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We propose a hybrid quantum-classical framework to solve the elastic-scattering phase shift of two well-
bound nuclei in an uncoupled channel. Within this framework, we develop a many-body formalism in which
the continuum scattering states of the two colliding nuclei are regulated by a weak external harmonic-oscillator
potential with varying strength. Based on our formalism, we propose an approach to compute the eigenenergies of
the low-lying scattering states of the relative motion of the colliding nuclei as a function of the oscillator strength
of the confining potential. Utilizing the modified effective range expansion, we extrapolate the elastic-scattering
phase shift of the colliding nuclei from these eigenenergies to the limit when the external potential vanishes. In
our hybrid approach, we leverage the advantage of quantum computing to solve for these eigenenergies from a
set of many-nucleon Hamiltonian eigenvalue problems. These eigenenergies are inputs to classical computers
to obtain the phase shift. We demonstrate our framework with two simple problems, where we implement the
rodeo algorithm to solve the relevant eigenenergies with the IBM Qiskit quantum simulator. The results of both
the spectra and the elastic-scattering phase shifts agree well with other theoretical results.
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I. INTRODUCTION

The scattering between many-nucleon systems plays im-
portant roles in our understanding of fundamental symmetries
of nature [1,2] as well as in our knowledge of stellar formation
and evolution [3–7]. However, first principles calculations of
nuclear scattering are in general computationally challeng-
ing [8–11] due to the strong, nonperturbative interactions [12].

Quantum computing holds the promise to address the de-
mands for computational resources needed for first-principles
calculations of quantum many-body problems [13,14]. It
leverages the principles of quantum mechanics and holds the
promise to address the difficulties encountered by the classical
computing techniques by utilizing the coherent superposition
and entanglement intrinsic to quantum hardware [15]. The
utility of quantum computing has been explored in fields
such as the quantum chemistry [16–19], quantum field the-
ory [20–27], condensed-matter physics [28–30], and many
other areas [31]. The advent of the era of quantum advantage
is also celebrated in the field of low-energy nuclear physics.
Various algorithms [32–37] have been proposed and imple-
mented to solve the structure properties of nuclear systems via
quantum computers. Prototype investigations have also been
performed on real-world quantum hardware for low-energy
nuclear structure theory [38–40]. However, fewer quantum
algorithms [41–43] have been proposed to study the scattering
properties of many-nucleon systems. To date, the preparation
of the scattering states for general scattering systems that are
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of specific functional behaviors is still an open question in
quantum computing. It appears to be nontrivial to obtain scat-
tering observables based on such scattering states on quantum
computers.

In this work, we propose a hybrid quantum-classical frame-
work to solve the phase shift of the elastic scattering between
two well-bound nuclei in an uncoupled channel. According
to the kinematics, the stable nuclei, which can be neutron
(n), proton (p), and the close-shell nucleus such as 4He (α),
and 16O, remain in their ground states following elastic scat-
tering. To the best of our knowledge, very few works [44]
have explored solving for the elastic-scattering phase shift via
quantum computing. The major difficulty in solving the phase
shift via quantum computing is that the solution of phase
requires the information of the probability amplitudes of the
scattering wave function, while the projective measurement
applied in quantum computing provides only the probability,
leaving the phase of the wave function unspecified. We take
an alternative approach and base our method on the successful
techniques of quantum eigensolvers [45–51], and the formula
of the modified effective-range expansion (MERE) [52–58]
that describes the full energy dependence of the scattering
phase shift when the system is confined in an external har-
monic oscillator (HO) potential.

Within our framework, we develop a formalism to regulate
the internucleus interaction of the colliding nuclei by a weak
external HO potential with varying strength, with which the
scattering states of the system are discretized. We then sug-
gest a method to compute the eigenenergies of the low-lying
scattering states of the relative motion of the system based
on a set of many-nucleon structure calculations. With the
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eigenenergies, we extrapolate the desired elastic-scattering
phase shift based on the MERE formula to the limit of van-
ishing external HO potential. We propose to compute the
eigenenergies of relevant many-nucleon systems on quantum
computers via efficient quantum eigensolvers, where such
calculations can be intractable with classical computers. Sub-
sequent calculations (i.e., to extrapolate the phase shift based
on the MERE formula) are easy on a classical computer but
hard on quantum computers; they are therefore processed on
classical computers.

We illustrate our framework with two simple toy problems,
the neutron-proton (np) scattering in the 0+ channel and the
neutron-4He (nα) scattering in the (1/2)+ channel. We adopt
the rodeo algorithm [48–50] to solve the eigenenergies of the
discretized low-lying scattering states of the relative motions
of the scattering systems that are confined in the HO poten-
tials, where the quantum computations are simulated with the
IBM Qiskit package [59]. We also present the extrapolation
schemes to obtain the phase shifts based on these eigenen-
ergies. Being limited in the resources required for general
many-body calculations on quantum computers, we take the
nuclei in our toy problems to be structureless particles. We
aim for complex many-body applications with our framework
on future fault-tolerant quantum computers [60–62].

The arrangement of this paper is as follows: We present
the theory of our framework in Sec. II, which includes the
MERE formula, the elastic scattering between two nuclei, and
the rodeo algorithm. A brief summary of our framework is
also provided at the end of Sec. II. We illustrate our framework
with two toy problems in Sec. III. We conclude in Sec. IV,
where we also present the outlook. We provide supplemental
materials in the Appendixes.

II. THEORY

We aim to solve the phase shift of the elastic scattering
between two nuclei X (of B constituent nucleons) and Y (of
A − B constituent nucleons) in an uncoupled channel at low
energies. For such cases, we assume both nuclei are well
bound and the nuclei remain at the kinematically allowed
ground states during the scattering. In this section, we in-
troduce the elements of our framework. We summarize the
framework is at the end of this section.

A. The MERE formula

The Hamiltonian of two point particles in their center-of-
mass (CM) frame reads1

Hsc = Trel + Vint, (1)

where Trel = �p2/(2μ) denotes the kinetic energy of the rel-
ative motion of the two particles, with �p being the relative
momentum and μ being the reduced mass. Vint denotes the
interaction between the particles, which is assumed to be of
finite range. The wave function of the scattering system and

1We adopt natural units and take h̄ = c = 1 in this work.

the phase shift can be solved based on Hsc with the scattering
boundary condition [63,64].

Complementary to the traditional approaches described
above, one can also solve the elastic-scattering phase shift
based on the energy eigenvalues of the scattering system
that is subjected to some external confinement. As a text-
book problem in nuclear physics, the scattering phase shift of
two nucleons confined in a spherical region can be obtained
from the energy eigenvalues of the system by solving the
Schrödinger equation with the Dirichlet boundary condition
(see, e.g., Refs. [63,64]).

Following this idea, one considers the confining potential
to be the HO potential VHO(ω) = (1/2)μω2r2, with ω being
the oscillator strength (referred to as the “trap strength” in the
following) and r being the distance between the mass centers
of the two particles. The external confining potential acts only
on the relative degrees of freedom of the scattering system.
The Hamiltonian of the scattering system that is subjected to
the HO potential becomes

H (ω) = Hsc + VHO(ω) = Trel + Vint + VHO(ω). (2)

The “modified” phase shift δl,ω of the scattering system con-
fined in the external HO potential in an uncoupled channel
is related to the energy eigenvalues of H (ω) according to the
MERE formula [52–58]

p2l+1 cot δl,ω(p) = (−1)l+1(4μω)l+ 1
2
�
(

2l+3
4 − ε

2

)
�
(

1−2l
4 − ε

2

) , (3)

where ε = E/ω with E = p2/(2μ) denoting the eigenenergy
of H (ω). �(·) denotes the Gamma function [65]. l denotes
the orbital angular momentum of the relative motion, which
also labels the scattering channel. We provide the derivation
of Eq. (3) in Appendix A for completeness.

We remark that the MERE formula holds in the limit of the
zero-range interactions and is valid up to the inelastic thresh-
old of the uncoupled scattering channel.2 The confining HO
potential VHO(ω) should be weak on the distance scale of the
internucleus interactions. Being nonzero everywhere except at
the origin, VHO(ω) then produces appropriately small modifi-
cations to the interior of the nuclear wave function, while it
modifies the boundary condition outside the interaction range
and discretizes the continuum states of the otherwise free scat-
tering. The scattering phase shift is also modified as the outer
range of the interaction now differs from that in the free space.
The modified scattering phase shift is dependent on the energy
eigenvalue E of the confined scattering system. Based on the
knowledge of the spectrum of the confined system, one can
extract the continuum scattering amplitude up to finite-range
corrections [56,58].

B. Elastic scattering of two nuclei

As mentioned, we consider the elastic scattering between
two well-bound nuclei X (of B constituent nucleons) and

2The MERE formula [Eq. (3)] can be generalized, in principle, to
the coupled-channel cases.
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Y (of A − B constituent nucleons). We apply a weak HO
potential (of strength ω) to the scattering system X + Y ,
where the HO potential acts to each pair of nucleons in the
combined system. The Hamiltonian of the intrinsic motion of
the resulting A-nucleon system reads

HA(ω)= 1

2Am

A∑
i< j

( �pi− �p j )
2+

A∑
i< j

Vi j

︸ ︷︷ ︸
Hsc,A

+ 1

2A
mω2

A∑
i< j

(�ri−�r j )
2

︸ ︷︷ ︸
V rel

HO(ω)

,

(4)

where Hsc,A denotes the Hamiltonian of the A-nucleon sys-
tem [66–68] that consists of all the nucleons in the colliding
nuclei. m denotes the nucleon mass. For simplicity, we take
the neutron and proton to be of equal mass. Vi j denotes the
internucleon interaction between the ith and jth nucleons.3

V rel
HO(ω) denotes the weak HO potential of oscillator strength ω

that acts on pairwise nucleons. �pi and �ri denote the momentum
and position of the ith nucleon, respectively.

We consider the low-lying scattering states of the A-
nucleon system; with the HO potential, these states are
discretized. Since X and Y are taken as well bound nuclei
and the HO potential is sufficiently weak, we argue according
to the kinematics that X and Y are in their respective ground
states as the effect of the net nuclear environments generates
small perturbations to the energy levels compared with their
large excitation energies. Correspondingly, we have in mind
that the computational advantage appears when we adopt an
ansatz wave function for the low-lying states of HA(ω) to be
the tensor product of the ground-state wave function of the X ′
cluster (corresponding to X in the nuclear environment), the
ground-state wave function of the Y ′ cluster (corresponding to
Y in the nuclear environment), and the wave function of the
relative motion of the clusters with proper antisymmetrization.
We imagine that this can be easily generalized to include more
configurations of the projectile-target system following the
resonating group method [69] and the cluster decomposition
method [70,71]. Correspondingly, it is convenient to divide
the eigenenergies {Etot,i(ω)} of the low-lying scattering states
of HA(ω) into the sum of (1) the ground-state energy EX ′,gs(ω)
of the X ′ cluster; (2) the ground-state energy EY ′,gs(ω) of
the Y ′ cluster; and (3) the energies {Erel,i(ω)} of the relative
motion of the two clusters. That is, we have

Etot,i(ω) = Erel,i(ω) + EX ′,gs(ω) + EY ′,gs(ω). (5)

The energy eigenvalues of the clusters and the total system
can be calculated based on the intuition of the asymptotic
kinematics of the low-energy scattering states of the confined
A-nucleon system. In particular, we can sort HA(ω) according
to the kinematics and the ansatz wave function as [Eq. (B11)]

HA(ω) = Hrel(ω) + HX ′ (ω) + HY ′ (ω), (6)

where the derivations are presented in Appendix B. Hrel(ω)
corresponds to the intrinsic motion of the two clusters

3We omit the contributions from many-nucleon interactions terms
in this work, the inclusion of which is straightforward but involved.

[Eq. (B12)]

Hrel(ω) = 1

2μ
�p2

︸ ︷︷ ︸
Trel

+ 1

2
μω2�r 2︸ ︷︷ ︸
VHO(ω)

+
B∑

i=1

A∑
j=B+1

Vi j

︸ ︷︷ ︸
Vint

, (7)

with the reduced mass of two clusters being μ = B(A −
B)m/A. �p is the momentum of the relative motion of the
clusters, while �r denotes the relative position of the X ′ and
Y ′ clusters. The last term of the above equation denotes
the interaction Vint between the two clusters. Vint can be de-
rived from first principles or modeled as phenomenological
potentials.

We remark that Eq. (7) is in accordance with Eq. (2). By
direct comparisons, we note that Hrel(ω) [Eq. (7)] resembles
the Hamiltonian H (ω) [Eq. (2)] of the relative motion of the
X and Y nuclei (as if they were two structureless particles)
with the additional HO potential and the internucleus interac-
tion. These two Hamiltonians produce the same eigenenergies
{Erel,i(ω)} below the inelastic threshold.

The Hamiltonian of the cluster X ′ is HX ′ (ω). With the
scaled mass m′ = Am/B and scaled oscillator strength ω′ =
Bω/A, HX ′ (ω) can be written as [Eq. (B13)]

HX ′ (ω) = 1

2Bm′

B∑
i=1,i< j

(�ki − �k j )
2

+ m′(ω′)2

2B

B∑
i=1,i< j

(�si − �s j )
2 +

B∑
i=1,i< j

Vi j

+ A − B

B

[
1

2m′

B∑
i=1

�k2
i + 1

2
m′(ω′)2

B∑
i=1

�s 2
i

]
, (8)

where �si denotes the position of the ith nucleon of the X ′
cluster with respect to its mass center. The momentum of the
ith nucleon is �ki = m�̇si. The last term of the above equation de-
notes the effect of the nuclear environment to the B nucleons
in the cluster, where each nucleon behaves as an oscillator
with the scaled mass m′ and the scaled oscillator strength ω′.
The ground-state energy of HX ′ (ω) is EX ′,gs(ω).

Similarly, HY ′ (ω) denotes the Hamiltonian of the cluster
Y ′. Taking m′′ = Am/(A − B) and ω′′ = (A − B)ω/A, HY ′ (ω)
can be written as [Eq. (B14)]

HY ′ (ω) = 1

2(A − B)m′′

A∑
i=B+1,i< j

(�qi − �q j )
2

+ 1

2(A − B)
m′′(ω′′)2

A∑
i=B+1,i< j

(�ti − �t j )
2+

A∑
i=B+1,i< j

Vi j

+ B

A − B

⎡
⎣ 1

2m′′

A∑
i=B+1

�q 2
i + 1

2
m′′(ω′′)2

A∑
i=B+1

�t 2
i

⎤
⎦,

(9)

where �ti denotes the position of the ith nucleon of the Y ′
cluster with respect to the cluster mass center. The momentum

�qi = m�̇ti is conjugate to �ti. The last term in Eq. (9) results from
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the effect of the nuclear environment to the (A − B) nucleons
in the cluster. The ground-state energy of HY ′ (ω) is EY ′,gs(ω).

In the extreme case where both nuclei are structureless,
there is no contribution from the intrinsic motion of the
clusters to the total Hamiltonian HA(ω). In this limit, the
total Hamiltonian HA(ω) [Eq. (6)] of the intrinsic motion of
the A-nucleon system is simply Hrel(ω), as discussed in the
Appendix B.

We can infer the eigenenergies {Erel,i(ω)} of Hrel(ω) ac-
cording to Eq. (5), with the energy eigenvalues {Etot,i(ω)},
EX ′,gs(ω), and EY ′,gs(ω) solved from HA(ω), HX ′ (ω), and
HY ′ (ω), respectively.4 With the knowledge of the energy
eigenvalues {Erel,i(ω)} of the relative motion of the colliding
nuclei X and Y , we can extract the corresponding phase shift
of the elastic scattering in the uncoupled channel utilizing the
MERE formula.

C. Spectral solution via quantum eigensolvers

We discuss how we can extrapolate the phase shift of the
elastic scattering between two well-bound nuclei X and Y
utilizing the MERE formula [Eq. (3)] based on the low-lying
energy eigenvalues of Hrel(ω), which can be calculated from
those eigenenergies of HA(ω), HX ′ (ω), and HY ′ (ω) accord-
ing to Eq. (5). These energy eigenvalues can be obtained by
precision ab initio calculations based on realistic internucleon
interactions utilizing the quantum many-body framework that
respects all the known symmetries of the nuclear systems
under investigation. However, the quantum many-body cal-
culations are known to be computationally difficult [68,74].
We resort to future quantum computing techniques for such
spectral solutions of the many-nucleon Hamiltonians.

For our exploratory purposes, we show the utilization of
quantum computing in our framework for the structure calcu-
lations of the N -nucleon systems based on the Hamiltonian
HN (ω) ∈ {HA(ω), HX ′ (ω), HY ′ (ω)} with N ∈ {A, B, A −
B}. In particular, we elect the rodeo algorithm [48–50] for
the demonstration of solving the energy eigenvalues in this
work, while other quantum eigensolvers may also take place
in future works.

The rodeo algorithm is a probabilistic approach to solve
the eigenenergies of both the ground and excited states of
the objective Hamiltonian Hobj under interrogation; it can also
prepare the specific eigenstate for the corresponding energy
eigenvalue. We illustrate the typical circuit to implement the
rodeo algorithm in Fig. 1. Based on the objective Hamiltonian
Hobj, we have the eigenmode decomposition of the input state
|ψI〉 as

|ψI〉 =
∑

j

c j |φ j〉 , (10)

4In practical numerical calculations for the low-lying spectra of
the Hamiltonians HA(ω), HX ′ (ω), and HY ′ (ω), additional constraint
terms [72,73] are helpful to regulate the spectra, e.g., by pruning
the CM excitations and by specifying the total angular momentum
of the many-nucleon states. Such terms are also helpful to improve
the convergence rate of the corresponding many-body calculations.
These discussions are included in Appendix C.

FIG. 1. Demonstration circuit of the rodeo algorithm. The top
line denotes the ancilla qubit. The middle slashed line (representing
a set of qubits) denotes system register that encodes the state of the
system. The bottom double lines (marked as “cbit”) denote a classical
bit that records the result of the measurement (black). H (light blue)
denotes the Hadamard gate. P(Etx ) (green) denotes the phase gate
with two variable E and tx . The controlled rotational gate (red) is
constructed based on the time-evolution unitary e−iHobjtx with the
objective Hamiltonian Hobj of which the spectrum is interrogated, and
the variable tx . The ancilla qubit is measured and the result recorded
by the classical bit. The circuit (with measurement) is referred to as
one rodeo cycle in our discussion.

where |φ j〉 denotes the jth eigenstate of Hobj that corresponds
to the eigenenergy Ej . c j = 〈φ j |ψI〉 is the amplitude. Provided
the input state of the ancilla qubit is |0〉 and that of the system
register is |ψI〉, one performs the following operation:

|0〉 ⊗ |ψI〉 �→ 1

2

∑
j

c j[(1 + ei(E−Ej )tx ) |0〉 ⊗ |φ j〉

− (1 − ei(E−Ej )tx ) |1〉 ⊗ |φ j〉], (11)

with the action of the circuit in the red-boxed area in Fig. 1.
Then, the probability to measure the ancilla qubit to be in the
state |0〉 after the implementation of one rodeo cycle is [48]

P1(E , tx ) ≡
∑

j

|c j |2P1, j (E , tx ), (12)

where P1, j (E , tx ) is the damping factor

P1, j (E , tx ) ≡ cos2[(E − Ej )tx/2]. (13)

P1, j (E , tx ) ∈ [0, 1] is expected to peak at E = Ej + 2gπ/tx
with g being an integer.

We can also construct the circuit of R rodeo cycles by
serializing R circuits of one rodeo cycle. In each rodeo cycle,
the variable E is the same while tx can be different. The ancilla
qubit is measured at the end of each rodeo cycle and should
be set to |0〉 at the beginning of each cycle, while the system
register is not measured throughout the implementation.

The circuit of R rodeo cycles takes the input |0〉 ⊗ |ψI〉
as that of one rodeo cycle. For a set of Gaussian random
variables {tx} with the mean to be zero and standard deviation
to be σ , it can be shown that, after marginalizing over {tx},
the probability of obtaining only the |0〉 state in all of the R
consecutive measurements is [49,50]

PR(E , σ ) ≡
∑

j

|c j |2PR, j (E , σ ), (14)
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FIG. 2. Workflow of the hybrid quantum-classical approach to
solve the phase shift δl of the elastic scattering between two well-
bound nuclei in an uncoupled channel. See text for more details.

with the damping factor being

PR, j (E , σ ) ≡ [[1 + e−(E−Ej )2σ 2/2]/2]R. (15)

In general, PR, j (E , σ ) ∈ (0, 1] decays when |E − Ej |
increases, while it peaks at E = Ej with the width
1/(

√
Rσ ) [50]. By scanning over the variable E in executing

the circuit of R rodeo cycles, one expects that the profile of
PR(E , σ ) [Eq. (14)] contains a set of peaks with the peak
locations and peak values approximating the eigenenergies
{Ej} and the corresponding {|c j |2}, respectively.

D. Summary of the framework

We sketch the application of our hybrid quantum-classical
framework to a general uncoupled-channel elastic scattering
between two well-bound complex nuclei as the route A1 →
A2 → C1 in Fig. 2. We discuss in Sec. II B that the eigenener-
gies {Erel,i(ω)} of the discretized low-lying scattering states
of the Hamiltonian Hrel(ω) of the relative motion between
the colliding nuclei when confined by the external HO po-
tential VHO(ω) can be inferred from the spectral solutions
Etot,i(ω), EX ′,gs(ω), and EY ′,gs(ω) of the Hamiltonians HA(ω),
HX ′ (ω), and HY ′ (ω), respectively. Based on {Erel,i(ω)}, we
can apply the MERE formula and extrapolate to obtain the
scattering phase shift. Via this route, the spectral solutions of
the many-nucleon Hamiltonians, which is hard for the clas-
sical computers, can be obtained via quantum computing; on
the other hand, the extrapolation for the phase shift, which
is expected to be hard for the quantum computers, can be
completed on the classical computers.

The route A1 → A2 takes the input of the internucleon
interactions and infers the internucleus interaction Vint based
on the internucleon interactions [see Eq. (7)]

Vint =
B∑

i=1

A∑
j=B+1

Vi j . (16)

On the other hand, if the form of Vint is solved from the
internucleon interactions, it can be input to Eq. (7). Then,
via the route B1 → B2, one can solve the energy eigenvalues
{Erel,i(ω)} of the discretized low-lying scattering states of the

Hamiltonian Hrel(ω) [Eq. (7)] in the uncoupled channel below
the inelastic threshold. In principle, the routes A1 → A2 and
B1 → B2 produce the same eigenenergies {Erel,i(ω)}.

III. APPLICATIONS

In this work, we do not present numerical examples
for general applications of our hybrid framework since the
spectral solution for a complex many-nucleon system via
quantum computing is involving and will be the focus of
other works [43,75]. Instead, we illustrate our framework with
two limited examples: (1) the toy model problem of the np
elastic scattering in the 0+ channel; and (2) the realistic nα

elastic scattering in the (1/2)+ channel. In each problem, the
two colliding nuclei are considered as structureless particles,
whereas the internucleus interactions Vint is modeled as a
phenomenological potential for simplicity. With both nuclei
being structureless, HA(ω) reduces to Hrel(ω) [Eq. (7), or,
equivalently, Eq. (2)].

We first present the elastic-scattering phase shift of the
np system in Sec. III A, where we provide (1) the necessary
details of the Hamiltonian and the basis representation; (2)
the construction of the effective Hamiltonians adopted for
further simplifications of the numerical demonstration; (3)
our scheme to solve the eigenenergies {Erel,i(ω)} of the low-
lying discretized scattering states via the quantum eigensolver
(elected to be the rodeo algorithm); and (4) the procedures
to extract the phase shift based on the MERE formula.
The calculation of the nα elastic scattering in Sec. III B
follows suit.

A. Model problem 1: np scattering

We first consider the toy problem of the np elastic scatter-
ing in the 0+ channel. We take the interaction of the np system
to be a spherical-well potential

Vint,np =
{ −V0 for r � W0

0 for r > W0,
(17)

where we use the subscript “np” to specify the system. We
take the depth of the potential well to be V0 = 48.0002 MeV
and the width of the potential well to be W0 = 1.70134 fm.
We take the neutron mass and the proton mass to be the same
m = 938.919 MeV. The reduced mass of the np system is
μnp = 469.460 MeV. Utilizing the formalism in Ref. [54],
the effective range and scattering length for the spherical-well
potential are 5.20 and 1.47 fm, respectively. With these pa-
rameters, the np system interacting via the Vint,np contains one
shallow bound state with the binding energy B0 = 2.22 MeV
that reproduces the deuteron binding energy, where the other
states are all in the continuum.

For this toy problem, the scattering phase shift of the l = 0
partial wave admits the analytical solution [76]

δl,np = arctan

[
k0

k
tan (kW0)

]
− k0W0 + Qπ, (18)

where k0 = √
2μnpE and k = √

2μnp(E + V0) with E being
the scattering energy in the CM frame. Q denotes an arbitrary
integer.
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The phase shift δl,np can also be obtained via the MERE
formula [Eq. (3)] based on the eigenenergies of the discretized
scattering states of the Hamiltonian

Hrel,np(ω) = Trel,np + Vint,np + VHO,np(ω). (19)

Hrel,np(ω) corresponds to the relative motion of the np scatter-
ing system confined in a weak external HO potential VHO,np

with varying oscillator strength ω. We present the details of
the numerical calculation below, where the results of δl,np are
shown in Fig. 8.

1. Basis choice and Hamiltonian matrix

We work in the CM coordinates of the np system and
adopt the HO basis to compute the matrix representation of
Hrel,np(ω). The HO basis |nlsJM〉 is specified by a set of
quantum numbers: (1) the radial quantum number n; (2) l that
labels the orbital angular momentum; (3) s that labels the spin;
(4) J that specifies the total angular momentum that is coupled
from the orbital angular momentum and the spin; and (5) M
that labels the projection of the total angular momentum. As
for the toy problem of the scattering in the 0+ channel, we
take l = 0, s = 0, J = 0. We elect M = 0 in evaluating the
Hamiltonian matrix elements (note that M is a good quantum
number of the scattering system). In practical numerical cal-
culations, we also truncate the HO basis by retaining a set of
HO bases {|nlsJM〉} with 2n + l � Nmax, where Nmax denotes
the truncation parameter. Besides Nmax, the HO basis set is
also specified by the oscillator strength � (referred to as the
“basis” strength, which is not to be confused with the trap
strength ω).

With the HO basis, the matrix elements of Trel,np and
VHO,np admit closed forms [see, e.g., Eqs. (A6) and (A7) in
Ref. [77] ]. The matrix element of Vint,np [Eq. (17)] is evalu-
ated via precision numerical integration according to

〈nlsJM|Vint,np |n′l ′s′J ′M ′〉

= δll ′δss′δJJ ′δMM ′

∫ ∞

0
Rnl (r)Vint,npRn′l ′ (r)r2dr, (20)

where the function Rnl (r) takes the form

Rnl (r) =
√

2n!

b3
np�(n + l + 3/2)

(
r

bnp

)l

× exp

[
− r2

2b2
np

]
Ll+1/2

n

(
r2

b2
np

)
, (21)

with �(·) being the Gamma function and Lρ
n (·) being the

generalized Laguerre polynomial [65]. The characteristic os-
cillator length of the HO basis is bnp = √

1/(μnp�).

2. Demonstration with the effective Hamiltonians

We elect the trap strength of the external HO potential that
confines the np system to be ω = 3.6, 3.7, 3.8, 3.9, and
4.0 MeV in our numerical demonstration. We tested that
smaller and moderately larger trap strength values also work
for the toy problem under consideration. We adopt a suffi-
ciently large model space (with Nmax = 600 at our chosen

value of � = 60 MeV) for good convergence of the eigenen-
ergies of a set of low-lying discretized scattering states of
Hrel,np(ω).

We apply the quantum eigensolver to solve for these
eigenenergies. For explanatory purposes, we choose to
demonstrate our framework within limited model spaces
for simplicity, keeping in mind that the full-scale eigen-
value problems (especially those in future applications with
many-nucleon systems) via the quantum eigensolvers can be
implemented with straightforward generalizations.

To this end, we work with the effective Hamiltonians
within the limited model space size that are constructed
based on the Okubo-Lee-Suzuki method [78–82]. In partic-
ular, we design the effective Hamiltonian H eff

rel,np(ω) for each
ω value such that it retains the eigenenergies of a set of
low-lying eigenstates of the corresponding “bare” Hamilto-
nian Hrel,np(ω). As in our numerical demonstration, we elect
to retain the first, second, third, and fourth excited states
of Hrel,np(ω). Therefore, the matrix of H eff

rel,np(ω) is a 4 × 4
matrix.

3. Structure calculations via the rodeo algorithm

We apply the rodeo algorithm to solve the eigenenergies of
H eff

rel,np(ω), which reproduces the eigenenergies of the elected
scattering states of Hrel,np(ω). The algorithmic details of the
rodeo algorithm are reviewed in Sec. II C.

An essential part to implement the rodeo algorithm is
the circuit construction of the controlled time-evolution uni-
tary exp[−iH eff

rel,np(ω)tx]. In our demonstrations with restricted
model space size, we construct the corresponding circuit
by the straightforward implementation of the Qiskit pack-
age [59], where (1) we first express the 4 × 4 time-evolution
unitary exp[−iH eff

rel,np(ω)tx] as a sequence of one- and two-
qubit gates in a two-qubit system register; and (2) the control
operations determined by the state of the ancilla qubit are
then applied to all these gates in sequence. Another impor-
tant part of the implementation is the choice of the input
state. In our demonstrations, we elect the input state to be
|ψI〉 = 1

2 (1, 1, 1, 1)T . This input state can be achieved by
two Hadamard gates, each acting on one of the two system
qubits. The simulations are performed with the IBM QASM
simulator [59], where we do not include any simulation noise
in this work.

While not being the focus of this work, it is important to
note that the efficient circuit construction is critical, especially
for future calculations of many-nucleon system, in quantum
computing. In particular, the dimension of the Hilbert space
in many-body calculations grows rapidly and the straightfor-
ward circuit construction scheme adopted in this work results
in poor efficiency. Besides, one should prepare proper input
states for quantum computing [83]. When the input state
is of small overlap with a certain eigenstate of which the
eigenenergy is under query, the algorithmic implementations
can often be inefficient and the outcome can be inaccurate
with limited computation resources. In addition, the noise is
also an important feature in quantum computing on near-term
quantum hardwares [12]. These are critical yet open research
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topics in quantum computing, which will take their own ex-
tensive efforts in future research.

We calculate the eigenenergies of H eff
rel,np(ω) via two types

of scans over a range of E to solve the eigenenergies. For both
scans, we adopt a sufficiently large set of Gaussian random
numbers {tx}, of which the mean value is zero and the standard
deviation is σ (taken to be 21 MeV−1 in this work).

The first scan is referred to as the “coarse scan.” It returns
the approximate values of the eigenenergies. In practice, we
apply R = 5 rodeo cycles in the coarse scan. As the eigenen-
ergies of H eff

rel,np(ω) are understood to be positive, we take the
range of E to be from zero to 
m, where 
m is larger than
the spectral norm of H eff

rel,np(ω). The step size of the coarse
scan over E is taken to be �E = 0.1 MeV. After the coarse
scan, we plot the resulting P5(E , σ ) [Eq. (14)] as a function
of E , from which we search for the approximate ranges of the
eigenenergies in terms of peak locations.

A subsequent “fine scan” is applied to these ranges of the
eigenenergies found in the coarse scan for finer resolution.
We implement more rodeo cycles (R = 10) and smaller step
size (�E = 0.001 MeV) in the fine scan. From the fine scan,
we obtain the probability P10(E , σ ) [Eq. (14)] as a function
of E for each scanned range. We fit each peak of the profile
P10(E , σ ) with the function

f (E ) = Kj

[
1 + e−(E−Ej )2

σ 2/2

2

]R

. (22)

to obtain the peak center Ej , which corresponds to the
eigenenergy, and the constant Kj that corresponds to the over-
lap |c j |2 in Eq. (14).

As an example, we implement the above procedures to ob-
tain the eigenenergies of the Hamiltonian H eff

rel,np(ω) with ω =
3.7 MeV. Based on the eigenstates of the chosen Hamiltonian,
the input state |ψI〉 = 1

2 (1, 1, 1, 1)T can be decomposed as

|ψI〉 = − 0.260 474 |φ1〉 + 0.724 313 |φ2〉
− 0.451 695 |φ3〉 − 0.451 104 |φ4〉 , (23)

where |φ1〉, |φ2〉, |φ3〉, and |φ4〉 are the eigenstates with
the corresponding eigenenergies being 9.129 55, 17.1340,
24.9161, and 32.6021 MeV obtained by classical calculations,
respectively. With |ψI〉, we present the results obtained via the
rodeo algorithm for the example as follows.

Coarse scan. We obtain the results of P5(E , σ ) as a func-
tion E from the coarse scan. These results are presented in
Fig. 3. We find that the peaks locate at about 9.0, 17.0, 25.0,
and 33.0 MeV. These peak locations provide approximate
estimations of the eigenenergies of the Hamiltonian.

Fine scan. Successive fine scan is performed over these
approximate ranges where the peaks reside. The fine scan
results P10(E , σ ) are presented as a function of E in Fig. 4.
We fit the peaks according to Eq. (22) and extract the peak
centers, of which the central values present our solutions to
the eigenenergies of H eff

rel,np(ω = 3.7 MeV) based on the rodeo
algorithm.

We apply the same approach to solve the eigenenergies
of the Hamiltonians of the np scattering system confined in
the HO trap with strengths ω = 3.6, 3.8, 3.9, and 4.0 MeV

FIG. 3. The coarse-scan results P5(E , σ = 21 MeV−1) as a func-
tion of the input parameter E for the Hamiltonian H eff

rel,np(ω =
3.7 MeV). The circles denote the success probabilities obtained from
the coarse scan over the parameter E . These circles are joined by
lines to guide the eye.

via respective effective Hamiltonians adopted for numeri-
cal simplicity in our illustration. In Table I, we present the
eigenenergies of the Hamiltonian H eff

rel,np(ω) solved via the
rodeo algorithm for all the elected ω values. We recall that
these eigenenergies are also the lowest four scattering states
of the corresponding bare Hamiltonian Hrel,np(ω) according
to our construction of the effective Hamiltonian.

For comparison, we also present the eigenenergies of the
lowest four scattering states of Hrel,np(ω) computed via direct
matrix diagonalizations on the classical computers in Table I.
We find that, in general, a good agreement between the results
obtained based on the rodeo algorithm and those numerically
exact results from the direct matrix diagonalizations, where
the agreement is up to the sixth significant figure in most
cases. We note that the agreement for the case of E1 is rel-
atively poorer that the other cases for all the ω values. This
is due to the small overlap |〈φ1|ψI〉|2 between the input state
and the first-excited state, which may also induce numerical
artifacts (e.g., the E1 result based on the coarse scan differs
noticeably from that obtained via the fine scan, which can be
seen from the shift in the peak centers in the upper-left panel
of Fig. 4). We can improve the precision of the solutions via
the rodeo algorithm (and hence the agreement) by, e.g., (1)
increasing the number of rodeo cycles R; and (2) taking the
input state that has reasonably large overlap with the desired
eigenstate, i.e., |φ1〉 which corresponds to E1 in the current
model problem.

4. Phase shift extractions

In this section, we show the procedures to obtain the con-
tinuum elastic-scattering phase shift from the eigenenergies of
the scattering states of Hrel,np(ω) obtained via the rodeo algo-
rithm. In particular, based on the dataset {Ej (ω)} in Table I,
we obtain the set {E , p cot δl,ω(E )} according to the MERE
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FIG. 4. The fine-scan results P10(E , σ ) as a function of E for the Hamiltonian H eff
rel,np(ω = 3.7 MeV). The fine-scan results are presented

in black. For direct comparisons, the coarse scan results (red) are computed with the same step size �E = 0.001 MeV as that of the fine scan.
The fine-scan results are fitted according to Eq. (22), with the fitting curves displayed as green lines. The peak centers (red dashes with values)
are extracted from the fittings. Panels (a), (b), (c), and (d) are ordered according to the magnitudes of E .

formula [Eq. (3)], where we recall l = 0 for the np scattering
in the 0+ channel. In Fig. 5, we present p cot δl,ω(E ) as a func-
tion of the scattering energy E and the trap strength ω. Based
on the set {E , p cot δl,ω(E )}, we follow the methodology in
Ref. [56] and perform the extrapolation and interpolation in
the domains of E and ω to obtain the continuum phase shift
δl,ω=0(E ) at a given E .

The first step is to extrapolate p cot δl,ω(E ) in the domain
of E . Here E takes the values of the energy eigenvalues of
the elected scattering states of Hrel,np(ω) in Table I. These
energy eigenvalues are generally different for the Hamiltonian

Hrel,np(ω) with different ω values. For each trap strength ω, we
apply the second-order polynomial:

p cot δl,ω(E ) = d0 + d1E + d2E2, (24)

to fit the values of p cot δl,ω(E ), where d0, d1, and d2 are the
parameters to be determined. As an example, we present the
fitting results as a function of E at fixed ω = 3.7 MeV in
Fig. 6. The fitting procedures of the dataset with the other
ω values are the same. We remark that the order of E in
the polynomial is chosen such that the χ2/DOF of the fitting
is minimized, and that the fitting is stable under the change

TABLE I. Eigenenergies of the lowest four scattering states, Ej ( j = 1, 2, 3, 4), of the np system when confined in the HO potentials with
strengths ω = 3.6, 3.7, 3.8, 3.9, and 4.0 MeV. The results denoted as “Exact” are obtained by diagonalizing the bare Hamiltonian Hrel,np(ω),
while the results obtained by the rodeo algorithm are denoted as “Rodeo.” The eigenenergies are in the units of MeVs. See the text for more
details.

ω = 3.6 MeV ω = 3.7 MeV ω = 3.8 MeV ω = 3.9 MeV ω = 4.0 MeV

Energy Exact Rodeo Exact Rodeo Exact Rodeo Exact Rodeo Exact Rodeo

E1 8.85547 8.85538 9.12955 9.12943 9.40445 9.40419 9.68013 9.68012 9.95660 9.95661
E2 16.6430 16.6430 17.1340 17.1340 17.6259 17.6260 18.1187 18.1187 18.6123 18.6122
E3 24.2138 24.2137 24.9161 24.9161 25.6193 25.6193 26.3233 26.3233 27.0283 27.0283
E4 31.6913 31.6912 32.6021 32.6021 33.5138 33.5137 34.4264 34.4263 35.3399 35.3400
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FIG. 5. p cot δl,ω(E ) as a function of the trap strength ω and the
scattering energy E in the CM frame. The results of p cot δl,ω(E ) are
extracted according to Eq. (3) from the eigenenergies of the lowest
four scattering states of Hrel,np(ω) that are obtained via the rodeo
algorithm.

of the polynomial order. In this work, we do not seek to
provide a systematic analysis of the uncertainty; such analysis
necessitates the variation of the polynomial order, and requires
more E values for a given ω (i.e., a more complete dataset that
includes more eigenstates).

At the end of the first step, we obtain five continuous func-
tions of the scattering energy E that are of the type of Eq. (24),
where each function is of fixed ω ∈ {3.6, 3.7, 3.8, 3.9, 4.0}.
With the knowledge of these continuous functions, we obtain
the dataset {E , p cot δl,ω(E )} at a chosen E but for five differ-
ent ω values.

The second step is to extrapolate the dataset
{E , p cot δl,ω(E )} in the domain of ω at fixed E . With

FIG. 6. Extrapolation of p cot δl,ω(E ) as a function of E with
fixed ω (chosen to be 3.7 MeV for demonstration). See the text for
details.

the function obtained from the extrapolation, we take the limit
of ω = 0, i.e., p cot δl,ω=0(E ), from which we extract the
continuum phase shift δl,ω=0(E ) of the elastic np scattering
in the 0+ channel at the scattering energy E . In practice, we
adopt the fitting function of the form [56]

p cot δl,ω(E ) = a0 + a1ω
2, (25)

for the extrapolation. a0 and a1 are the constants to be de-
termined. This fitting function is verified by the fact that the
finite-range corrections of the HO trap to the scattering phase
shift [Eq. (3)] can be approximated as the expansion [56]

p cot δl,ω(E ) = p cot δl,ω=0(E ) + hω2 + O(ω3), (26)

for small ω such that
√

μnpω 
 p cot δl,ω. h is a constant.
With the extrapolation of the dataset {E , p cot δl,ω(E )}

according to Eq. (25), one obtains a0 at the limit of ω → 0.
Then, the phase shift at the fixed scattering energy E is

δnp(E ) ≡ δl,ω=0(E ) = cot−1(a0/
√

μnpE ). (27)

For demonstration purposes, we illustrate the extrapola-
tions of p cot δl,ω(E ) in ω at the fixed scattering energies
E = 5 and 20 MeV in Fig. 7. We find that both fitting
functions exhibits weak dependence on ω2. Note that the
extrapolation for the energy E = 5 MeV presents larger de-
viations than the extrapolation for the energy E = 20 MeV.
This is due to the limitation of our showcase problem: the
resulting dataset {Ej (ω)} in Table I is sparse in the range of
E ∈ [8.85547, 35.3400] MeV and has no coverage beyond.

With the extrapolation of ω → 0 at each scattering energy
E , we obtain a0 in Eq. (25) and then the phase shift δl,ω=0(E )
according to Eq. (27). In Fig. 8, we present our results of the
phase shift of the elastic np scattering as a function of the
scattering energy E in the CM frame of the system. We also
compare our results with the analytical solutions [Eq. (18)].
We find that our results agree well the analytical solutions,
where the deviations are within 0.16%.

According to the derivations shown in Appendix A, we
comment that the MERE formula applies for the cases where
the external HO potential is much weaker compared with the
strong short-range interaction within the range of the strong
interaction. Meanwhile, one also requires that the HO po-
tential is negligible at the boundary where the short-range
interaction vanishes. In this sense, the external HO potential
with weak oscillator strength ω is required in the applications
of the MERE formula, where numerical tests are also neces-
sary to verify the applicability of the MERE formula. There
is no separate approximation based on the effective range of
the potential. As for the np scattering, one of the authors
has applied the MERE formula to solve the phase shifts in
various channels utilizing realistic nuclear interactions [10,84]
at CM scattering energies even beyond 50 MeV in a previous
work [56].

We remark that our framework of phase shift calculations
also works when the input eigenenergies have lower precision,
which makes our framework applicable to near-term noisy
quantum hardware. For this restricted model problem that
serves to demonstrate the feasibility of the hybrid framework,
we apply the limited dataset in Table I for our phase shift
calculations, where we retain input eigenenergies up to six
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FIG. 7. The extrapolation of p cot δl,ω(E ) as a function of ω2 at (a) E = 5 MeV and (b) E = 20 MeV. The solid line in each panel
corresponds to the best fit of the functional form of Eq. (25), whereas the resulting fitting function is shown in each panel.

significant figures. However, we found that the percentage
differences of the phase shifts via our approach with respect
to the analytical results are within 0.5% when retaining four
significant figures for the input eigenenergies in the restricted
dataset (Table I). Moreover, we also found fair agreement (the
percentage difference being within a few percent) between our
results and the analytical results when we retain only three
significant figures for the input eigenenergies. We anticipate
that this agreement may be improved by augmenting the input
dataset {Ej (ω)} (achieved by including more eigenenergies of
the scattering states and more choices of the trap strength val-
ues). Indeed, such an expanded dataset would enable a robust
error analysis of our approach. This will be addressed in future

FIG. 8. The ω-extrapolated phase shift δnp of the elastic np scat-
tering in the 0+ channel as a function of the CM scattering energy
E . The scattering phase shift (red circles) are determined by the
interpolation and extrapolation schemes described in the text. These
results are computed based on the eigenenergies computed via the
rodeo algorithm. The solid curve denotes the analytical solution of
the np scattering in the 0+ channel [Eq. (18)].

applications of our hybrid quantum-classical framework to the
scatterings with complex nuclei.

B. Model problem 2: nα scattering

In this section, we discuss the phase shift of the elastic nα

scattering in the (1/2)+ channel. In this problem, we take both
nuclei to be point particles and adopt a phenomenological nu-
clear potential for the interaction between the n and α particle
in the problem. It is worth noting, however, that in the general
applications, the colliding nuclei can have internal structures
and the phenomenological nuclear potential is not available.
In such complex cases, we resort to the many-body formalism
discussed in Sec. II B, where the internucleus potential is
obtained from the internucleon forces that are derived from
fundamental theories [85–89].

The Hamiltonian of the nα scattering system confined in
the external HO potential of trap strength ω takes the form of
Eq. (7) as

Hrel,nα (ω) = Trel,nα + Vint,nα + VHO,nα (ω), (28)

where we use the subscript “nα” to specify the system. We
take the mass of the α particle to be 4m = 3755.676 MeV
and the reduced mass of the nα system to be μnα = 4m/5 =
751.135 MeV.5 The interaction between the two nuclei is
taken as the Woods-Saxon (WS) potential [90]

Vint,nα = U0

1 + e(r−R0 )/α0
+ (�l · �s)

1

r

d

dr

[
Vls

1 + e(r−R1 )/α1

]
. (29)

The parameters of the WS potential are U0 = −43.0 MeV,
R0 = 2.0 fm, α0 = 0.70 fm, Vls = −40.0 MeV2, R1 = 1.5 fm,
and α1 = 0.35 fm [91,92]. The term that is proportional to �l · �s
results from the contribution of the coupling between the or-
bital angular momentum �l and spin �s; this term vanishes in our
scattering problem that is in the uncoupled channel (1/2)+.
The HO potential VHO,nα (ω) with weak trap strength presents

5We neglect the binding energy of the α particle.
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TABLE II. Eigenenergies E1, E3, E7, and E8 of the first, third, seventh, and eighth scattering states of the bare Hamiltonian Hrel,nα (ω). The
trap strength takes the value of ω = 1.72, 1.74, 1.76, 1.78, and 1.80 MeV. The results denoted as “Exact” are obtained by diagonalizing bare
Hamiltonian Hrel,nα (ω), while those obtained via the rodeo algorithm based on the corresponding effective Hamiltonians H eff

rel,nα (ω) are denoted
as “Rodeo.” The eigenenergies are in the units of MeV. See the text for more details.

ω = 1.72 MeV ω = 1.74 MeV ω = 1.76 MeV ω = 1.78 MeV ω = 1.80 MeV

Energy Exact Rodeo Exact Rodeo Exact Rodeo Exact Rodeo Exact Rodeo

E1 3.57377 3.57372 3.62070 3.62077 3.66771 3.66759 3.71478 3.71482 3.76194 3.76192
E3 10.9540 10.9538 11.0869 11.0867 11.2200 11.2199 11.3531 11.3530 11.4863 11.4860
E7 25.1461 25.1461 25.4445 25.4445 25.7429 25.7429 26.0412 26.0412 26.3395 26.3395
E8 28.6466 28.6466 28.9851 28.9850 29.3236 29.3238 29.6622 29.6622 30.0010 30.0010

finite corrections to the short-range internucleus interaction
Vint,nα , where it also discretizes the continuum states.

We solve the elastic-scattering phase shift with our hybrid
framework. To this end, we first solve the eigenenergies of the
discretized scattering states of Hrel,nα (ω) for a range of trap
strengths via the quantum eigensolver. Based on the dataset
of eigenenergies and the trap strengths, we obtain the phase
shift utilizing the MERE formula.

We follow the procedures presented in the np prob-
lem for the practical calculations. We elect a discrete set
of trap strengths ω ∈ {1.72, 1.74, 1.76, 1.78, 1.80} MeV.
A sufficiently large HO basis set (with Nmax = 600 at
our elected value of � = 60 MeV) is adopted to con-
struct the matrix representation of Hrel,nα (ω) such that the
eigenenergies of the low-lying discretized scattering states
converge.

We solve the eigenenergies of Hrel,nα (ω) via the rodeo
algorithm. For simplicity, we demonstrate to solve the
eigenenergies based on the effective Hamiltonian H eff

rel,nα (ω),
where (1) H eff

rel,nα (ω) is constructed from the correspond-
ing bare Hamiltonian Hrel,nα (ω) via the Okubo-Lee-Suzuki
method; and (2) H eff

rel,nα (ω) retains the eigenenergies of an
elected set of discretized scattering states of Hrel,nα (ω). Al-
though the choice of states is, in principle, arbitrary, we found
it convenient to adopt the eigenenergies of the first, third,
seventh, and eighth scattering states of the bare Hamilto-
nian Hrel,nα (ω) for the purpose of our illustration. As such,
the dimension of the effective Hamiltonian H eff

rel,nα (ω) is 4 ×
4.6 The details of the implementation of the rodeo algo-
rithm, which include the circuit construction, the choices
of the random Gaussian variables, the preparation of the
input state, the coarse and fine scans, and the fitting proce-
dure for the peak centers, are the same as those in the np
example.

The eigenenergies of the effective Hamiltonian H eff
rel,nα (ω)

via the rodeo algorithm are presented in Table II. These are
also the eigenenergies of the elected scattering states of the

6We remark that it is understood that future application of the
quantum eigensolver takes the full-size many-nucleon Hamiltonian
as input. Such generalization is straightforward, but it is not the focus
of this work.

bare Hamiltonian Hrel,nα (ω) according to our construction
scheme of the effective Hamiltonians. Our results via the
rodeo algorithm agree well with the exact results that are ob-
tained from convergence calculations via the straightforward
matrix diagonalization of Hrel,nα (ω) on classical computers.
To achieve higher precision in the spectral calculations via
the rodeo algorithm, we can improve our choices of the in-
put states for larger overlap with the desired eigenstates [cf.
Eq. (10)], and increase the number of rodeo cycles.

From the dataset {Ej (ω)} shown in Table II, we utilize
the MERE formula and extrapolate the phase shift δnα of the
elastic nα scattering in the (1/2)+ channel on the classical
computer following the procedures illustrated in Sec. III A 4.
These results are shown in Fig. 9 as a function of the scattering
energy in the CM frame. The results from our framework
compare well with the calculations based on the SS-HORSE
method [92], Eq. (47) with parameters in Table II therein]:
the difference between the results from our framework and
those from the SS-HORSE method is below 1.7% throughout

FIG. 9. The phase shift δnα of the nα scattering in the (1/2)+

channel as a function of the CM scattering energy E . The results
obtained based on our framework is marked as red dots. For com-
parison, the results (blue solid line) computed by the SS-HORSE
method [92] are presented as a function of E .
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the scattering energy E � 30 MeV in the CM frame, while
this difference is below 1% for E � 20 MeV.7 We tested that
our hybrid framework provides useful phase shifts when we
reduce the precision of the input eigenenergies (precision of
phases shifts is comparable to the precision of the eigenener-
gies) even in the current demonstration problem with limited
dataset (Table II). We expect that one may improve the pre-
cision and study the theoretical error of the results from
our hybrid framework by retaining a more complete dataset
{Ej (ω)} (i.e., more energy eigenvalues of the scattering states
and more choices of ω values) for this model problem; the
same is true for future applications of our framework to the
full-scale many-body scattering problems that is sketched in
Sec. II D.

IV. SUMMARY AND OUTLOOK

We present a hybrid quantum-classical framework to com-
pute the elastic-scattering phase shift of two well-bound
nuclei in an uncoupled channel. Within our framework, we
introduce a many-nucleon formalism that enables the in-
troduction of a harmonic-oscillator (HO) potential of weak
oscillator strength to modify the internucleus interaction. We
also propose the formalism to compute the eigenenergies of
the low-lying discretized scattering states of the relative mo-
tion of the colliding nuclei as a function of the confining HO
potential strength ω based on a set of many-nucleon structure
calculations. With these eigenenergies of the relative motion
as a function of ω, we extract the elastic-scattering phase shift
in the uncoupled channel utilizing the formula of the modified
effective range expansion (MERE) [52–58].

Our framework takes a hybrid approach. The energy eigen-
values of the many-nucleon Hamiltonians are in general
computationally challenging for classical computers, and we
propose to calculate these eigenenergies via the quantum
computing techniques that holds the promise to solve the
many-nuclear structure problem with efficiency. These spec-
tral solutions are input to classical computers to obtain the
continuum elastic-scattering phase shift, where such post data
processing are hard for quantum computers.

We illustrate our framework via two limited model prob-
lems, where we take the colliding nuclei as point particles and
model the internucleus interactions by simple phenomeno-
logical potentials for explanatory purposes. We show the
application of the quantum eigensolver, which is elected to
be the rodeo algorithm, to solve the eigenenergies of the low-
lying discretized scattering states of the scattering systems
confined in HO potentials. The calculations via the rodeo

7It is worth noting that we retain the scattering phase shift even
beyond the scattering energy of 20.8 MeV (which is the inelastic
threshold of the nα scattering) in our realistic yet restricted model
problem, where (1) we take the colliding nuclei to be point particles;
and (2) we retain only one scattering channel of which the internu-
cleus potential is modeled by a simple phenomenological potential.
With these simplifications, the inelastic-scattering channels and other
cross-channel scattering mechanisms are effectively excluded in the
solution.

algorithm are performed on the IBM Qiskit quantum simula-
tor [59]. These results agree well with those from the classical
calculations via straightforward matrix diagonalizations. We
also present the approach to extract the elastic-scattering
phase shifts. We find that the elastic-scattering phase shifts
obtained based on our framework agree well with the results
from other theories.

Going forward, we plan to apply the framework to the
elastic scatterings between two well-bound light nuclei in
an uncoupled channel, e.g., the nα scattering in the (3/2)−
channel below the inelastic threshold. The intrinsic motions
of the colliding nuclei will be explicitly taken into account.
Hence we proceed with the route A1 → A2 → C1 in Fig. 2
to solve the scattering phase shift. The difficulty is mainly the
numerical solutions of the eigenenergies of the many-nucleon
Hamiltonians. We plan to implement efficient quantum eigen-
solvers, such as the algorithm proposed in Refs. [43,75],
for the desired spectral solutions of the relevant many-
nucleon systems, which is to be cross-checked with those
eigenenergies solved by the classical many-nucleon structure
calculations, such as the no-core shell model [66–68]. These
spectral solutions are the input to the MERE formula to extract
the elastic-scattering phase shift of interest.
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APPENDIX A: DERIVATION OF THE MERE FORMULA

We provide the derivation of the MERE formula [Eq. (3)
in the main text] utilizing the same techniques shown in
Ref. [54]. While Ref. [54] treats the scattering between two
particles of equal mass and does not show the MERE for-
mula explicitly, we find it worthwhile to present the complete
derivation for a more general setup with the scattering par-
ticles being of different masses. Interested readers are also
referred to Ref. [58] for a remedied version of the MERE
formula.

We consider the scattering system of two point particles,
which is confined in a weak external HO potential of strength
ω. In the single-particle coordinates, the Hamiltonian of the
confined scattering system reads

H2b(ω) = �p2
1

2m1
+ 1

2
m1ω�r 2

1 + �p2
2

2m1
+ 1

2
m1ω�r 2

2 + Vint. (A1)

The mass, momentum, and position of the ith (with i = 1, 2)
particle are denoted by mi, �pi, and �ri, respectively. Vint denotes
the interparticle interaction.

We rewrite H2b(ω) in the CM frame. In particular, we take

�R = m1�r1 + m2�r2

m1 + m2
, �r = �r1 − �r2, (A2)
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and Eq. (A1) becomes

H2b(ω) = �PCM

2M2b
+ 1

2
M2bω

2 �R2

︸ ︷︷ ︸
≡HCM(ω)

+ �p2

2μ
+ 1

2
μω2�r 2 + Vint︸ ︷︷ ︸
≡H (ω)

,

(A3)

where we have M2b = m1 + m2 and μ = (m1m2)/(m1 +
m2). The momenta �PCM and �p are conjugate to �R and �r,
respectively.

We factorize the CM motion and focus on the relative mo-
tion of the confined scattering system. The relative motion of
the two particles is described by H (ω) [Eq. (2)]. In spherical
coordinates, we have

H (ω) = − 1

2μr2

[
2r

∂

∂r
+ r2 ∂2

∂r2
− L̂2

]
+ 1

2
μω2r2 + Vint,

(A4)

where the squared orbital angular-momentum operator is

L̂2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂2ϕ
. (A5)

We consider the case where Vint preserves the orbital an-
gular momentum. With the separation of variables, we obtain
the Schrödinger equation for the radial wave function ψl (r) =
ul (r)/r for the partial wave specified by the orbital angular
momentum l , where ul (r) satisfies

∂2

∂r2
ul (r) − l (l + 1)

r2
ul (r) − μ2ω2r2ul (r) − 2μVint ul (r)

+ 2μEul (r) = 0, (A6)

where E denotes the eigenenergy of Hrel(ω). Utilizing the
dimensionless variable x ≡ r/b0 with b0 = √

1/(μω), we
rewrite Eq. (A6) as

∂2

∂x2
ul (x) − l (l + 1)

x2
ul (x) − x2ul (x)

− 2Vint

ω
ul (x) + ηul (x) = 0, (A7)

with η = 2E/ω.
To proceed, we assume that (1) Vint is a short-range po-

tential; we take Vint �= 0 for r < s0 and Vint = 0 for r � s0,
with s0 being small; (2) the potential VHO = 1

2μω2�r 2 
 Vint

for r < s0; and (3) the oscillator potential is small and can still
be neglected in the limit r → s+

0 . Note that these assumptions
need to be numerically examined for specific implementations
with different interactions Vint and partial waves [54,56].

With these assumptions, we now try to prove the MERE
formula. In the limit r → s+

0 , the oscillator potential is still
weak such that one can neglect it. We have the scattering
solution of Eq. (A6) with the positive energy E = p2/(2μ)
to be

ul (r) = Bl pr[ jl (pr) − nl (pr) tan δl ], (A8)

where δl is the phase shift. Bl is the normalization factor.
jl (pr) and nl (pr) are the spherical Bessel and Neumann

functions [65], respectively. With the assumptions mentioned
above, we have r ≈ 0 in the vicinity of s+

0 . Therefore, we have

ul (r) → B′
l r

l+1

[
1 + (2l + 1)[(2l − 1)!!]2 tan δl

(pr)2l+1

]
, (A9)

when pr → 0. The coefficient B′
l can be expressed as B′

l =
Bl pl/[(2l + 1)!!]. In achieving Eq. (A9), we have applied the
identities

jl (x) → xl/[(2l + 1)!!], nl (x) → − (2l + 1)!!

xl+1
, (A10)

as x → 0.
For r > s0, we have Vint = 0 and Eq. (A7) reduces to

∂2

∂x2
ul (x) − l (l + 1)

x2
ul (x) − x2ul (x) + ηul (x) = 0. (A11)

The solution of Eq. (A11) admits the form [54]

ul (x) = e−x2/2

[
c′

1xl+1M

(
2l + 3 − η

4
, l + 3

2
; x2

)

+ c′
2x−lM

(
1 − 2l − η

4
,

1

2
− l; x2

)]
, (A12)

where M(a, c; z) denotes the confluent hypergeometric func-
tion [65]. c′

1 and c′
2 are the coefficients. As z → ∞, we

have [93]

M(a, c; z) → �(c)

�(a)
za−cez. (A13)

Therefore, as x → ∞, we have

ul (x) →
[

c′
1

�(3/2 + l )

�[(3 + 2l − η)/4]

+ c′
2

�(1/2 − l )

�[(1 − 2l − η)/4]

]
x−(1+η)ex2/2. (A14)

Since we require ul (x) → 0 for x → ∞, the ratio of c′
1 and c′

2
should satisfy

c′
2

c′
1

= −�(3/2 + l )�[(1 − 2l − η)/4]

�(1/2 − l )�[(3 + 2l − η)/4]
. (A15)

FIG. 10. The two-cluster configuration of the A-nucleon system.
The right cluster consists of B nucleons and the left cluster contains
(A − B) nucleons. See the text for more details.
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With the identities

�

(
1

2
+ l

)
= √

π
(2l − 1)!!

2l
, �

(
1

2
− l

)
=√

π
(−2)l

(2l − 1)!!
,

(A16)

we can simplify Eq. (A15) as

c′
2

c′
1

= (−1)l+1

(
l + 1

2

)
[(2l − 1)!!]2

22l

�[(1 − 2l − η)/4]

�[(3 + 2l − η)/4]
.

(A17)

With x → s+
0 , we have from Eq. (A12) that

ul (x) → c′
1xl+1

[
1 + c′

2

c′
1

x−(2l+1)

]
, (A18)

where we have applied the identity M(a, c; z) → 1 as z → 0.
We match the solutions of the radial wave function at r →

s+
0 . By comparing Eqs. (A9) and (A18), we obtain

c′
2

c′
1

= (2l + 1)[(2l − 1)!!]2(
√

μω)2l+1 tan δl

p2l+1
. (A19)

Finally, the ratio c′
2/c′

1 should satisfy both Eqs. (A15)
and (A19). By equating Eqs. (A15) and (A19), we obtain

p2l+1 cot δl = (−1)l+1(4μω)l+ 1
2
�
(

3+2l
4 − E

2ω

)
�
(

1−2l
4 − E

2ω

) , (A20)

where we recall p = √
2μE and η = 2E/ω. This completes

the derivation of Eq. (3) in the main text.

APPENDIX B: HAMILTONIAN OF THE SCATTERING SYSTEM IN HARMONIC OSCILLATOR POTENTIAL

According to the discussion in the main text, the A-nucleon Hamiltonian with the additional harmonic-oscillator (HO)
potential acting on pairwise nucleons is [Eq. (4)]

HA(ω) = 1

2Am

A∑
i< j

( �pi − �p j )
2 +

A∑
i< j

Vi j + 1

2A
mω2

A∑
i< j

(�ri − �r j )
2, (B1)

where �ri and �pi denotes the single-nucleon position and momentum, respectively. We can derive the Hamiltonian of a two-cluster
configuration of the A-nucleon system from HA(ω).

As shown in Fig. 10, we define �si with i ∈ [1, B] to be the position of the ith nucleon with respect to the mass center �Rright =
1
B

∑B
i=1 �ri of the B-nucleon cluster (we assume the neutron and proton are of equal mass). Meanwhile, �t j with j ∈ [B + 1, A] is

the position of the jth nucleon with respect to the mass center �Rleft = 1
A−B

∑A
j=B+1 �r j of the (A − B)-nucleon cluster. The relative

position vector �r from the mass center of the left cluster to that of the right cluster is defined as �r = �Rright − �Rleft . Therefore, we
have

�ri − �r j = �si − �s j for i ∈ [1, B] and j ∈ [1, B],

�ri − �r j = −�t j + �r + �si for i ∈ [1, B] and j ∈ [B + 1, A],

�ri − �r j = �ti − �t j for i ∈ [B + 1, A] and j ∈ [B + 1, A]. (B2)

Hence, we have the following identity:

A∑
i< j

(�ri − �r j )
2 =

B∑
i=1,i< j

(�ri − �r j )
2 +

A∑
i=B+1,i< j

(�ri − �r j )
2 +

B∑
i=1

A∑
j=B+1

(�ri − �r j )
2

=
B∑

i=1,i< j

(�si − �s j )
2 +

A∑
i=B+1,i< j

(�ti − �t j )
2 + (A − B)

B∑
i=1

�s 2
i + B(A − B)�r 2 + B

A∑
i=B+1

�t 2
i . (B3)

Similarly, we define

�pi − �p j = m�̇si − m�̇s j for i ∈ [1, B] and j ∈ [1, B],

�pi − �p j = m�̇si + m�̇r − m�̇t j for i ∈ [1, B] and j ∈ [B + 1, A],

�pi − �p j = m�̇ti − m�̇t j for i ∈ [B + 1, A] and j ∈ [B + 1, A].
(B4)

Then, we have

A∑
i< j

( �pi − �p j )
2 =

B∑
i=1,i< j

( �pi − �p j )
2 +

A∑
i=B+1,i< j

( �pi − �p j )
2 +

B∑
i=1

A∑
j=B+1

( �pi − �p j )
2 (B5)

=
B∑

i=1,i< j

(m�̇si − m�̇s j )
2 +

A∑
i=B+1,i< j

(m�̇ti − m�̇t j )
2 + m2(A − B)

B∑
i=1

�̇s 2
i + B(A − B)m2 �̇r 2 + Bm2

A∑
i=B+1

�̇t 2
i . (B6)
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The internucleon interaction terms can also be sorted according to the clusters

A∑
i< j

Vi j =
B∑

i=1,i< j

Vi j +
A∑

i=B+1,i< j

Vi j +
B∑

i=1

A∑
j=B+1

Vi j . (B7)

With the above definitions, we can rewrite Eq. (B1) as

HA(ω) = 1

2Am

⎧⎨
⎩

B∑
i=1,i< j

(m�̇si − m�̇s j )
2 +

A∑
i=B+1,i< j

(m�̇ti − m�̇t j )
2 + m2(A − B)

B∑
i=1

�̇s 2
i + B(A − B)m2 �̇r 2 + Bm2

A∑
i=B+1

�̇t 2
i

⎫⎬
⎭

+
B∑

i=1,i< j

Vi j +
A∑

i=B+1,i< j

Vi j +
B∑

i=1

A∑
j=B+1

Vi j

+ 1

2A
mω2

⎧⎨
⎩

B∑
i=1,i< j

(�si − �s j )
2 +

A∑
i=B+1,i< j

(�ti − �t j )
2 + (A − B)

B∑
i=1

�s 2
i + B(A − B)�r 2 + B

A∑
i=B+1

�t 2
i

⎫⎬
⎭. (B8)

By sorting the terms according to the nucleons in left cluster and/or right cluster, we have

HA(ω) = 1

2Am
B(A − B)m2 �̇r 2 + 1

2A
mω2B(A − B)�r 2 +

B∑
i=1

A∑
j=B+1

Vi j + 1

2Am

B∑
i=1,i< j

(m�̇si − m�̇s j )
2

+ 1

2A
mω2

B∑
i=1,i< j

(�si − �s j )
2 +

B∑
i=1,i< j

Vi j + A − B

2Am
m2

B∑
i=1

�̇s 2
i + A − B

2A
mω2

B∑
i=1

�s 2
i + 1

2Am

A∑
i=B+1,i< j

(m�̇ti − m�̇t j )
2

+ mω2

2A

A∑
i=B+1,i< j

(�ti − �t j )
2 +

A∑
i=B+1,i< j

Vi j + Bm2

2Am

A∑
i=B+1

�̇t 2
i + Bmω2

2A

A∑
i=B+1

�t 2
i . (B9)

We define the reduced mass of the two clusters as μ = B(A − B)m/A and the intrinsic momentum between the clusters to
be �p = μ�̇r. Meanwhile, we define �ki = m�̇si with i ∈ [1, B] to be the single-nucleon momentum in the CM frame of the right
cluster, and �qi = m�̇ti with i ∈ [B + 1, A] to be the single-nucleon momentum in the CM frame of the left cluster. The above
equation becomes

HA(ω) = 1

2μ
�p2 + 1

2
μω2�r 2 +

B∑
i=1

A∑
j=B+1

Vi j

+ 1

2Am

B∑
i=1,i< j

(�ki − �k j )
2 + 1

2A
mω2

B∑
i=1,i< j

(�si − �s j )
2 +

B∑
i=1,i< j

Vi j + A − B

2Am

B∑
i=1

�k2
i + A − B

2A
mω2

B∑
i=1

�s 2
i︸ ︷︷ ︸

≡HX ′ (ω)

+ 1

2Am

A∑
i=B+1,i< j

(�qi − �q j )
2 + 1

2A
mω2

A∑
i=B+1,i< j

(�ti − �t j )
2 +

A∑
i=B+1,i< j

Vi j + B

2Am

A∑
i=B+1

�q 2
i + B

2A
mω2

A∑
i=B+1

�t 2
i︸ ︷︷ ︸

≡HY ′ (ω)

. (B10)

We can write the above equation as

HA(ω) = Hrel(ω) + HX ′ (ω) + HY ′ (ω). (B11)

Hrel(ω) denotes the intrinsic motion of the two clusters,

Hrel(ω) = 1

2μ
�p2 + 1

2
μω2�r 2 +

B∑
i=1

A∑
j=B+1

Vi j, (B12)

where
∑B

i=1

∑A
j=B+1 Vi j denotes the intercluster interaction, which can be modeled by phenomenological approaches (e.g.,

the Woods-Saxon potential in the example of the nα scattering in Sec. III B). The second and third lines of Eq. (B10) can
be understood as the intrinsic Hamiltonians HX ′ (ω) and HY ′ (ω) of the confined B- and (A − B)-nucleon clusters in respective
nuclear environments represented as scaled harmonic oscillators (up to proper rescaling of the single-nucleon mass m and the
trap strength ω).
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Furthermore, we can rewrite HX ′ (ω) and HY ′ (ω) with proper rescalings of m and ω. In particular, by defining m′ = Am/B
and ω′ = Bω/A, HX ′ (ω) can be written as

HX ′ (ω) = 1

2Bm′

B∑
i=1,i< j

(�ki − �k j )
2 + m′(ω′)2

2B

B∑
i=1,i< j

(�si − �s j )
2 +

B∑
i=1,i< j

Vi j + A − B

B

[
1

2m′

B∑
i=1

�k2
i + 1

2
m′(ω′)2

B∑
i=1

�s 2
i

]
. (B13)

Similarly, if we define m′′ = Am/(A − B) and ω′′ = (A − B)ω/A, the cluster Hamiltonian HY ′ (ω) can be written as

HY ′ (ω) = 1

2(A − B)m′′

A∑
i=B+1,i< j

(�qi − �q j )
2 + 1

2(A − B)
m′′(ω′′)2

A∑
i=B+1,i< j

(�ti − �t j )
2 +

A∑
i=B+1,i< j

Vi j

+ B

A − B

⎡
⎣ 1

2m′′

A∑
i=B+1

�q 2
i + 1

2
m′′(ω′′)2

A∑
i=B+1

�t 2
i

⎤
⎦. (B14)

We note that the first three terms in HX ′ (ω) represent the form of Eq. (B1) for the B-nucleon system. The last term in HX ′ (ω)
denotes the effect of the nuclear environment, which takes the form of the pure HO with the scaled mass m′ and trap strength ω′.
Analogous statements hold for HY ′ (ω).

1. Special cases

As a special case with B = A − 1, the reduced mass is μ = (A − 1)m/A. Equation (B10) becomes

HA(ω) = 1

2μ
�p2 + 1

2
μω2�r 2 +

A−1∑
i=1

ViA + 1

2Am

A−1∑
i=1,i< j

(�ki − �k j )
2 + 1

2A
mω2

A−1∑
i=1,i< j

(�si − �s j )
2

+
A−1∑

i=1,i< j

Vi j + 1

2Am

A−1∑
i=1

�k2
i + 1

2A
mω2

A−1∑
i=1

�s 2
i . (B15)

We remark that the terms corresponding to the intrinsic motion of the one-nucleon cluster vanish in this cases (note that there
are no intrinsic coordinates for the one-nucleon cluster). With the scaled nucleon mass m′′′ = Am/(A − 1) and the scaled HO
potential strength ω′′′ = (A − 1)ω/A, the second line of the above equation can be written as

HX ′ (ω) = 1

2(A − 1)m′′′

A−1∑
i=1,i< j

(�ki − �k j )
2 + 1

2(A − 1)
m′′′(ω′′′)2

A−1∑
i=1,i< j

(�si − �s j )
2 +

A−1∑
i=1,i< j

Vi j

+ 1

A − 1

{
1

2m′′′

A−1∑
i=1

�k2
i + 1

2
m′′′(ω′′′)2

A−1∑
i=1

�s 2
i

}
. (B16)

We note that the above equation presents the Hamiltonian of the (A − 1)-nucleon system (with the mass being m′′′) in the
presence of the HO potential (with the strength being ω′′′) acting between each pair of nucleons, where the effect of the nuclear
environment to each nucleon can be considered as a scaled HO.

Moreover, in the case of the neutron-neutron and neutron-proton scatterings, the above formalism sees further simplifications.
By direct observations, we only expect the terms of Hrel(ω) in Eq. (B11) (the two clusters are both one-nucleon systems and
neither cluster has intrinsic motion).

APPENDIX C: CONSTRAINT TERMS
FOR MANY-NUCLEON HAMILTONIANS

We discuss that we can extract the elastic-scattering phase
shift between two well-bound nuclei X and Y utilizing the
MERE formula [Eq. (3)] based on the low-lying eigenen-
ergies of Hrel(ω), which are inferred from those of HA(ω),
HX (ω′) [Eq. (B13)], and HY ′ (ω) [Eq. (B14)] according to
Eq. (5). These eigenenergies can be computed via ab initio
many-nucleon structure calculations. In this section, we dis-
cuss two techniques that facilitate the structure calculations
of the N -nucleon problem with N ∈ {A, B, A − B} and the
corresponding Hamiltonian HN ∈ {HA, HX ′ , HY ′ }.

The first technique aims to isolate the spurious CM
excited states from the states without CM excitation in
many-nucleon calculations utilizing the single-nucleon bases.
Such spurious CM excitations result from our adoption of
the Slater determinant bases and from the fact that the
Hamiltonian of the CM motion of the N -nucleon sys-
tem commutes with the intrinsic Hamiltonian HN (ω) of
the system. The spectral solutions without CM excitation
can be isolated by introducing an additional Lawson-Lipkin
term [72,73]

W CM
N (
CM,�) = 
CM

(
HCM
N − 3

2�
)

(C1)
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to HN . The CM Hamiltonian of the N -nucleon system is [68]

HCM
N = T CM

N + U CM
N , (C2)

with

T CM
N = 1

2Nm

( N∑
i

�pi

)2

= 1

2Nm

N∑
i, j

�pi · �p j, (C3)

U CM
N =1

2
Nm�2

[
1

N
N∑
i

�ri

]2

= 1

2N m�2
N∑
i, j

�ri · �r j, (C4)

where � denotes the oscillator strength of the HO basis. With
sufficiently large and positive coefficient 
CM, the states with
CM excitations are shifted up and away from the low-lying
spectrum.

The second technique aims to isolate the many-nucleon
states of different total angular momenta JN for investigating
specific scattering channels. The operators Ĵ2, M̂J , HN , and
HCM
N are mutually commuting. For the energy eigenstate |�N 〉

of HN and HCM
N , we have

Ĵ2|�N 〉 = JN (JN + 1)|�N 〉, M̂J |�N 〉 = MJN |�N 〉,
(C5)

where MJN denotes the projection of JN . Note also that the
energy eigenstates in the many-nucleon structure calculations
are degenerate in MJN . It is possible to retain only those Slater
determinant bases with MJN = JN in constructing the basis
space for the many-nucleon structure calculation. With this
basis construction scheme, we can eliminate all the possible
energy eigenstates with JN < MJN in the spectral solution.
We then introduce another constraint term

W J
N (
J , JN ) = 
J [Ĵ2 − JN (JN + 1)] (C6)

to the many-nucleon Hamiltonian HN . With 
J being a suffi-
ciently large positive number, the action of W J

N (
J , JN ) lifts
the scattering states of which the total angular momentum is
not JN . This facilitates isolating the scattering states accord-
ing to the JN value of the desired scattering channel in the
low-lying spectrum.
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