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Eikonal calculation of (p, 3p) cross sections for neutron-rich nuclei
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In this work, I present the first, to my knowledge, theoretical description of two-proton removal reactions
with proton target (p, 3p) for medium-mass nuclei at intermediate energies and present cross sections for the
different bound states of the residual nucleus with two fewer protons. The description of the reaction assumes
two sequential “quasifree” collisions between the target and removed protons and considers eikonal propagation
in between. The formalism is applied to the reactions 12C(p, 3p) 10Be, 28Mg(p, 3p) 26Ne, and 54Ca(p, 3p) 52Ar,
finding reasonable agreement to experimental data for the 12C target and an overestimation of a factor ≈3 for the
more neutron-rich and 54Ca, which is similar to the results found in two-proton knockout experiments with 9Be
and 12C targets.
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I. INTRODUCTION

Two-proton knockout reactions from neutron-rich nuclei
using 9Be and 12C at intermediate energies have been shown
to proceed as a direct reaction [1] and were shown to be able
to populate very exotic nuclei via the removal of two pro-
tons from already proton-deficient nuclei [1,2]. Equivalently,
two-neutron knockout reactions from proton-rich nuclei have
been used to study very neutron-rich nuclei [3]. The analysis
of these reactions using an eikonal sudden description [4,5]
has yielded significant results on the structure of these nu-
clei [6–10] and on the effect of nuclear correlations on the
observables of the reactions, and therefore their value as a
probe of these correlations [3,5,11–13]. The development of
new hydrogen-target detectors, such as active targets [14], or
MINOS [15], where a thick liquid-hydrogen target is coupled
to a vertex tracker for the recoil protons, has opened the
use of proton-induced reactions as reliable probes to explore
exotic nuclei, where the reaction mechanism can be explored
and understood thanks to the tracking of the paths of the
outgoing particles. Therefore, two-proton removal reactions
with proton targets, or (p, 3p), appear as an appealing probe
to produce exotic nuclei by removing two protons from al-
ready proton-deficient species, and to be able to study their
properties thanks to the simpler reaction mechanism and the
possibility for proton tracking. Unfortunately, as was the case
for one-neutron removal, the reaction models used with heav-
ier targets [16] are not applicable for the case of the proton
target, due to the significant recoil of the target proton. Models
considering a “quasifree” interaction between removed and
target protons have been more successful in the description of
the experimental data for reactions with proton targets (p, 2p)
[17–20], so a similar approach for (p, 3p) reactions seems
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promising and is required in order to fully exploit (p, 3p)
reactions as a spectroscopic tool using the experimental possi-
bility that hydrogen active targets provide. This need has been
indicated in previous publications [21] where the lack of such
a theory has hindered the analysis of the experimental data.

This work aims to provide a theoretical formalism for
(p, 3p) reactions, based on the assumption of “quasifree”
collision between the target and removed protons, and is struc-
tured as follows. Section II presents the theoretical formalism
and briefly shows its derivation, Sec. III presents calculations
of (p, 3p) reactions for the stable 12C target as validation of
the theory and results for the neutron-rich targets 28Mg and
54Ca. Finally, Sec. IV presents the conclusions and summary
of this work as well as future extensions.

II. THEORETICAL FRAMEWORK

A process p + (A + 2) → 3p + A is considered, where a
projectile proton collides with the target nucleus A + 2 re-
moving two protons from it, with the remaining nucleus A
remaining bound. For the derivation, an infinite mass for A
will be assumed. Following the results from [22], the pro-
cess is described as two sequential and independent collisions
between the projectile proton and two protons of the target,
with the residual nucleus A remaining as an inert spectator. It
will also be assumed that the reaction occurs fast enough for
the internal degrees of freedom of A to remain frozen during
the collision, so that the removal of the two protons does not
alter the state of A. For ease of description, in this derivation,
the protons will be treated as distinguishable, since, following
Goldberger and Watson [23], it is sufficient to consider their
antisymmetrization in the proton-proton interaction Vpp. As
such, p0 corresponds to the incoming proton, with momentum
h̄k0. p0 is then assumed to collide with the first proton p1,
which is expelled with an asymptotic momentum h̄k1. Then
p0 collides with a second proton p2, and both escape the
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FIG. 1. Schematic description of the reaction model considered
in this work, two sequential collisions of the incoming proton with
the removed protons. The labels used in this work are presented in
black, indicating as well the wave numbers of the protons at each
step of the process. The elements appearing in the T matrix for the
reaction can be associated to the different steps of the trajectory of
the protons and are shown close to them in purple and white.

nucleus with momenta h̄k0 f and h̄k2, respectively. Through
momentum conservation the residual nucleus A is left with
momentum h̄kA = h̄(k0 − k0 f − k1 − k2). A diagram of the

process is shown in Fig. 1. Schematically, the transition matrix
for this process can be expressed as

T �

∫
dξ

∏
i

(dri )χ
∗
p0

(r0 f , k0 f )χ∗
p1

(r1, k1)χ∗
p2

(r2, k2)

× �A(ξA)[V02GV01](r0 f , r1, r2, ξA; r0, ξ )�(A+2)(ξ )χp0

× (r0, k0), (1)

where dri denotes all radial variables involved: r0 f , r1, r2, r0;
χpi indicate the wave functions for the relative motion be-
tween the corresponding particles and residual nucleus A
(with infinite mass) for the corresponding asymptotic mo-
menta, ξ and ξA correspond to the internal coordinates of
(A + 2) and A, respectively, Vi j is the interaction potential
between protons i and j and G is the propagator of the system.
Due to the spectator approximation for A its internal coordi-
nates ξA are not modified during the reaction, so neither V
nor G depend on them. The expansion ξ(A+2) = ξA, r1i, r2i can
be performed, where r ji is the position of proton j “within”
(A + 2). Thus, the overlap between (A + 2) and A can be
computed as

∫
dξA 〈A(ξA)|(A + 2)(ξA, r1i, r2i )〉 = φ12(r1i, r2i ). (2)

It should be noted that φ12(r1i, r2i ) is independent of the
reaction and can be obtained via structure calculations such as
nuclear shell model [4]. This results in the T matrix

T �

∫
dr0 f dr1dr2dr0dr1idr2iχ

∗
p0

(r0 f , k0 f )χ∗
p1

(r1, k1)χ∗
p2

(r2, k2)[V02GV01](r0 f , r1, r2; r0, r1i, r2)χp0 (r0, k0)φ12(r1i, r2i ). (3)

The propagator G can be approximated as [24]

G = G01 + GV01G01 � G01, (4)

which corresponds to

G01 = 1

E − H − V01 + iε
= 1

E − T1 − T2 − T0 − V02 − U0A − U1A − V2A − V12 + iε
, (5)

where the infinite mass approximation for A allows to remove
its kinetic energy. This four-body propagator must now be
reduced to a one-body one. For this, (since A → ∞) T2 and
V2A can be grouped as T2 + V2A � H2A, and the propagator
approximated as

H2Aφ12(r1i, r2i ) ≈ E2Aφ12(r1i, r2i ) ≈ S2p

2
φ12(r1i, r2i ). (6)

This assumption should be reasonable for an energetic
beam, as p2 should remain frozen before its collision and
E2A � E . Analogously T1 + U1A + V12 = H1(A+1), which can
be approximated as

χ∗
p1

(r1, k1)H1(A+1) = χ∗
p1

(r1, k1)E1, (7)

and finally U0A + V02 � U0(A+1). With these approximations,
the propagator reduces to

G01 = 1

E − E1 − E2A − T0 − U0(A+1) + iε

= 1

E0m − T0 − U0(A+1) + iε
, (8)

where E0m = E − E1 − E2A and which can be interpreted
as a one-body propagator for p0 between collisions. The
beam energy will be assumed high so that E1 is large
enough for the effect of the potential to be ignored, so that

E1 =
√

m2
p + h̄2k2

1 (c = 1).

The proton-proton interaction is then considered to be of
zero range so that

V01(r′
0, r′

1; r0, r1) = Ṽ01δ(r′
0, r′

1, r0, r1). (9)
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With these approximations, the integral in Eq. (3) is reduced to
only two radial coordinates r1, r2, which can be interpreted as
the location of the collisions between p0 and p1 and between
p0 and p2, respectively:

T �

∫
dr1dr2χ

∗
p0

(r2, k0 f )χ∗
p1

(r1, k1)χ∗
p2

(r2, k2)

× Ṽ02G0m(E0m, r2; r1)Ṽ01χp0 (r1, k0)φ12(r1, r2). (10)

Eikonal expressions for the wave functions are now
introduced:

χpn (r j, ki ) = 1

(2π )3/2
e− i

h̄vi

∫ z j
−∞ U (b j ,z)dzeik0r1

= 1

(2π )3/2
Sp0(r1, k0)eik0r1 , (11)

where z follows the direction of momentum ki, b is the associ-
ated impact parameter and U is the optical potential between
proton and core A (As A → ∞, UpA ≈ Up(A+1) ≈ Up(A+2)).
With this approximation the following matrix element is ob-
tained:

T = 1

(2π )6

∫
dk0mdr1dr2S∗(r2, k0 f )S∗(r2, k2)

× Ṽ02G0m(E0m, r2; r1)Ṽ01S∗(r1, k1)S(r1, k0)φ12(r1, r2)

× ei(k0−k1 )r1 e−i(k0 f +k2 )r2 . (12)

Next the formula for the total cross section is presented,
where momentum conservation has already been considered
to nullify the integral over kA:

σ = 1

2Ĵi
2

∑
S,s0,s0 f

∫
dk1dk0 f dk2δ(E f − Ei )

(2π )4

h̄v0
|T |2, (13)

where Ji is the angular momentum of (A + 2) Ĵi = √
2Ji + 1,

the sum over S corresponds to the sum over the spin pro-
jections of (A + 2), A, p1, p2 and the sums for the final and
initial spin of proton p0 are left explicit. dk0f will be now
expressed in spherical coordinates and the integral over k0 f

will be performed using δ(E f − Ei ). Thus the following result
is obtained:

∫
dk0 f δ(E f − Ei )F (k0 f ) = F (k̄0 f )

1
∂E f

∂k0 f

∣∣∣∣∣∣
k̄0 f

= 1
h̄2c2 k̄0 f

ε̄0 f
+ h̄2c2 k̄0 f

ε̄2
− h̄2c2k̄0 f (k0−k1−kA )

k0 f ε̄2

F (k̄0 f )

≡ j(k̂0 f , k1, kA)F (k̄0 f ), (14)

where j(k̂0 f , k1, kA) corresponds to these kinematic factors
and F (k0 f ) is meant to denote the rest of integral in Eq. (13)
and where it has been applied that k2

2 = k2
0 f − 2k0 f (k0 − k1 −

kA) + |k0 − k1 − kA|2 and where k̄0 f , ε̄0 f , ε̄2 correspond to
the momentum for p0 f and energies of p0 f and p2 given by
energy conservation.

To proceed with the derivation, a strong approximation is
now introduced: all factors in Eqs. (12) and (13) are consid-
ered as slowly varying functions of the momentum compared

to the exponentials in Eq. (12) and can be replaced by a
suitable average value which may depend on r1, r2:

S(ri, k j ) ≈ S(k̂0 f , r1, r2),

j(k̂0 f , k1, kA) ≈ j(k̂0 f , r1, r2), (15)

which is a general expression, although some of the S matrices
may not depend on all variables. With this approximation,
Eq. (12) can be expressed as

T �
1

(2π )6

∫
dr1dr2 ˜S0 f

∗
(k̂0 f , r2, r1)S̃2

∗
(k̂0 f , r2, r1)

× G̃0m(E0m, r2; r1)S̃1
∗
(r1, r2)S̃0(r1)|φ12|2(r1, r2)

× Ṽ01(r1; r2)Ṽ02(r1; r2)ei(k0−k1 )r1 e−i(k0 f +k2 )r2 , (16)

and now the integrals over k1 and kA can be performed, noting
that T and T ∗ would produce equivalent and complex conju-
gate exponentials with spatial variables (r1, r2) and (r′

1, r′
2):∫

dk1dk2
[
e−ik1(r1−r′

1 )eik2(r2−r′
2 )
]

= (2π )6δ(r2 − r′
2)δ(r1 − r′

1), (17)

which produces the nice result that the integral reduces to an
incoherent sum over the two collision points r1 and r2, which
is consistent with the semiclassical assumption

σ = 1

2Ĵ2
i

∑
S,s0,s0 f

∫
dk̂0 f dr1dr2

× 1

h̄v0(2π )2
j(k̂0 f , r1, r2)| ˜S0 f |2(k̂0 f , r2, r1)|S̃2|2

× (k̂0 f , r2, r1)Ṽ02(r1; r2)|2|G̃0m|2(E0m, r2; r1)

× |S̃1|2(r1, r2)|Ṽ01(r1; r2)|2|S̃0(r1)|2|φ12|2(r1, r2).
(18)

Using now the eikonal expression for the propagator
[23,25],

G0m(E0m, r2; r1) = − ε0m

2π h̄2c2

e− i
h̄v0m

∫ z2
z1

U (b,z)dz

|r2 − r1| e−ik0m|r2−r1|,

(19)

where the energy E0m is assumed large enough so that the
integral can be performed along the straight line between r2

and r1 and where h̄k0m is the momentum associated to E0m.
A similar method for calculating the (p, 2p) total cross

section was presented in [18]. The average values to be used
must now be chosen for each quantity. For the S matrices and
propagator G0m Eqs. (11) and (19) provide eikonal expres-
sions. For |Ṽ01(r1; r2)|2 on-shell quasifree collisions between
the protons will be considered, assuming the removed protons
to be initially at rest, although their binding energy, taken
as S2p/2, will be taken into account. Therefore in the first
collision, proton p0 collides with momentum h̄k0 with proton
p1 and both are emitted with momenta h̄k0m and h̄k1, re-
spectively. The direction of k0m is parallel to (r2 − r1), which
is consistent with eikonal propagation. As such, positions r1

and r2 along with energy and momentum conservation in the
quasifree collision define k0m and k1. For the second collision,

064622-3



M. GÓMEZ-RAMOS PHYSICAL REVIEW C 109, 064622 (2024)

assuming the proton impacts with momentum h̄k0m, the direc-
tion of k0 f restricts the value of k2 and the modulus of k0 f , to
be used in S2 and S0 f , taking kA as 0. Finally, |Ṽ01(r1; r2)|2
can be obtained from the free p − p cross section (omitting
Coulomb interaction) assuming the Born approximation

|Ṽ01(r1; r2)|2 � |T̃01(r1; r2)|2. (20)

Moving to the NN center of mass system, introducing the
adequate Möller factor the p-p T matrix becomes

|T̃01(r1; r2)|2 = |T̃01(r1; r2)|2NN

εcmi,0εcmi,1ε
2
cm f ,1

(mN c2 − S2p/2)ε0ε1ε0m
,

(21)

where, since the collision happens between a proton and a
pseudoproton of mass (mN c2 − S2p/2), the center of mass
energies of both particles are not the same before the colli-
sion (εcmi,0 being the one of the proton and εcmi,1 the one of
the pseudoproton) but they are the same after the collision
εcm f , since both outgoing particles are protons. The relation
between εcmi and εcm f can be obtained through the Mandelstan
variable s. The NN center of mass T matrix can be related to
the angular differential free NN cross section [20], which will
be approximate by the total cross section divided by 4π :

|T̃01(r1; r2)|2NN = 4(2π )2h̄4c4

ε2
cm f ,1

dσ

d�
= 2

4(2π )2h̄4c4

ε2
cm f ,1

σNN

4π

(22)
(factor 2 due to antisymmetrization), getting

|Ṽ01(r1; r2)|2 � 4(2π )h̄4c4σNN (r1; r2)

× εcmi,0εcmi,1

(mN c2 − S2p/2)ε0ε1ε0m

≡ σNN (r1; r2) f (r1, r2), (23)

where the factors multiplying the nucleon-nucleon cross sec-
tion σNN are included in f (r1, r2). This approximation for
the nucleon-nucleon interaction makes it spin-independent.
Therefore the projection of the spin of p0 must be the same
in the incoming and outgoing channels, so that

∑
s0,s0 f

= 2,
which cancels with the factor 1/2 in Eq. (13). This results in
the following expression for the cross section:

σ = 1

Ĵ2
i

∑
S

∫
dk̂0 f dr1dr2

× 1

h̄v0(2π )2
j(k̂0 f , r1, r2) f02(k̂0 f , r1, r2) f01(r1, r2)

× | ˜S0 f |2(k̂0 f , r2, r1)|S̃2|2(k̂0 f , r2, r1)σ02(r1; r2)G̃m
0

×(r2, r1)|2|S̃1|2(r1, r2)σ01(r1; r2)|S̃0(r1)|2|φ12|2(r1, r2),

(24)

which allows for a very classical interpretation: proton p0

penetrates inside the nucleus with probability |S̃0|2 until it
collides with cross section σ01 with one of the protons p1 in the
nucleus at r1 and then propagates to r2 through |G̃0m|2 where it
collides with the second proton p2 with cross section σ02, with
the probability of finding both protons at these positions given
by |φ12|2 for a certain state of the residual core. Afterwards,

all three protons must escape the nucleus with probabilities
|S̃0 f |2, |S̃1|2, and |S̃2|2, for them to be detected. See Fig. 1
for a schematic with the factors associated to the paths of the
protons. For a more compact expression, which is also more
comparable with the ones in the literature, the spin average
and sum will be included in |φ12|2, noting that it is the only
term which is sensitive to the spins of the protons

|φ̃12|2(r1, r2) = 1

Ĵi
2

∑
S

|φ12|2(r1, r2) (25)

resulting in

σ =
∫

dk̂0 f dr1dr2
1

h̄v0(2π )2
j(k̂0 f , r1, r2) f02(k̂0 f , r1, r2)

× f01(r1, r2)| ˜S0 f |2(k̂0 f , r2, r1)|S̃2|2(k̂0 f , r2, r1)σ02

× (r1; r2)G̃m
0 (r2, r1)|2|S̃1|2(r1, r2)σ01(r1; r2)

× |S̃0(r1)|2|φ̃12|2(r1, r2). (26)

A. Overlap function

The calculation of the square of the overlap function |φ12|2
from nuclear structure inputs is briefly presented: two-nucleon
amplitudes (TNA) and single-particle wave functions. Starting
from the expression from [11],

|φ12(r1, r2)|2

= 1

J2
i

∑
MiM f

〈
�

(F )
JiMi

∣∣� (F )
JiMi

〉 =
∑
αα′I

C
JiJf I
α C

JiJf I
α′ DαDα′

I2

×
∑

m1m2m′
1m′

2

〈 j1m1 j2m2|Iμ〉〈 j′1m′
1 j′2m′

2|Iμ〉

× [(
φ

m′
1

j′1

∣∣φm1
j1

)(
φ

m′
2

j′2

∣∣φm2
j2

) + (
φ

m′
2

j′2

∣∣φm2
j2

)(
φ

m′
1

j′1

∣∣φm1
j1

)

− (
φ

m′
1

j′1

∣∣φm2
j2

)(
φ

m′
2

j′2

∣∣φm1
j1

) − (
φ

m′
2

j′2

∣∣φm1
j1

)(
φ

m′
1

j′1

∣∣φm2
j2

)]
, (27)

where �
(F )
JiMi

is the overlap function 〈A|A + 2〉 with Ji, Mi

and Jf , M f being the total and magnetic angular momenta

of A + 2 and A, respectively. C
JiJf I
α corresponds to the TNA,

α = l1, j1, l2, j2, the orbital and angular momenta of the two
removed protons, mi the corresponding magnetic angular mo-
mentum, Dα = 1/

√
2(1 + δαα′ ), I = j1 + j2, and the bracket

(φm′
2

j′2
|φm2

j2
) corresponds to

(
φ

m′
1

j′1

∣∣φm1
j1

) =
∑
λ1λ

′
1σ

〈l1λ1sσ | j1m1〉〈l ′
1λ

′
1sσ | j′1m′

1〉

× ul1 j1 (r1)Yl1λ1 (r̂1)u∗
l ′1 j′1

(r1)Y ∗
l ′1λ

′
1
(r̂1), (28)

where ul j is the radial wave function, evaluated at S2p/2 [11],
Ylλ the spherical harmonic with magnetic angular momentum
λ, and s and σ are the spin of the proton and its projection.
Note that in Eq. (27), the first bracket in each term is evaluated
for r1 while the second bracket is evaluated for r2.
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After some angular momentum algebra, the following expression is obtained:

|φ̃12|2(r1, r2) =
∑
αα′I

C
JiJf I
α C

JiJf I
α′ DαDα′

l̂1 l̂ ′
1 l̂2 l̂ ′

2 ĵ1 ĵ2 ĵ′1 ĵ′2
16π2

(−)−s1−s2+ j2+ j′2
∑

L

PL(r1 · r2)

×
[(

(−)I−2 j′2〈l10, l ′
10|L0〉〈l20, l ′

20|L0〉
{

l1 s1 j1
j′1 L l ′

1

}{
l2 s2 j2
j′2 L l ′

2

}{
j1 I j2
j′2 L j′1

})

×(
ul1 j1 (r1)u∗

l ′1 j′1
(r1)ul2 j2 (r2)u∗

l ′2 j′2
(r2)

) + ul2 j2 (r1)u∗
l ′2 j′2

(r1)ul1 j1 (r2)u∗
l ′1 j′1

(r2)

−
(

〈l10, l ′
20|L0〉〈l20, l ′

10|L0〉
{

l1 s1 j1
j′2 L l ′

2

}{
l2 s2 j2
j′1 L l ′

1

}{
j1 I j2
j′1 L j′2

})

×(
ul2 j2 (r1)u∗

l ′1 j′1
(r1)ul1 j1 (r2)u∗

l ′2 j′2
(r2)

) + ul1 j1 (r1)u∗
l ′2 j′2

(r1)ul2 j2 (r2)u∗
l ′1 j′1

(r2)

]
, (29)

where the angular dependence on r̂1 and r̂2 is reduced to
the Legendre polynomial PL(r1 · r2), which allows for more
efficient treatment of the overlap wave function, which can be
stored as a function of r1, r2 (only the modulus) and L, instead
of r1 and r2.

III. NUMERICAL RESULTS

For all the following calculations the optical potential be-
tween proton and nucleus has been taken from the global
Dirac parametrization [26,27], while the proton-proton elas-
tic cross section has been taken from the parametrization
by Bertulani and De Conti [28]. The single-particle wave
functions have been computed using Woods-Saxon potentials
with diffusivity a = 0.7 fm and a radius adjusted to reproduce
the rms radius from Hartree-Fock calculations using the SkX
interaction [29]. The integration over r1 and r2 is extended
up to the radius where the single-particle wave functions is
reduced to 1/1000 of their maximum value (the maximum
radius among the wave functions) and the step of integration
is taken as 0.2 fm, which was found to give converged results
to ≈5%.

A. 12C(p, 3p) 10Be

First, a study of the 12C(p, 3p) 10Be reaction is presented.
Admittedly, the 12C nucleus is rather light while the formal-
ism developed in this work is meant for heavier systems. An
estimation of the effect of the finite mass of the nucleus can
be obtained from [25], which presents a very similar result
to the one in this work in the context of the study of the
total nucleon-nucleus cross section. In [25], the cross section

is scaled by a factor of ( A
A+1 )4, which in this case would

introduce a factor of 0.7 in the cross sections. As the ambigui-
ties in the optical potentials introduce significant uncertainties
in the total cross section, this factor will not be considered
in the following. The nuclear structure of 12C is well known
and there exist experimental data for fragmentation of 12C
on proton targets to produce 10Be [30], so this reaction is a
reasonable one to benchmark the calculations.

The TNA for the calculation have been obtained using the
WBT interaction [31] in the shell model code OXBASH [32]
(calculations using the interaction by Cohen and Kurath [33]
show consistent TNA). Those TNA deemed too small have
been excluded from the calculation. In Table I the used TNA
are presented. In order to compare with the total experimental
cross section in [30], the calculation has been performed at
1.05 GeV/A. Only states under the neutron emission threshold
for 10Be have been considered and their energies have been
taken as the experimental ones.

The results are presented in Table II. Since the kinematics
of the removed protons was not measured in the experiment,
another process that could result in 10Be is a (p, 2p) reaction
producing an excited 11B

∗ which then decays by emission of a
proton and thus competes with the process studied here [30].
In a recent measurement of the 12C(p, 2p) reaction at 398
MeV/nucleon, the cross section for the 12C(p, 2p) 11B pro-
cess was found to be 18.1(2.0) mb while the cross section for
the decay of 11B∗ into 10Be (distinguished by imposing a co-
incidence of a forward proton and 10Be) was 0.8(0.3) mb [34].
Assuming the same proportion for the reaction at 1.05 GeV/A,
given that the 12C(p, 2p) 11B cross section was of 30.9(3.4)

TABLE I. TNA used for the 12C(p, 3p) 10Be reaction, not including the isospin Clebsch-Gordan factor, obtained using the WBT interaction.

Jπ
f Ex (MeV) [1s1/2]2 [1p3/2]2 [1p1/21p3/2] [1p1/2]2 [1d5/2]2 [1d3/2]2 [2s1/2]2 [2s1/21d5/2] [2s1/21d3/2]

0+ 0.00 – 1.461 – 0.706 −0.064 −0.056 −0.056 – –
2+ 3.37 – 2.060 −0.854 – 0.038 0.020 – – –
2+ 5.96 – −0.419 1.204 – 0.028 0.016 – −0.020 −0.010
0+ 6.18 −0.018 −0.165 – 0.145 – 0.016 – – –

Jπ
f Ex (MeV) [1p3/21s1/2] [1p1/21s1/2] [1d5/21p3/2] [1d5/21p1/2] [1d3/21p3/2] [1d3/21p1/2] [2s1/21p3/2] [2s1/21p1/2]

1− 5.96 −0.247 0.135 −0.117 – 0.069 −0.077 0.065 0.051
2− 6.26 0.045 – −0.048 −0.055 0.105 −0.021 – –
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TABLE II. Cross sections for the 12C(p, 3p) 10Be(Jπ
f ) reaction at

1.05 GeV/A.

Jπ
f Ex (MeV) σ (mb)

0+ 0.00 0.86
2+ 3.37 0.68
2+ 5.96 0.27
1− 5.96 9.2 × 10−3

0+ 6.18 4.1 × 10−3

2− 6.26 5.5 × 10−4

Total 1.82
Exp. [30] 3.41(0.54)
Exp. [direct (p, 3p)] 2.0(0.7)*

*See text.

mb, this would yield a cross section for excitation-evaporation
of 1.4(0.6) mb, leaving 2.0(0.7) mb for the direct removal of
the two protons studied in this work, which gives reasonable
agreement with the result of the calculations, and thus this
result can be taken a validation of this work. It should be
remarked that in [5,35], for two-proton removal from 12C
using a carbon target at the same beam energy, the excitation-
evaporation process was not removed and good agreement
between theory and experiment was found still, which could
indicate differences between proton and carbon targets when
populating proton-unbound excited states of 11B.

B. 28Mg(p, 3p) 26Ne

In this section, the 28Mg(p, 3p) 26Ne reaction at 250
MeV/nucleon is explored. Although no experimental data
exists for this reaction, the equivalent two-nucleon knockout
reaction with beryllium target has been measured [1] and
thoroughly studied [4,5,36], making it a good benchmark to
compare the (p, 3p) and two-proton knockout reactions when
populating different excited states. The structure inputs are the
same as those from [4], the TNA are presented in Table III for
completeness.

It is of interest whether (p, 3p) and two-proton knockout
reactions populate equally the excited states of the residual
nucleus, as such in Table IV cross sections are presented
for the four considered states for the (p, 3p) reaction at
250 MeV/nucleon, a typical energy for radioactive beam
facilities, as well as the two-proton knockout reaction at
82.3 MeV/nucleon [1], and their ratio to the total cross
section. Experimental results for the two-proton knockout re-
action are presented as well. The theoretical and experimental

results for the two-proton knockout reaction are taken from
[36] and [4], respectively.

In general, the distribution of the cross section among
states is similar for both reactions, with the ground and 4+
excited states taking most of the cross section, although it
should be noted that the contribution of the ground state
is significantly larger for the (p, 3p) reaction than for the
two-proton knockout one. To further explore this discrepancy
a calculation has been performed in which the interference
between configurations with different TNA has been turned
off in order to evaluate the effect of this interference in the
cross section. The results are shown on the third column of
Table IV, while the fourth column shows the ratio between
these calculations and the original ones. It is noteworthy that
it is the ground state that presents the most sensitivity to this
interference, suggesting that the interference lies behind the
difference between (p, 3p) and knockout, possibly because
(p, 3p) is more sensitive to the nuclear interior, which presents
a different behavior than the nuclear surface with respect to
the interference of different configurations. This suggests that
interference between configurations and correlations between
the removed protons plays a significant role in two-proton-
removal reactions [35,36], and that (p, 3p) and two-proton
knockout reactions may be differently sensitive to them. The
last two columns of Table IV show the sum of the square of
the TNA and their ratio to the total for each 26Ne final state,
to check whether a direct relation between the reaction cross
section and the structure observables, akin to spectroscopic
factors for one-nucleon removal reactions, can be established
for two-nucleon removal ones. As expected, this is not the
case, as the contribution of each final state to the total cross
section differs significantly from its “weight”, measured as the
sum of the square of the TNAs. Therefore a robust reaction
theory is essential to be able to predict the relative population
of each final state, although a rough relation can be established
between TNA and cross sections, in that states with a small
sum of TNA2 can be expected to be weakly populated and a
state with a large sum is likely to be significantly populated.

C. 54Ca(p, 3p) 52Ar

Although there is a number of medium-mass nuclei for
which the (p, 3p) reaction has been measured [22], for these
nuclei the nuclear structure calculations are computationally
heavy and the experimental data scarce, so there are signifi-
cant uncertainties in the TNA (admittedly, also in the optical
potentials). As such, it is challenging to find neutron-rich nu-
clei to compare their experimental cross sections to the results
of this work. For the 54Ca(p, 3p) 52Ar reaction, unpublished

TABLE III. TNA used for the 28Mg(p, 3p) 26Ne reaction, taken from [4].

Jπ
f Ex (MeV) [1d3/2]2 [1d3/21d5/2] [1d5/2]2 [2s1/21d3/2] [2s1/21d5/2] [2s1/2]2

0+ 0.00 −0.301 – −1.047 – – −0.305
2+ 2.02 −0.050 0.374 −0.637 −0.061 −0.139 –
4+ 3.50 – 0.331 1.596 – – –
2+ 3.70 0.047 −0.072 0.853 0.161 0.176 –
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TABLE IV. Cross sections for the 28Mg(p, 3p) 26Ne(Jπ
f ) reaction at 250 MeV/nucleon (third column) and the 9Be(28Mg, 26Ne(Jπ

f ))X
reaction at 82.3 MeV/nucleon (seventh column [36], ninth column [4]), and the ratio of each 26Ne final state to the total cross section (second
and sixth columns, respectively). The third column corresponds to calculations where configurations with different TNA are not allowed to
interfere and the fourth column is the ratio between this calculation and the full one. The tenth column corresponds to the sum of the square of
the TNA considered for each state, and the 11th column to its ratio to the total adding all final states.

Jπ
f Ex (MeV) σ (p, 3p) (mb) Ratio σ (p, 3p) no interf. (mb) (p,3p)nointerf.

(p,3p) σ2pKO (mb) Ratio Exp 2pKO (mb)
∑

TNA2 Ratio

0+ 0.00 0.274 0.48 0.196 0.71 1.19 0.40 0.70(15) 1.28 0.24
2+ 2.02 0.048 0.08 0.048 1.00 0.32 0.11 0.09(15) 0.69 0.13
4+ 3.50 0.181 0.32 0.160 0.88 1.02 0.34 0.58(9) 2.66 0.49
2+ 3.70 0.063 0.11 0.061 0.97 0.45 0.15 0.15(9) 0.79 0.15
Total 0.57 0.46 2.98 1.50(10) 5.42

experimental data at 250 MeV/nucleon were facilitated to the
author [37], yielding a total cross section of σ = 0.047(6) mb.
For 〈54Ca | 52Ar〉, TNA have been provided by Prof. Y. Utsuno
[38], obtained using an extension of the GXPF1Br [39] inter-
action extended to the sd-pf-sdg space. The ones considered in
these calculations are presented in Table V. When considering
which states to include, a significant strength can be found
close to the separation energy of the neutron Sn in 52Ar. Taking
the values from NuDat [40], Sn = 3.0(7) MeV, obtained by a
systematic fit to the nuclear mass, so there is an ambiguity
on whether the population of states with excitation energy
Ex = 3.0–3.7 MeV would lead to a bound residual 52Ar (thus
contributing to the cross section), or not.

To check the effect of this ambiguity the cross section
to all states for energies up to 3.7 MeV has been computed,
and are presented adding up the states up to Ex = 3.0 MeV
(which corresponds to the nominal value of Sn) and up to
Ex = 3.7 MeV (which would also include the states within
the 1σ error range). Both values yield results of 0.102 mb
and 0.159 mb, which shows that even the uncertainty in Sn

produces differences of 50% in the results. Better measure-
ments of the masses of medium-mass nuclei or measurements
of (p, 3p) reactions with γ coincidence would help allevi-
ate this ambiguity. As for the reduction factors, values of

Rs = 0.46 and 0.29 are found, both of which are reasonably
compatible to those found in [41,42], even when consider-
ing the uncertainties in the separation energy. The reduction
factors for two-nucleon knockout [36,41,42] (also including
two-neutron knockout from proton-rich nuclei) and (p, 3p)
reactions are presented in Fig. 2 as a function of the dif-
ference between the separation energy of two protons and
two neutrons �S = S2p − S2n for two-proton knockout and
(p, 3p) and S2n − S2p for two-neutron knockout, as a parallel
to the renowned figure for single-nucleon removal [43–45].
Rs for two-proton(neutron) knockout correspond to the blue
circles(squares) while the red diamonds correspond to the
(p, 3p) reactions studied in this work. As can be seen in
the figure the tendency is similar for both reactions, showing
factors ≈1 for �S ≈ 0 and a significant, roughly constant
reduction for more asymmetric nuclei. It is quite remarkable
that both reactions show similar trends in the description of
the cross sections, while for single-nucleon removal reactions
a different trend was found for the reduction factors on �S =
Sn(p) − Sp(n) for one-nucleon knockout and (p, 2p) reactions
[46], which has been alleged to originate from deficiencies
in the reaction mechanism [47] or in the description of the
wave functions of the removed nucleons [48–50]. The fact
that the trends reconcile for two-nucleon removal reactions

TABLE V. States, TNA, and cross sections considered for the 54Ca(p, 3p) 52Ar reaction. The last column corresponds to the reduction
factor Rs = σexp/σth. States above the double horizontal line lie below the nominal value of Sn for 52Ar, while those below lie below its value
plus one σ [40].

Jπ
f Ex (MeV) [1d5/2]2 [1d5/21d3/2] [1d5/22s1/2] [1d3/2]2 [1d3/22s1/2] [2s1/2]2 σp3p (mb) Rs

0+ 0.00 −0.221 – – −0.839 – −0.222 3.51 × 10−2

2+ 1.719 −0.205 −0.238 −0.277 −1.187 0.650 – 4.82 × 10−2

0+ 2.356 0.053 – – 0.277 – −0.030 2.75 × 10−3

2+ 2.364 0.118 0.074 0.192 0.575 −0.492 – 1.54 × 10−2

3+ 2.809 – 0.029 −0.013 – – – 1.35 × 10−5

2+ 3.012 0.167 0.077 0.052 1.378 −0.147 – 3.32 × 10−2

3+ 3.363 – −0.077 −0.013 – – – 7.62 × 10−5

4+ 3.464 0.073 0.318 – – – – 2.57 × 10−3

4+ 3.592 0.0511 0.355 – – – – 3.00 × 10−3

2+ 3.639 −0.017 0.108 0.263 −0.678 −0.984 – 1.89 × 10−2

0+ 3.670 0.001 – – 0.089 – −0.096 2.97 × 10−4

Total (Emax
x = Sn = 3.0 MeV) 1.02 × 10−1 0.46

Total (Emax
x = Sn + σSn = 3.7 MeV) 1.59 × 10−1 0.29
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FIG. 2. Reduction factors for two-proton (blue circles) and two-
neutron (blue squares) knockout reactions [36,41,42] and (p, 3p)
reactions, as a function of S2p − S2n for two-proton removal and
S2s − S2p for two-neutron removal. It can be seen that the two types
of reactions follow similar trends.

could be related to the stronger peripherality of these reactions
[11], when compared to one-nucleon removal ones, so that
the nuclear interior, where the reaction mechanism and the
wave functions are less understood, plays a smaller role in the
reaction. Further study on these trends is required to clarify
these issues.

IV. SUMMARY AND CONCLUSIONS

In this work, a theoretical description of the sequential
(p, 3p) two-proton removal direct reaction is presented, which
is able to produce cross sections for specific states of the
final nucleus based on the two-nucleon amplitudes from nu-
clear structure calculations. This theory relies on the eikonal
description of the interaction between protons and nucleus
and the assumption of quasifree collisions between the in-

coming proton and the removed protons. This theory has
been validated through comparison with experimental data for
the 12C(p, 3p) 10Be reaction, finding reasonable agreement.
The 28Mg(p, 3p) 26Ne reaction has also been studied, find-
ing parallels with the results found in two-proton knockout
reactions with heavier targets and the theory has been applied
to the 54Ca(p, 3p) 52Ar reaction, finding an overestimation of
the cross section of a factor ≈2–3, which is consistent with
results found in two-proton knockout reactions. This con-
trasts with the discrepancy found in single-nucleon reactions.
Further study on the two-nucleon-removal trends may prove
illuminating for the still-unknown causes of the one-nucleon-
removal reactions discrepancy. Application of this formalism
to other targets, such as those measured in [22] or [21], re-
quires the production of two-nucleon amplitudes, which can
prove challenging for these heavy nuclei. Further develop-
ments of this work may include the use of microscopic optical
potentials for the exotic cases where global parametrizations
may prove less reliable, as well as the development of a theory
to obtain the momentum distribution of the residual target and
the angular correlation between the outgoing protons.

ACKNOWLEDGMENTS

The author thanks Y. Utsuno for providing the two-nucleon
amplitudes used for the 54Ca case and H. Liu for the ac-
cess to the preliminary experimental data for 54Ca. The
author would like to thank as well J. Gómez-Camacho, A.
M. Moro, and A. Obertelli for illuminating discussions and
critical reading of the manuscript. The author acknowledges
financial support by MCIN/AEI/10.13039/501100011033
under I+D+i Project No. PID2020-114687GB-I00 and un-
der Grant No. IJC2020-043878-I (also funded by “European
Union NextGenerationEU/PRTR”), by the Consejería de
Economía, Conocimiento, Empresas y Universidad, Junta de
Andalucía (Spain) and “ERDF-A Way of Making Europe”
under PAIDI 2020 Project No. P20_01247, by the European
Social Fund and Junta de Andalucía (PAIDI 2020) under
Grant No. DOC-01006 and by the Alexander von Humboldt
Foundation.

[1] D. Bazin, B. A. Brown, C. M. Campbell, J. A. Church, D. C.
Dinca, J. Enders, A. Gade, T. Glasmacher, P. G. Hansen, W. F.
Mueller, H. Olliver, B. C. Perry, B. M. Sherrill, J. R. Terry, and
J. A. Tostevin, Phys. Rev. Lett. 91, 012501 (2003).

[2] J. Fridmann, I. Wiedenhöver, A. Gade, L. T. Baby, D. Bazin,
B. A. Brown, C. M. Campbell, J. M. Cook, P. D. Cottle, E.
Diffenderfer, D.-C. Dinca, T. Glasmacher, P. G. Hansen, K. W.
Kemper, J. L. Lecouey, W. F. Mueller, H. Olliver, E. Rodriguez-
Vieitez, J. R. Terry, J. A. Tostevin, and K. Yoneda, Nature
(London) 435, 922 (2005).

[3] K. Yoneda, A. Obertelli, A. Gade, D. Bazin, B. A. Brown, C. M.
Campbell, J. M. Cook, P. D. Cottle, A. D. Davies, D.-C. Dinca,
T. Glasmacher, P. G. Hansen, T. Hoagland, K. W. Kemper,
J.-L. Lecouey, W. F. Mueller, R. R. Reynolds, B. T. Roeder,
J. R. Terry, J. A. Tostevin, and H. Zwahlen, Phys. Rev. C 74,
021303(R) (2006).

[4] J. A. Tostevin, G. Podolyák, B. A. Brown, and P. G. Hansen,
Phys. Rev. C 70, 064602 (2004).

[5] J. Tostevin, P. Batham, G. Podolyák, and I. Thompson, Nucl.
Phys. A 746, 166 (2004).

[6] J. Fridmann, I. Wiedenhöver, A. Gade, L. T. Baby, D. Bazin,
B. A. Brown, C. M. Campbell, J. M. Cook, P. D. Cottle, E.
Diffenderfer, D.-C. Dinca, T. Glasmacher, P. G. Hansen, K. W.
Kemper, J. L. Lecouey, W. F. Mueller, E. Rodriguez-Vieitez,
J. R. Terry, J. A. Tostevin, K. Yoneda, and H. Zwahlen, Phys.
Rev. C 74, 034313 (2006).

[7] A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown,
C. M. Campbell, M. P. Carpenter, J. M. Cook, A. N. Deacon,
D.-C. Dinca, B. Fornal, S. J. Freeman, T. Glasmacher, P. G.
Hansen, B. P. Kay, P. F. Mantica, W. F. Mueller, J. R. Terry,
J. A. Tostevin, and S. Zhu, Phys. Rev. C 74, 021302(R)
(2006).

064622-8

https://doi.org/10.1103/PhysRevLett.91.012501
https://doi.org/10.1038/nature03619
https://doi.org/10.1103/PhysRevC.74.021303
https://doi.org/10.1103/PhysRevC.70.064602
https://doi.org/10.1016/j.nuclphysa.2004.09.071
https://doi.org/10.1103/PhysRevC.74.034313
https://doi.org/10.1103/PhysRevC.74.021302


EIKONAL CALCULATION OF (p, 3p) CROSS … PHYSICAL REVIEW C 109, 064622 (2024)

[8] A. Gade, P. Adrich, D. Bazin, M. D. Bowen, B. A. Brown,
C. M. Campbell, J. M. Cook, S. Ettenauer, T. Glasmacher, K. W.
Kemper, S. McDaniel, A. Obertelli, T. Otsuka, A. Ratkiewicz,
K. Siwek, J. R. Terry, J. A. Tostevin, Y. Utsuno, and D.
Weisshaar, Phys. Rev. Lett. 99, 072502 (2007).

[9] B. Bastin, S. Grévy, D. Sohler, O. Sorlin, Z. Dombrádi, N. L.
Achouri, J. C. Angélique, F. Azaiez, D. Baiborodin, R. Borcea,
C. Bourgeois, A. Buta, A. Bürger, R. Chapman, J. C. Dalouzy,
Z. Dlouhy, A. Drouard, Z. Elekes, S. Franchoo, S. Iacob,
B. Laurent, M. Lazar, X. Liang, E. Liénard, J. Mrazek, L.
Nalpas, F. Negoita, N. A. Orr, Y. Penionzhkevich, Z. Podolyák,
F. Pougheon, P. Roussel-Chomaz, M. G. Saint-Laurent, M.
Stanoiu, I. Stefan, F. Nowacki, and A. Poves, Phys. Rev. Lett.
99, 022503 (2007).

[10] P. Adrich, A. M. Amthor, D. Bazin, M. D. Bowen, B. A.
Brown, C. M. Campbell, J. M. Cook, A. Gade, D. Galaviz, T.
Glasmacher, S. McDaniel, D. Miller, A. Obertelli, Y. Shimbara,
K. P. Siwek, J. A. Tostevin, and D. Weisshaar, Phys. Rev. C 77,
054306 (2008).

[11] E. C. Simpson, J. A. Tostevin, D. Bazin, and A. Gade, Phys.
Rev. C 79, 064621 (2009).

[12] E. C. Simpson and J. A. Tostevin, Phys. Rev. C 79, 024616
(2009).

[13] K. Wimmer, D. Bazin, A. Gade, J. A. Tostevin, T. Baugher,
Z. Chajecki, D. Coupland, M. A. Famiano, T. K. Ghosh, G. F.
Grinyer, R. Hodges, M. E. Howard, M. Kilburn, W. G. Lynch,
B. Manning, K. Meierbachtol, P. Quarterman, A. Ratkiewicz,
A. Sanetullaev, E. C. Simpson, S. R. Stroberg, M. B. Tsang, D.
Weisshaar, J. Winkelbauer, R. Winkler, and M. Youngs, Phys.
Rev. Lett. 109, 202505 (2012).

[14] S. Beceiro-Novo, T. Ahn, D. Bazin, and W. Mittig, Prog. Part.
Nucl. Phys. 84, 124 (2015).

[15] A. Obertelli, A. Delbart, S. Anvar, L. Audirac, G. Authelet,
H. Baba, B. Bruyneel, D. Calvet, F. Château, A. Corsi, P.
Doornenbal, J.-M. Gheller, A. Giganon, C. Lahonde-Hamdoun,
D. Leboeuf, D. Loiseau, A. Mohamed, J. P. Mols, H. Otsu, C.
Péron, A. Peyaud, E. C. Pollacco, G. Prono, J.-Y. Rousse, C.
Santamaria, and T. Uesaka, Eur. Phys. J. A 50, 8 (2014).

[16] P. Hansen and J. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219
(2003).

[17] G. Jacob and T. A. J. Maris, Rev. Mod. Phys. 38, 121 (1966).
[18] T. Aumann, C. A. Bertulani, and J. Ryckebusch, Phys. Rev. C

88, 064610 (2013).
[19] A. M. Moro, Phys. Rev. C 92, 044605 (2015).
[20] K. Ogata, K. Yoshida, and K. Minomo, Phys. Rev. C 92, 034616

(2015).
[21] R. Taniuchi, C. Santamaria, P. Doornenbal, A. Obertelli, K.

Yoneda, G. Authelet, H. Baba, D. Calvet, F. Château, A. Corsi,
A. Delbart, J.-M. Gheller, A. Gillibert, J. D. Holt, T. Isobe,
V. Lapoux, M. Matsushita, J. Menéndez, S. Momiyama, T.
Motobayashi, M. Niikura, F. Nowacki, K. Ogata, H. Otsu,
T. Otsuka, C. Péron, S. Péru, A. Peyaud, E. C. Pollacco, A.
Poves, J.-Y. Roussé, H. Sakurai, A. Schwenk, Y. Shiga, J.
Simonis, S. R. Stroberg, S. Takeuchi, Y. Tsunoda, T. Uesaka,
H. Wang, F. Browne, L. X. Chung, Z. Dombradi, S. Franchoo,
F. Giacoppo, A. Gottardo, K. Hadyńska-Klęk, Z. Korkulu, S.
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