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Dissipation by transfer and its influence on barrier distributions
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The quasielastic barrier distribution (Dqe) of the 20Ne + 208Pb system exhibits a single broad structureless peak,
unlike the results of coupled-channels calculations, including the strongest collective states of both projectile
and target, which show a pronounced double-peaked structure. Separate measurements of the transfer strength,
combined with the relatively small number of weak noncollective states in 208Pb, suggested that the observed
barrier smoothing in this system could be due to the influence of couplings to transfer reactions. The coupled
reaction channels (CRC) calculations performed by explicitly coupling to the two strongest transfer partitions,
one-neutron pickup and one-proton stripping, suggest that the cumulative effect of coupling to many relatively
weak transfer channels is responsible for the barrier smoothing rather than a few strong transfer reactions. In
this perspective, the four main transfer channels (one- and two-neutron pickup and one-proton and one-alpha
stripping) of the 20Ne + 208Pb system were coupled to the collective excitations by employing an upgraded
CCQEL code, where we introduced the dependence of the transfer coupling strength on the transferred particle
and experimental Q-value distributions. Because of the availability of Q distributions measured at the two beam
energies of 96 and 103 MeV, two sets of transfer coupling strength were determined for each transfer channel.
The study with the upgraded code indicates transfers with negative ground-to-ground states Q value as the
leading cause of the smearing of the barrier distribution. At the beam energy of 103 MeV, the smoothing of
Dqe is influenced mainly by the one-neutron pickup. On the other hand, the one-neutron pickup and one-proton
stripping transfers are dominant for the beam energy of 96 MeV. These results highlight the importance of the
transfer coupling dependence on the experimental Q-value distribution and, consequently, on the dissipation of
the projectile kinetic energy.
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I. INTRODUCTION

Determination of the barrier distributions is an excel-
lent tool for revealing details in the energy dependence of
the measured fusion cross sections at energies close to the
Coulomb barrier. During fusion reactions, the excited states
of the projectile and target nuclei get populated complexly,
and their relative motion couples with them. The study of
the influence of a small number of projectile and target
collective excitations on near- and sub-barrier fusion was
successfully addressed by the coupled channels (CC) method
[1,2]. As a result, the barrier distribution structures are in-
terpreted as a fingerprint of the structure of the interacting
nuclei.

Although the CC method successfully explained the sub-
stantial enhancement of sub-barrier fusion cross sections as
well as the observed structures in the barrier distributions [1],
several experiments revealed that the barrier distributions of
some systems get distorted, or the structure gets completely
blurred in comparison with theoretical predictions [3,4]. This
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behavior seems to result from dissipation: the partial conver-
sion of the projectile-target kinetic energy into their heating.
This phenomenon is a topic much less understood. There are
two main mechanisms of dissipation: excitation of noncollec-
tive levels by nuclear and electromagnetic interactions [3–6]
and mutual projectile-target transfer of light particles. The
first one has been treated by combining the CC method with
the random matrix theory (CCRMT model), with promising
results [4,7,8]. The influence of transfer was both experi-
mentally and theoretically investigated, but the conclusions
are still contradictory [9–26]. Because of the complicated
nature of this many-body time-dependent phenomenon, the
theoretical interpretation is arduous, requiring both unknown
information and enormous computer calculation power. These
difficulties force the introduction of approximations into the
models, which might considerably influence the results. Gen-
erally, two approaches address the problem: microscopic and
macroscopic (phenomenological). The first is used, e.g., in
the program FRESCO [27]. In principle, the code can describe
the transfers and their influence on fusion and quasielastic
scattering of ions; however, it requires precise information
on nuclear structure and complicated couplings of transfer
channels, particularly when multistep transfers are possible.
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Because of this, there have been few attempts to employ
this approach to calculate barrier distributions, particularly
for medium and heavy systems. We are aware of only a few
successful applications of FRESCO for barrier distribution esti-
mations for not-very-light systems, mainly performed by the
Brazilian group [28]. However, they focused on systems for
which the barrier distributions are of the Gaussian-like shape,
therefore without the possibility of observing changes in their
structure.

The measurement of the quasielastic barrier distribu-
tion Dqe for the 20Ne + 208Pb system [29] found a single
broad structureless peak, in marked contrast to the results
of coupled-channels calculations, including couplings to the
strongest collective states in both projectile and target, which
showed a pronounced double-peaked structure. A similar sit-
uation concerns the 20Ne + 92Zr system, which also shows a
broad structureless peak in the experimental Dqe [3], unlike
the results of coupled channels calculations.

In Ref. [3], we conjectured that because the 92Zr nucleus
has many weakly coupled, noncollective excited states, the
smoothing of the barrier distribution could be due to the
cumulative coupling to these states. Further theoretical in-
vestigations [4,5] confirm this explanation for the observed
lack of structure in Dqe for the 20Ne + 92Zr system. However,
as a doubly magic nucleus, 208Pb has a much lower density
of noncollective states; therefore, the calculations including
them can only slightly smooth the barrier distribution [4]. This
suggests that another mechanism is responsible for the barrier
smoothing in the 20Ne + 208Pb system.

An obvious candidate for the barrier smoothing effect in
this case is the influence of transfer reactions. Therefore,
because of relatively weak dissipation due to the noncol-
lective excitations, 20Ne + 208Pb is a convenient system
for testing the influence of dissipation via transfer reac-
tions. In a separate experiment, the transfer reaction cross
sections at a backward angle and the incident energy cor-
responding to the calculated (but not observed) structure in
Dqe for the 20Ne + 208Pb system were measured [30]. The
detection angle (θlab = 142.5 deg) was chosen to lie in the
angular range of the flat peak of the transfer angular dis-
tributions. In terms of the differential cross section at this
angle and beam energy, the essential reactions turned out to
be the single-neutron pickup, 208Pb(20Ne, 21Ne) 207Pb, and the
single-proton stripping, 208Pb(20Ne, 19F) 209Bi. However, the
two-neutron pickup and two-proton stripping transfers were
of comparable importance to the single-proton stripping. The
production of ejectiles with masses from 14 to 16 was also
significant. The relatively large cross sections for transfer
reactions suggest that it is at least plausible that they are
responsible for the observed barrier smoothing in the 20Ne
+ 208Pb system. To test this hypothesis, we included the main
transfer channels within the microscopic and phenomenolog-
ical approaches mentioned above.

The paper is organized as follows: Section II describes
the coupled reaction channels (CRC) calculations. Section III
reports the results of the calculations performed within the
phenomenological approach applying the coupled channels
(CC) method using an upgraded CCQEL code [31]. We give
the conclusions and summary in Sec. IV.

II. MICROSCOPIC APPROACH

The CRC calculations were carried out using the code
FRESCO. The couplings to the 1.63 MeV 2+ and 4.25 MeV 4+

states of 20Ne and the 2.62 MeV 3− state of 208Pb were in-
cluded. The collective model was assumed, and the 20Ne states
were considered to form part of the ground state rotational
band, while the 208Pb 3− was modeled as a single octupole
phonon state. The influence of other states and mutual ex-
citations can be considered negligible [29]. Single-neutron
pickup and single-proton stripping were included since these
are the strongest transfer channels. On the other hand, despite
the significant transfer strength of the two-neutron pickup and
stripping channels, their couplings were not included because
of the lack of necessary experimental spectroscopic ampli-
tudes for the sequential transitions involving excited states in
the intermediate and final channels. For similar reasons, we
neglected the α-particle stripping and breakup and two-step
transfer paths for the single–neutron pickup and single-proton
stripping, i.e., excitation of the 2+ state of 20Ne followed by
the transfer step.

The optical potentials in all channels consisted of double-
folded real and “interior” imaginary parts, the latter to
simulate the incoming-wave boundary condition [29]. The
imaginary parts were of Woods-Saxon form, with depth W =
50 MeV, radius RW = 1.1 × (A1/3

p + A1/3
t ) fm, and diffuseness

aW = 0.4 fm. The double-folded real parts were calculated
with the code DFPOT [32] using the energy-independent form
of the M3Y effective interaction [33] and nuclear matter densi-
ties taken from Ref. [34] for 208Pb and calculated according to
the liquid-drop model of Myers [35] for 207Pb and 209Bi. The
20Ne and 21Ne matter densities were calculated according to
the prescription of Bhagwat et al. [36], assuming a 20Ne +n
cluster structure for 21Ne, while the 19F matter density was
derived from the charge density of Hallowell et al. [37].

For the Coulomb excitation of 20Ne, we took the nec-
essary B(E2) and B(E4) values from Ref. [38], while the
208Pb B(E3) value is from Ref. [39]. We adopted a different
approach to the usual deformed potential model for nuclear
excitation. There is considerable scatter in the nuclear defor-
mation lengths for 20Ne extracted from different experiments
using this model, e.g., Blanpied et al. [40]. It has been found
that not only is the deformed potential model increasingly
inadequate as the multipolarity of the transition increases
(see Ref. [41] and references therein), but also the multipole
moments of the inelastic transitions are usually much more
consistently defined by different data sources, e.g., the review
by Mackintosh [42]. We, therefore, employed the double-
folding model to calculate the nuclear transition form factors.
No imaginary couplings were included due to the interior
nature of the entrance channel’s imaginary potential, thus
avoiding the problem of defining these form factors (the M3Y
effective interaction being purely real).

Spectroscopic factors for the 20Ne → 21Ne transitions we
took from Fortier et al. [43]. Pickup to the 5/2+ and 1/2+
states of 21Ne, at 0.35 and 2.80 MeV, respectively, was in-
cluded, as these are the strongest individual single-neutron
states. Spectroscopic factors for the 20Ne → 19F transitions
were taken from Table 2 of Kaschl et al. [44]. Stripping to
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TABLE I. States in 207Pb and 209Bi coupled to in the CRC calculations. The cross sections for populating the individual states (summed
over the states in 21Ne and 19F) at Ebeam = 103 MeV for calculations with “interior” and “tuned” exit channel imaginary potentials are denoted
by σ and σ ′, respectively (see text for details).

207Pb σ (mb) σ ′ (mb) 209Bi σ (mb) σ ′ (mb)

0.00 MeV 1/2− 31.1 25.0 0.90MeV 7/2− 12.0 12.4
0.57MeV 5/2− 33.1 26.0 2.83MeV 5/2− 1.75 1.85
0.90MeV 3/2− 19.7 16.6 3.12MeV 3/2− 2.40 2.55
1.63MeV 13/2+ 2.38 1.91 3.63MeV 1/2− 0.40 0.43
2.34MeV 7/2− 3.38 2.96

the 1/2+, 1/2−, and 5/2+ states (at 0.0, 0.112, and 0.198
MeV) of 19F was included. Transitions to the states in 207Pb
and 209Bi listed in Table I were included, with spectroscopic
factors taken from Refs. [45] and [46], respectively.

Figure 1(a) compares the calculated quasielastic scattering
excitation functions with the measured ones. Experimen-
tally, the quasielastic scattering is defined as the sum of all
observed direct reaction channels (i.e., elastic and inelastic
scattering, transfer, and breakup, where present) [29]. On the
other hand, the calculated quasielastic scattering is the sum
of all the direct channels included in the calculation. There-
fore, the calculated quasielastic scattering excitation function
should slightly underpredict the measured one. The corre-
sponding quasielastic barrier distributions Dqe are presented
in Fig. 1(b). Both excitation functions and barrier distribu-
tions are shown as a function of the effective energy Eeff ,
defined as in [47] to remove the dependence on scattering
angle due to centrifugal effects. However, due to residual
differences in Eeff for different angles, the correction for the
angle-dependent centrifugal energy is not as suitable in this
case as it was for other systems. Therefore, the calculations

are compared with the experimental results for θlab = 155 deg
only.

The quasielastic excitation function calculated with in-
elastic couplings [see Fig. 1(a)], except for the high energy
tail, is in decent agreement with the measured one. The
theoretical calculations were shifted of 2.5 MeV to better
compare the shapes with the experimental data. Including
the (20Ne, 21Ne) and (20Ne, 19F) transfer channels improves
somewhat the qualitative agreement of the calculated exci-
tation function with the measured one. The main qualitative
difference between the calculated and measured excitation
functions is the “shoulder” at Eeff ≈ 95 MeV, which is absent
in the experimental data. This disagreement is much better
seen in the barrier distributions plotted in Fig. 1(b), which is
associated with the peak in the calculated distribution centered
around Eeff = 93 MeV, produced by the strong coupling to
the 20Ne 2+

1 state. Figure 1(a) shows that the slight smoothing
out of the shoulder in the excitation function by the transfer
couplings is due to the shifting and broadening of the main
peak in the barrier distribution (centered at Eeff ≈ 95 MeV in
the calculation) rather than any suppression of the subsidiary
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FIG. 1. Theoretical quasielastic excitation functions (a) and quasielastic barrier distributions (Dqe) (b) compared with the experimental
data. The black dotted and blue dot-dashed curves denote the bare (no-coupling) calculation and the calculation with inelastic couplings to
the 20Ne 2+

1 and 4+
1 and 208Pb 3−

1 states only, respectively. The red dashed and black solid curves denote the complete CRC calculations with
“interior” imaginary potentials in all channels and “tuned” imaginary potentials in the 21Ne + 207Pb and 19F + 209Bi exit channels, respectively
(see text for details). For the calculated barrier distributions, the experimental resolution of 0.7 MeV (FWHM) was taken into account. The
theoretical curves were shifted to higher energy by 2.5 MeV.
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FIG. 2. Transfer angular distributions for the
208Pb(20Ne, 21Ne) 207Pb (a) and 208Pb(20Ne, 19F) 209Bi (b) reactions
summed over all final states. The dashed curve denotes the result of
the calculation with interior imaginary potentials in all channels, and
the solid curve is the calculation with “tuned” imaginary potentials
in the 21Ne + 207Pb and 19F + 209Bi channels (see text for details).

20Ne 2+
1 peak, which is essentially unaffected by the transfer

couplings.
Thus far, we took the transfer coupling strengths—

spectroscopic factors and the like—from the literature.
However, these values were derived from different reactions.
Furthermore, employing “interior” imaginary potentials im-
plies that the surface absorption in all channels must come
from explicit couplings. Therefore, the strengths may not ac-
curately reflect the actual transfer cross sections. This could
have considerable bearing on the quasielastic barrier distribu-
tions, not only through the influence of the coupling effect on
the elastic scattering but also on the magnitude of the transfer
contribution to the quasielastic scattering. In Fig. 2, the cal-
culated angular distributions are compared with the measured
differential cross sections for the 208Pb(20Ne, 21Ne) 207Pb and
208Pb(20Ne, 19F) 209Bi transfer reactions summed over all
states in the residual nuclei at an incident energy of 103
MeV and an angle of θlab = 142.5 deg. The calculated an-
gular distributions were converted to the laboratory frame
and then summed over all states to accurately compare with
the measured quantities. Table I reports the integrated cross

sections for populating individual states in 207Pb and 209Bi
(summed over the relevant states in 21Ne and 19F, respec-
tively) in the column labeled σ ′.

It is apparent from Fig. 2 that while the
208Pb(20Ne, 19F) 209Bi cross section is well described
with the use of “interior” imaginary potentials in all
channels, the 208Pb(20Ne, 21Ne) 207Pb reaction is significantly
overpredicted. The most likely cause of this overprediction is
using the interior imaginary potentials in the exit channels.
The number of open channels in the 21Ne + 207Pb exit
partition, combined with possible interchannel inelastic
couplings, is such that it is impossible to include them all in
a practical coupled reaction channels calculation. Therefore,
adjustments to the optical potential must approximate the
effect of these “missing” channels and couplings. The
imaginary potential parameters of the exit channel optical
potentials were adjusted to obtain a good description of the
available transfer data while retaining the interior imaginary
potential in the entrance channel. Then, we used the exit
channel potential parameters to recalculate the quasielastic
excitation function. The results of the calculations with
adjusted exit channel optical potentials are compared to the
experimental transfer cross section at Ebeam = 103 MeV in
Fig. 2, where the solid lines denote them. The integrated cross
sections for populating individual states are reported in the
column labeled σ ′ of Table I. The adjusted imaginary potential
parameters were W = 50 MeV, rW = 1.26 fm, aW = 0.4 fm
for the 21Ne + 207Pb partition and W = 50 MeV, rW = 1.15
fm, aW = 0.4 fm in the 19F + 209Bi partition. The quasielastic
excitation function and barrier distribution obtained from the
calculation with “tuned” exit channel optical potentials are
compared with the data in Figs. 1(a) and 1(b), respectively,
where the solid curves denote them. Figure 1(a) shows that
while the qualitative agreement of the tuned calculation with
the measured excitation function is somewhat improved, the
quantitative agreement is similar to the previous calculation
with interior imaginary potentials in all channels. The
improved shape of the excitation function is reflected in
the calculated barrier distribution of Fig. 1(b), which is in
better agreement with the measured one. However, it is
readily apparent that despite the included transfer couplings
smoothing out to some extent the “two-peak” structure
produced by the 20Ne inelastic couplings, a satisfactory
description of the measured barrier distribution is not
achieved, and this conclusion is unaffected by the quality of
the description of the absolute magnitude of the transfer cross
sections.

III. PHENOMENOLOGICAL APPROACH

A phenomenological approach was applied by improving
the treatment of the transfer couplings in the CC calculations.
To this end, we used the CCQEL code, a modified version
of the CCFULL code [31], suitable for the fusion and the
quasielastic scattering excitation functions to be calculated
simultaneously. The improvements aim to take into account
experimental information about the dissipation due to the
transfer channels. The main difference between the two codes
concerns the boundary condition: in CCFULL the incoming
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wave boundary condition is applied, while in CCQEL the
imaginary potential W is used. Usually, W (r) is, however,
hidden behind the barrier, so its details do not influence the
fusion cross-section significantly. Before the upgrade, both
codes included the two-neutron transfer channels, treated
as pair-transfer coupling between the ground states. Under
this condition, one usually assumes that transfer coupling is
expressed as

Ftr × dVn

dr
, (1)

where Vn is the nuclear potential [48,49]. The coefficient Ftr

is the coupling strength, and according to this model, it is
independent of

(1) the type of the transferred light particle(s);
(2) the Q value of the reaction (usually g.s. to g.s. trans-

fer (Qgg) is assumed, independently of the projectile
energy).

Moreover, since it is frequently assumed that the two-neutron
transfer with positive Qgg dominates, one usually consid-
ers only this kind of transfer. While the nuclear potential
V is frequently calculated using the popular Akyüz-Winther
parametrization [50], the transfer coupling strength Ftr is
usually fitted in the range 0.0–0.5 fm [24,51,52] to obtain
agreement of the transfer excitation function with experiment,
or is assumed, e.g., at the value of 0.3 fm [25,53]. Sometimes,
this is sufficient to reproduce the enhancement of the exper-
imental fusion excitation function over the theoretical one.
However, this method is very approximate.

Fusion and quasielastic barrier distributions are frequently,
as expected, grosso modo similar. However, they could be
different in detail due to the different time scales of fusion
and scattering, and in particular, of dissipation processes in
the reactions [54,55]. In this perspective, the backscattering
method offers the possibility of determining the Q-value dis-
tribution easily, contrary to the fusion, where only the fixed
final Q-values are known.

The Q-value distributions for various transfer channels
have been measured in the backscattering of the 20Ne + 208Pb
system [30]. We present the results for several transfer chan-
nels at the two beam energies of 96 and 103 MeV in Fig. 3.
Measurements of the Q-value distribution for transfers at
near-barrier energies are rare. However, they almost always
have a significant part above the Qgg value, corresponding to
negative excitation energy E∗ [56,57]. This nonphysical effect
was also observed in our measurements. It results from the
experimental energy resolution, which for our 20Ne + 208Pb Q
distribution measurements was 2.4 MeV (FWHM). Thus, to
exploit the information contained in the Q distributions, we
performed the deconvolution of experimental Q-value distri-
butions, considering the cutoff at Qgg, i.e., at E∗ = 0. Some
information on the deconvolution method, with examples of
the effect of deconvolution on the Q distributions, is given in
Appendix A.

The modified CCQEL code, used in this work, allows one to

(1) specify the mass and atomic numbers of the transfer
particles;
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FIG. 3. Q-value distributions for the strongest transfer channels
at 96 and 103 MeV beam energies.

(2) include simultaneously various transfer channels;
(3) perform simultaneous calculations with various Q

and Ftr values based on experimental Q-value
distributions.

Comparing the experimental transfer cross section corre-
sponding to some Q values to the calculated ones gives us the
Ftr (Q) values. The idea is illustrated in Fig. 4. We emphasize
that this graph illustrates the idea only in the case of some
dominating transfer channel. In practice, we simultaneously

FIG. 4. Principle of the Ftr determination for the +1n transfer
reaction at the beam energy of 103 MeV. The straight lines give
experimental transfer cross sections at a given Q value; the dashed
ones are the results of the CCQEL calculations.
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FIG. 5. CC calculations for the 20Ne + 208Pb system performed with standard CCQEL code, including only the collective excitations (dashed
black line) and the two-neutron pickup employing fixed Ftr values of 0.1 fm (dotted blue line), 0.3 fm (solid black line), and 0.5 fm (dashed
red line).

determined the Ftr (Q) for a few transfer reactions to reproduce
experimental Q-value distributions (see Appendix B).

The ion-ion potential used in the calculation was of the
Woods-Saxon shape. In detail, the Akyüz-Winther potential
parameters were V0 = 69.3 MeV, r0 = 1.18 fm, and a = 0.66
fm for the real part, and W0 = 30 MeV, r0W = 0.9, fm and
aW = 0.5 fm for the imaginary part. The “interior” imaginary
potential simulates the incoming-wave boundary condition.
For collective excitations, we have included couplings to the
first 3− state at 2.614 MeV and the first 2+ state at 4.07
MeV in 208Pb within the two- and one-phonon vibrational
coupling schemes, respectively. The deformation parameters
of β3 = 0.11 and β2 = 0.055 [39,58] were used (with the
radius parameter for the coupling being 1.2 fm). The calcula-
tions included also the couplings between the 0+, 2+, 4+, and
6+ states in the 20Ne rotational band. The large deformation
parameters for 20Ne, β2 = 0.46 and β4 = 0.27 [40], were
employed.

To check the influence of the transfer made in the usual
way, the coupled-channels calculations, employing the stan-
dard CCQEL code, were performed assuming the ground state
to ground state 2n pickup with the Q value of 3.02 MeV.
We show the results for the three Ftr parameters in the

0–0.5 fm range. Figure 5 shows the impact of the assigned
Ftr values on the fusion excitation function and fusion and
quasielastic barrier distributions of the 20Ne + 208Pb systems.
The fusion cross sections are smaller at energies above and
below the barrier for the strongest coupling (Ftr = 0.5 fm).
This effect is more clearly visible by plotting the transfer
fusion enhancement (TFE) [Fig. 5(c)], defined as the ratio of
the theoretical estimation of fusion cross sections calculated
with and without the transfer channels coupled to the collec-
tive excitations. The coupling to the transfer channel slightly
affects the barrier distributions’ structure. Only in the case of
very strong coupling is the peak shape at about 95 MeV more
significantly modified. Then, in addition to the collective ex-
citations of projectile and target nuclei, we took into account
the dominating transfer channels, where the corresponding Ftr

values were obtained via the iteration procedure aiming to
minimize the difference between the calculated and decon-
voluted experimental Q value distributions (the procedure is
shortly described in Appendix B).

Figure 6 shows the influence of the two-neutron pickup on
the fusion and quasielastic barrier distributions using the stan-
dard and upgraded CCQEL codes. For the standard calculations
a fixed Ftr of 0.3 fm and Q = Qgg were assumed, while for
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upgraded one using the Ftr parameters reproducing the experimental
Q distributions measured for the beam energies of 96 MeV (blue
solid line) and 103 MeV (red solid line) (see details in the text).

the upgraded code the Ftr (Q) values were obtained using the
iterative procedure from the experimental Q distributions. In
particular, since the transfer cross sections were measured at
two beam energies, two sets of Ftr (Q) were obtained. Com-
pared to the calculations, where the coupling to the transfer
was neglected, the standard 2n treatment of the transfer cou-
pling generates barrier distributions slightly smoothed. At the
same time, the upgraded method leads to the splitting of the
higher energy peak of both fusion and quasielastic barrier
distributions into two peaks. No changes are observed in the
shape and position of the lower energy peak.

Generally, it seems that the 2n pickup does not significantly
smooth out the barrier distributions. This observation suggests
that the smoothing is the dissipation effect due to all transfer
channels, which strongly influence the barrier distributions.
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FIG. 7. Comparison of the fusion and quasielastic barrier distri-
butions obtained within the CCQEL code including only the collective
excitations (dashed black line) and by gradually including the four
strongest transfer reactions starting from the one-neutron pickup:
+1n transfer (blue solid line), +1n and +2n transfers (red dash-
dotted line), +1n, +2n, and −1p transfers (orange dashed line),
and +1n, +2n, −1p, and −1α transfers (green dashed line). The
Ftr (Q) values were obtained from the experimental Q distributions
measured at the beam energy of 103 MeV.

Figure 7 shows such an effect by comparing the fusion and
quasielastic barrier distributions obtained by gradually in-
cluding the four strongest transfer reactions starting from the
one-neutron pickup. Because of the two beam energy mea-
surements, the comparison is performed for the Ftr obtained
separately at 96 and 103 MeV (Figs. 7 and 8, respectively). At
beam energies above the barrier, the influence of one-neutron
pickup seems to dominate the other transfer channels. The
couplings to the +1n transfer lead to the significant smoothing
of the two peaks structure of the barrier distributions, while
the other transfer channels only slightly influence the structure
established by the one-neutron pickup (see Fig. 7). Different
situations appear at energies below the barrier, where the one-
neutron pickup and one-proton stripping strongly modify the
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FIG. 8. Comparison of the fusion and quasielastic barrier distri-
butions obtained within the CCQEL code including only the collective
excitations (dashed black line) and by gradually including the four
strongest transfer reactions starting from the one-neutron pickup:
+1n transfer (blue solid line), +1n and +2n transfers (red dash-
dotted line), +1n, +2n, and −1p transfers (orange dashed line),
and +1n, +2n, −1p, and −1α transfers (green dashed line). The
Ftr (Q) values were obtained from the experimental Q distributions
measured at the beam energy of 96 MeV.

structure of the barrier distributions by significantly narrowing
it, as shown in Fig. 8.

Figure 9 shows the transfer fusion cross-section enhance-
ment obtained by gradually including the four strongest
transfer reactions starting from the one-neutron pickup. The
comparison highlights the influence of the transfer channel in
enhancing the fusion cross-sections mainly at energies near
the barrier. As observed by the direct comparison of the barrier
distributions, the transfer reactions enhance the fusion cross
section for the two beam energies differently. For the beam
energy of 96 MeV, the strongest enhancement is due to the
one-proton stripping [Fig. 9(b)]; on the other hand, it slightly
only influences the fusion cross section at the beam energy of
103 MeV [Fig. 9(a)].
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FIG. 9. Comparison of the transfer fusion enhancement obtained
within the CCQEL model by including the four strongest transfer
reactions starting from the one-neutron pickup: +1n transfer (blue
solid line), +1n and +2n transfers (red dash-dotted line), +1n, +2n,
and −1p transfers (orange dashed line), and +1n, +2n, −1p, and
−1α transfers (green dashed line). The Ftr (Q) values were obtained
from the experimental Q distributions measured at the beam energies
of 103 (a) and 96 MeV (b).

A comparison of calculations with the experimental data is
shown in Fig. 10. In general, the coupling to states with a large
excitation energy leads to the adiabatic potential renormal-
ization, which consists of an energy-independent shift of the
potential [59]. This mainly affects the height of the Coulomb
barrier without influencing the trend and shape of the exci-
tation energy and barrier distributions. Thus, we shifted the
calculated barrier distributions by 3.7 MeV to overlap with
experimental data. The coupling to the four transfer reac-
tions leads to smoother barrier distributions. However, the
calculations are still not able to reproduce the experimental
data. Furthermore, from the comparison shown in Fig. 10, it
is evident how the two sets of coupling strength parameters
Ftr (Q) obtained for the two beam energies of 96 and 103
MeV generate different fusion and quasielastic barrier dis-
tributions and excitation functions. This difference indicates
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FIG. 10. Comparison of the experimental fusion excitation function (a) and barrier distribution (b) and quasielastic excitation function
(c) and barrier distributions (d) for the 20Ne + 208Pb system with the CC calculations performed with only the collective excitations (dashed
black line) and the four strongest transfer channels. The Ftr (Q) values were obtained from the Q-distribution measurements performed at the
beam energies of 96 MeV (blue solid line) and 103 MeV (red solid line). For the calculated barrier distributions, the experimental resolution
of 0.7 MeV (FWHM) was taken into account. The theoretical curves were shifted to higher energy by 3.7 MeV.

the coupling strength parameters’ strong beam energy depen-
dence, being a direct consequence of the Ebeam dependence
of the Q distributions, presented in Fig. 3. The inclusion of
such dependence would probably result in stronger smoothing
and broader barrier distributions, observed experimentally.
The plateau seen for high Eeff in the quasielastic excitation
function [Fig. 10(c)], caused mainly by the −1p and −1α

transfers high above the barrier, is probably a signal that for
high excitation energies the form factor of Eq. (1), even after
our generalization, still does not sufficiently well describe the
transfer couplings.

IV. SUMMARY AND CONCLUSIONS

A series of microscopic CRC calculations were performed
to test the conjecture that couplings to transfer channels could
account for the observed smoothing of Dqe in the 20Ne + 208Pb
system. Couplings to the single-neutron pickup and single-
proton stripping channels, experimentally the two strongest
transfer reactions, slightly smooth out the structure in the Dqe

obtained from the microscopic coupled-channels calculations,

including the strongest collective states of the projectile and
target, but do not provide a satisfactory overall description
of the data. This result suggests the importance of the cu-
mulative effect of many individually weak transfer channels,
which is responsible for the observed smoothing of Dqe in
the 20Ne + 208Pb system, rather than the small number of
dominating transfer channels. However, including a sufficient
number of these weak channels within the framework of a
microscopic CRC calculation to unambiguously demonstrate
such a smoothing effect remains a practical impossibility
for the present, partly due to limitations on the size of a
practicable calculation but also to lack of knowledge of the
all spectroscopic amplitudes necessary. This latter limitation
could, in principle, be overcome by using calculated ampli-
tudes from nuclear structure calculations, although inserting
all the necessary transitions into a standard CRC calculation
would remain a formidable challenge. Because of this, we
upgraded the macroscopic (phenomenological) CCQEL code
by improving the coupling method to transfer channels during
fusion and backscattering processes.

064625-9



G. COLUCCI et al. PHYSICAL REVIEW C 109, 064625 (2024)

tr (m
b/

(s
r M

eV
))

-Q (MeV)

E* (MeV)

0

0.1

0.2

0.3

0.4

15 20 25 30 35

0 5 10 15 20

0

0.2

0.4

0.6

0.8

-8 -4 0 4 8

-4 0 4 8 12

0

0.5

1

1.5

2

3 6 9 12 15 18

-6 -3 0 3 6 9

+2n

-1

Qgg

+1n

-1p
Qgg

Qgg Qgg

(a)

(c)

(b)

(d)

0

2

4

6

8

10

-4 -2 0 2 4 6 8

-4 -2 0 2 4 6

data
deconvolution

FIG. 11. Examples of deconvolution of the Q-value distributions for the four dominant transfers at the beam energy of 103 MeV.

The upgraded code was employed to investigate the in-
fluence of the four main transfer channels on smoothing the
measured quasielastic barrier distribution of the 20Ne + 208Pb
system. The results show significant differences from the ones
obtained by applying the standard approximations:

(1) The coupling of transfer channels, at least in the im-
proved CCQEL code’s frame, does not strongly enhance
the deep sub-barrier fusion cross sections. The en-
hancement, not larger than by the factor of two (see
Fig. 9(b)), was obtained at and slightly below the bar-
rier.

(2) The strongest enhancement is observed not necessarily
for 2n transfers or transfers with positive Qgg value.
For the beam energy of 103 MeV, the smoothing of the
barrier distribution is dominated not by 2n but rather
by 1n pickup, even in cases of positive Qgg for 2n and
negative Qgg for 1n. On the other hand, for the beam
energy of 96 MeV, the 1n pickup and 1p stripping
channels dominate.

(3) In the model’s frame, the transfer coupling strength
(Ftr) depends on the transferred particle and dissipation
(Q-value distribution).

(4) The transfer coupling strength Ftr depends on the pro-
jectile kinetic energy. The two sets of Ftr obtained
from the Q distributions measured at the two beam
energies of 96 and 103 MeV are significantly different.
Consequently, the barrier distributions show dissimi-
lar shapes. This effect is a direct consequence of the
beam energy dependence of the Q distributions. The
introduction of the Ftr (Q) beam energy dependence in
the model should lead to the more marked smoothing
observed experimentally.

(5) The smoothing is not necessarily dominated by the
ground state to ground state transfer. Transfers to
higher excited states can also influence it.

(6) Couplings between different transfer channels are es-
sential and, in calculations, should be taken into
account.

Since the dissipation due to single-particle excitations and
transfers influences the shape of the barrier distributions, in
the future, one should develop a code considering dissipation
due to the simultaneous single-particle excitations and transfer
channels.
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APPENDIX A: DECONVOLUTION

Deconvolution is the mathematical method aiming to
recover the actual physical distribution from experimental
results, which are affected by unavoidable experimental res-
olution, being represented by a distortion function. In the
present case, we adopted the Gaussian function, symmetriz-
ing (with respect to the maximum) the negative part of the
excitation energy (E∗) distribution obtained for the notransfer
reaction and having a standard deviation σ = 1.0 MeV. Un-
fortunately, due to the experimental uncertainties, a unique
and general method of solving the problem does not exist.
An infinite number of solutions exist, evidently nonphysical
(e.g., containing many high-frequency oscillations), giving,
after convolution with a distortion function, excellent agree-
ment with the experiment. Thus, to get reasonable results,
some boundaries should be added, e.g., the condition of non-
negativity of solution for any independent variable value.
However, this limitation is frequently insufficient for a unique,
physically sound solution. In many applications, one can
get a satisfactory solution by adding other conditions, e.g.,
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assuming that the solution is smooth [60,61]. Unfortunately,
this method cannot be used for the deconvolution of Q-value
distributions since, for some transfers, they have a sharp cutoff
at Qgg for physical reasons.

Because of this, we used the “Fit Convolution” application
of the ORIGINPRO code [62], in which one has to assume
the function shape of the solution. We assumed that theleft-
hand side of the E∗ = Qgg − Q distribution is given by a
Gaussian, while the right-hand side is the sum of a Gaussian
and Lorentzian, sharply cut at E∗ = 0. An example of the
effect of deconvolution on the Q distributions for the four
dominant transfers measured at the beam energy of 103 MeV
is presented in Fig. 11. For the 2n transfer, where two-peak
E∗ distribution is evident [see Fig. 11(b)], we assume the sum
of two such (Gaussian + Lorentzian) peaks. With such an
assumption, we cannot describe the sharp E∗ peaks due to the
transfers to collective levels, but with our Q-value resolution
of the order of 2.4 MeV (FWHM), we could not see them.

APPENDIX B: ITERATION

We determined the transfer coupling strength parameters
Ftr (Q) for each transfer reaction through an iterative method
to minimize the difference between the calculated and exper-
imental Q-value distributions. To this end, the experimental
Q distributions were sampled, and a 1 MeV binning was
adopted for the studied system. The agreement between the
sampled experimental and theoretical Q distributions is estab-
lished through the factor of agreement, R, which is defined
as the ratio of the theoretical (calculated with the updated

CCQEL code) and the experimental transfer cross sections. For
each iteration, new F new

tr parameters were evaluated from the
previously used Ftr as

F new
tr = Ftr

1 − (
1−R

s

) , (B1)

where s regulates the step of iteration and was usually set to
4. The iterative procedure ended when the agreement factor
R for each transfer and Q was approximately 1. The range
of the iterated Q distributions was limited by the possibility
of converging the agreement factor R to 1. This mainly af-
fected the alpha transfer channel, where the high energy part
of the Q distribution could not be reproduced. However, for
other transfers, these limits mainly affected the tails of the
Q distributions, whose influence is negligible on the excita-
tion functions and barrier distribution calculations. The Ftr (Q)
values, which lead to the agreement between theoretical and
experimental Q distributions and are employed in the calcu-
lations, are shown in Fig. 12. Generally, the Ftr parameter
strongly depends on the transferred particle and beam energy;
the latter one results from the strong beam energy dependence
of the Q-value distributions. The dependence of Ftr (−Q, E∗)
observed for the 1n and 2n pickups [Figs. 12(a) and 12(b),
respectively] suggests that the ground-to-ground state transfer
dominates at low excitation energies, but the rising level den-
sity amplifies transfer coupling strength at higher excitation
energies. With 1p and 1α stripping [Figs. 12(c) and 12(d),
respectively], the Ftr increases with the excitation energy.
This might indicate that for the charged particle transfers, the
g.s. → g.s. channel is not strongly coupled because of the
influence of the Coulomb barrier on the charged particles.
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