-
tersect only one branch of the boundary (class II); lines below
s = ŝcn intersect both branches of the boundary (class III).

15The boundary is a parametric plot, s = s(r) and n = n(r), where
the right-hand sides are given by Eqs. (4b) and (4c) with Eq. (11) at
h = ±0.
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