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The experimental data from quasielastic electron and (anti)neutrino scattering on 12C are reanalyzed in
terms of a new scaling variable ψ∗ suggested by the interacting relativistic Fermi gas with scalar and vector
interactions, which is known to generate a relativistic effective mass for the interacting nucleons. We construct
a new scaling function f QE(ψ∗) for the inclusive lepton scattering from nuclei within the coherent density
fluctuation model (CDFM). The latter is a natural extension of the relativistic Fermi gas model to finite nuclei.
In this work, on the basis of the scaling function obtained within CDFM with a relativistic effective mass
m∗

N = 0.8mN , we calculate and compare the theoretical predictions with a large set of experimental data for
inclusive (e, e′) and (anti)neutrino cross sections. The model also includes the contribution of weak two-body
currents in the two-particle two-hole sector, evaluated within a fully relativistic Fermi gas. Good agreement with
experimental data is found over the whole range of electron and (anti)neutrino energies.
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I. INTRODUCTION

The superscaling phenomenon was first considered within
the framework of the relativistic Fermi gas (RFG) model
[1–6], where a properly defined function of the scaling ψ vari-
able was introduced. At large transferred momentum q = |q|
(q > 500 MeV/c) the latter does not depend on q and the mass
number. As pointed out in [4], however, the actual nuclear
dynamical content of the superscaling is more complex than
that provided by the RFG model. It was observed that the
experimental data have a superscaling behavior in the low-ω
side (ω being the transfer energy) of the quasielastic peak
for large negative values of ψ (up to ψ ≈ −2), while the
predictions of the RFG model are f (ψ ) = 0 for ψ � −1.
This imposes the consideration of the superscaling in real-
istic finite systems. One of the approaches to do this was
developed [7,8] in the coherent density fluctuation model
(CDFM) [9–16] which is related to the δ-function limit of the
generator coordinate method [7,17]. It was shown in [7,8,18]
that the superscaling in nuclei can be explained quantitatively
on the basis of the similar behavior of the high-momentum
components of the nucleon momentum distribution in light,
medium, and heavy nuclei. It is well known that the latter is
related to the effects of the NN correlations in nuclei (see, e.g.,
[9,10]).

In our previous works [7,8,18,19] we obtained the CDFM
scaling function f (ψ ) starting from the RFG model scaling
function fRFG(ψ ) and convoluting it with the weight func-
tion |F (x)|2 that is related equivalently to either the density
ρ(r) or the nucleon momentum distribution n(k) in nuclei.
Thus, the CDFM scaling function is an infinite superposition

*Contact author: martin.inrne@gmail.com

of weighted RFG scaling functions. This approach improves
upon RFG and enables one to describe the scaling function for
realistic finite nuclear systems. The CDFM scaling function
has been used to predict cross sections for several processes
such as the inclusive electron scattering in the quasielas-
tic (QE) and � regions [19,20] and neutrino (antineutrino)
scattering both for charge-changing (CC) [20] and for neutral-
current (NC) [21] processes. In our work [19] we reproduce
experimental data of the inclusive electron scattering in the
QE-region using CDFM scaling function which is obtained
by the parametrizing the RFG scaling function and by the
coefficient c1, which helps us to account for the experimental
fact of the asymmetry of the scaling function. The value of
the coefficient c1 (c1 �= 3/4) is taken in accordance with the
empirical data (c1 depends on the value of the momentum
transfer in the QE peak).

In the present work we follow Ref. [22], where the ψ∗
scaling idea is explored in the context of the relativistic
mean field (RMF) for nuclear matter. The new scaling func-
tion f ∗(ψ∗) including dynamical relativistic effects [22–25]
is introduced through an effective mass into its definition.
The resulting superscaling approach with relativistic effective
mass (SuSAM*) model describes a large amount of the elec-
tron data lying inside a phenomenological quasielastic band,
and it has been extended recently successfully to the neutrino
and antineutrino sector [26] giving a fair agreement with the
data. An enhancement of the SuSAM* model is detailed in
Refs. [27–30], where the responses of 2p2h meson exchange
currents (MEC) are calculated consistently with the mean field
model in nuclear matter. This is achieved by incorporating
an effective mass and vector energy for the nucleon, thereby
explicitly including the same medium modifications as the
quasielastic responses. A systematic review of experimental
data on quasielastic neutrino scattering reveals a reasonable
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agreement with the theoretical predictions derived from the
extended SuSAM* model [30].

The SuSAM* model was first developed using the set of
12C data [22,23] and later applied to other nuclei in [24]. In
Ref. [22] the best value of the effective mass M∗ = m∗

N/mN =
0.8 was obtained, which we use in our present consideration.
This value provides the best scaling behavior of the data with
a large fraction of data concentrated around the universal
scaling function of the relativistic Fermi gas

fRFG(ψ∗) = 3
4 (1 − ψ∗2)θ (1 − ψ∗2). (1)

The ψ∗ variable [see Eqs. (5)–(6) given below] was in-
spired by the mean-field theory, that provides a reasonable
description of the quasielastic response function [31,32]. The
important point is that in the interacting RFG model the vector
and scalar potentials generate an effective mass m∗

N for the
nucleon in the medium.

Our present approach, called CDFMM∗ (CDFM with M∗),
uses a scaling function obtained within the CDFM model.
It keeps the gauge invariance and describes the dynamical
enhancement of both the lower components of the relativistic
spinors and the transverse response function. Here, we men-
tion that the superscaling analyses (SuSA) violates the gauge
invariance because it introduces an energy shift to account for
separation energy.

The paper is organized as follows. In Sec. II we review
in brief the theoretical scheme for obtaining the CDFMM∗

scaling function and the general formalism for the description
of the (e, e′) and (anti)neutrino CC quasielastic double differ-
ential cross sections. In Sec. III we show our main results for
the inclusive (e, e′) and (anti)neutrino CC quasielastic double
differential cross sections, and finally, in Sec. IV we draw our
conclusions and outline our future plans or prospects related
to the conclusions of the present work.

II. THEORETICAL SCHEME

The model developed in Refs. [22–25] is inspired by the
RMF in nuclear matter. In this model the single-nucleon ex-
citations with initial nucleon energy E = √

p2 + m∗
N

2 in the
mean field is considered. The final momentum of the nucleon
is p′ = p + q and its energy is E ′ = √

p′2 + m∗
N

2. Note that
initial and final nucleons have the same effective mass m∗

N .
In the case of the (e, e′) scattering the quasielastic cross

section is written in the Rosenbluth form
dσ

d	′dε′ = σMott (vLRL + vT RT ), (2)

where σMott is the Mott cross section, vL = Q4/q4, and
vT = tan2(θ/2) − Q2/2q2, with θ the scattering angle, the
energy transfer ω, and three-momentum transfer q. The
four-momentum transfer is Q2 = ω2 − q2 < 0. The nuclear
response functions can be written in the factorized form for
K = L, T :

RK = rK f ∗(ψ∗), (3)

where rL and rT are the single-nucleon contribution, taking
into account the Fermi motion

rK = ξ ∗
F

m∗
Nη∗

F
3κ∗

(
ZU p

K + NU n
K

)
. (4)

In our calculations we use the scaling function f ∗(ψ∗) ob-
tained within RFG model [Eq. (1)] as well as the one within
the CDFMM∗ model [see Eq. (18) given below]. They depend
only on the new scaling variable ψ∗, that is the minimum
kinetic energy of the initial nucleon divided by the kinetic
Fermi energy. The minimum energy allowed for a nucleon
inside the nucleus to absorb the virtual photon (in units of m∗

N )
is

ε∗
0 = Max

{
κ∗

√
1 + 1

τ ∗ − λ∗, ε∗
F − 2λ∗

}
, (5)

where the dimensionless variables are

λ∗ = ω/(2m∗
N ), κ∗ = q/(2m∗

N ), τ ∗ = κ∗2 − λ∗2
,

η∗
F = kF /m∗

N , ξ ∗
F =

√
1 + η∗

F
2 − 1, ε∗

F =
√

1 + η∗
F

2.

The definition of the scaling variable is given by

ψ∗ =
√

ε∗
0 − 1

ε∗
F − 1

sgn(λ∗ − τ ∗), (6)

where ψ∗ is negative to the left of the quasielastic peak (λ∗ <

τ ∗) and positive on the right side.
The single nucleon response functions are

UL = κ∗2

τ ∗

[
(G∗

E )2 + (G∗
E )2 + τ ∗(G∗

M )2

1 + τ ∗ �

]
, (7)

UT = 2τ ∗(G∗
M )2 + (G∗

E )2 + τ ∗(G∗
M )2

1 + τ ∗ �, (8)

where the quantity � has been introduced as

� = τ ∗

κ∗2 ξ ∗
F (1 − ψ∗2)

[
κ∗

√
1 + 1

τ ∗ + ξ ∗
F

3
(1 − ψ∗2)

]
. (9)

The electric and magnetic form factors are modified in the
medium due to the effective mass according to

G∗
E = F1 − τ ∗ m∗

N

mN
F2, G∗

M = F1 + m∗
N

mN
F2. (10)

For the free Dirac and Pauli form factors, F1 and F2, we use
the Galster parametrization [33].

The scaling function in the CDFM was obtained starting
from that in the RFG model [1–4] in two equivalent ways:
on the basis of the local density distribution ρ(r) and of the
nucleon momentum distribution n(k). This allows one to study
simultaneously the role of the NN correlations included in
ρ(r) and n(k) in the case of the superscaling phenomenon.
To explore these properties the scaling function has been
derived in two ways in CDFM in [8]. When using the density
distribution ρ(r) the scaling function is

f QE(ψ∗) =
∫ ∞

0
|F (x)|2 f QE

RFG[ψ∗(x)] dx (11)

with a weight function of the form

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

, (12)
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FIG. 1. The nucleon density distribution of the 12C nucleus using
two empirical distributions of the protons [34]: modified harmonic
oscillator (MHO) and three parameter Fermi (3pF) parametrizations.
As inset depicts the corresponding scaling functions obtained within
CDFMM∗ [using Eqs. (16) and (18)] and RFGM∗ [Eq. (1)] models are
given.

where

ρ0(x) = 3A

4πx3
. (13)

f QE
RFG[ψ∗(x)] with ψ∗(x) = kF xψ∗

α
is the scaling function re-

lated to the RFG model [see Eq. (1)]

f QE
RFG[ψ∗(x)] = 3

4

[
1−

(
kF xψ∗

α

)2
]
θ

(
1 −

(
kF xψ∗

α

)2
)

,

(14)
where α = (9πA/8)1/3 � 1.52A1/3 and therefore

f QE(ψ∗) =
∫ α/(kF |ψ∗|)

0
|F (x)|2 f QE

RFG[ψ∗(x)] dx. (15)

In Eqs. (11) and (14) the Fermi momentum kF is not a free
parameter for different nuclei as it is in the RFG model, but kF

is calculated within the CDFM (or CDFMM∗ ) for each nucleus
using the corresponding expressions:

kF =
∫ ∞

0
|F (x)|2 kx(x) dx =

∫ ∞

0
|F (x)|2 α

x
dx

= 4π (9π )1/3

3A2/3

∫ ∞

0
ρ(r) r dr (16)

when the condition

lim
x→∞[ρ(r) r2] = 0 (17)

is fulfilled. As shown in [8], the integration in Eq. (15),
using Eq. (12), leads to the explicit relationship of the

FIG. 2. Longitudinal and transverse response functions of 12C in the CDFMM∗ model, for several values of the momentum transfer. The
CDFMM∗ results for effective mass M∗ = 1 and 0.8 are also shown.

064621-3



M. V. IVANOV AND A. N. ANTONOV PHYSICAL REVIEW C 109, 064621 (2024)

FIG. 3. The CDFMM∗ results for the inclusive (e, e′) cross section for several kinematics compared to the RFGM∗ model and experimental
data.

scaling function with the density distributions

f QE(ψ∗) = 4π

A

∫ α/(kF |ψ∗|)

0
ρ(x)

[
x2 f QE

RFG[ψ∗(x)] + x3

3

∂ f QE
RFG[ψ∗(x)]

∂x

]
dx. (18)
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FIG. 4. The CDFMM∗ results for the inclusive (e, e′) cross section for several kinematics compared to the RFGM∗ model and experimental
data.

We also note that in the consideration up to here the CDFMM∗

model scaling function f QE(ψ∗) is symmetric under the
change of ψ∗ by −ψ∗.

In this work we use the empirical density distribution
of protons to determine the weight function |F (x)|2 [see
Eqs. (11) and (12)] and the corresponding scaling function
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FIG. 5. The CDFMM∗ results for the inclusive (e, e′) cross section for several kinematics compared to the RFGM∗ model and experimental
data.

in the QE region f QE(ψ∗) within CDFMM∗ [see Eq. (18)].
The empirical distribution of the proton parameters used in
this work are those of Ref. [34]. In the case of the 12C nu-
cleus there are two parametrizations: the modified harmonic

oscillator (MHO) and the three parameter Fermi (3pF) form.
In both cases (MHO and 3pF) the condition of Eq. (17) is ful-
filled. Also, we assume that for 12C nucleus ρn(r) = ρp(r). In
Fig. 1 are presented the density distributions using MHO and
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FIG. 6. The CDFMM∗ results for the inclusive (e, e′) cross section for several kinematics compared to the RFGM∗ model and experimental
data.

3pF parametrizations and as inset depicts the corresponding
CDFMM∗ scaling functions in comparison with the RFGM∗

scaling function. As can be seen, the differences between
the two scaling functions obtained within CDFMM∗ [using

Eqs. (16) and (18)] are almost negligible. So that in the
following results presented in this paper we use only the
3pF density parametrization for calculations of the scaling
function.
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FIG. 7. The CDFMM∗ results for the inclusive (e, e′) cross section for several kinematics compared to the RFGM∗ model and experimental
data.

In Fig. 2 the longitudinal and transverse response functions
for several values of the momentum transfer are shown. The
CDFMM∗ results with M∗ = 0.8 are compared to the CDFM
ones (i.e., CDFMM∗ with effective mass M∗ = 1). As was
shown in Ref. [23], the effect of the effective mass is a shift
of the responses to higher energies, because the position of
the quasielastic peak is given by ω �

√
q2 + m∗

N
2 − m∗

N . Note
that this shift gives the correct position of the quasielastic peak
without need of introducing a separation energy parameter.
In comparing of the ratio between RT and RL one can also
observe an enhancement for the case M∗ = 0.8, especially
at larger values of the momentum transfer q. This is related
with the known enhancement of the lower components in the
relativistic spinor in the nuclear medium.

Here, it is important to note that in the present work the
weight and the scaling functions which are obtained within
the CDFMM∗ model and are used in our calculations are
normalized as follows:∫ ∞

0
|F (x)|2dx = 1,

∫ ∞

−∞
f QE(ψ∗)dψ∗ = 1. (19)

In the next section, we present results for the (νμ, μ−) cross
section calculated within the CDFMM∗ model. The energies
of the incident neutrino and detected muon are ε = Eν , ε′ =
mμ + Tμ, and their momenta are k, k′. The four-momentum
transfer is kμ − k′μ = (ω, q) with Q2 = q2 − ω2 > 0. If the
(anti)neutrino scattering angle is θμ, the double-differential

cross section can be written as [35,36]

d2σ

dTμd cos θμ

= σ0{VCCRCC + 2VCLRCL + VLLRLL

+VT RT ± 2VT ′RT ′ }, (20)

where

σ0 = G2 cos2 θc

4π

k′

ε
v0. (21)

Here, G = 1.166 × 10−11 MeV−2 ≈ 10−5/m2
p is the Fermi

constant, θc is the Cabibbo angle, cos θc = 0.975, and the
kinematic factor v0 = (ε + ε′)2 − q2. The nuclear structure
is implicitly written as a linear combination of five nuclear
response functions, RK (q, ω), where the fifth response func-
tion RT ′ is added (+) for neutrinos and subtracted (−) for
antineutrinos. The VK coefficients depend only on the lepton
kinematics and are independent on the details of the nuclear
target.

The resulting nuclear response function RK is proportional
to the single-nucleon response function UK times the scaling
function f QE(ψ∗):

RK = N ξ ∗
F

m∗
Nη∗3

F κ∗UK f QE(ψ∗). (22)

In this work we use the CDFMM∗ scaling function obtained
by Eq. (18). It is tested in Sec. III in the calculations of
the inclusive (e, e′) quasielastic data of 12C. The kinematic
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FIG. 8. MiniBooNE flux-folded double differential cross section per target neutron for the νμ CCQE process on 12C displayed versus the
μ− kinetic energy Tμ for various bins of cos θμ obtained within the CDFMM∗ model including MEC. 2p–2h MEC and QE results are shown
separately. The data are from [37].

coefficients VK and the single-nucleon response function UK

are given in Ref. [26].

III. RESULTS AND DISCUSSIONS

In this section we use the new scaling function of the
CDFMM∗ model, given by Eq. (18), to compute lepton scat-
tering cross sections on 12C. It is important to test CDFMM∗

model for inclusive (e, e′) scattering before to apply it to
neutrino scattering. In Figs. 3–7 we show the predictions of
CDFMM∗+MEC contribution (blue solid line) for the (e, e′)
cross section compared to the experimental data [40]. Also,

the RFGM∗+MEC results (green dashed line) are given. The
QE contributions within CDFMM∗ and RFGM∗ are obtained
using Eqs. (2)–(10) and corresponding scaling functions. The
contribution of meson exchange currents (MEC) is presented,
separately. The evaluation of the 2p-2h pionic MEC contri-
butions is performed within the RFG model in which a fully
Lorentz covariant calculation of the MEC can be performed
(see [41–43]). The CDFMM∗ model description is quite ac-
ceptable using just one free parameter, namely the effective
mass M∗, which is fixed to 0.8 in all performed calculations.

In Figs. 8–10 we show the double differential cross sec-
tion averaged over the neutrino and antineutrino energy flux
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FIG. 9. As for Fig. 8, but considering more backward kinematics. The data are from [37].

against the kinetic energy of the final muon. The data are taken
from the MiniBooNE Collaboration [37,38]. We represent a
large variety of kinematical situations where each panel refers
to results averaged over a particular muon angular bin.

In this work we make use of the 2p-2h MEC model devel-
oped in Ref. [44], which is an extension to the weak sector of
the seminal papers [41,45,46] for the electromagnetic case.
The calculation is entirely based on the RFG model and
it incorporates the explicit evaluation of the five response
functions involved in inclusive neutrino scattering. We use
a general parametrization of the MEC responses that signifi-
cantly reduces the computational time. Its functional form for
the cases of 12C and 16O is given in Refs. [47–49].

The results including both QE (obtained within the
CDFMM∗ model) and 2p-2h MEC are compared with the data
in Figs. 8–10. The QE and 2p-2h MEC contributions are
presented separately also in the figures. It should be noted
the important role played by 2p-2h MEC to describe correctly
the experimental data of the order of ≈20–25 % of the total
response at the maximum. In the neutrino case (Figs. 8 and 9)
this relative strength is almost independent of the scattering
angle. In the antineutrino case (Fig. 10) the 2p-2h relative
strength gets larger for backward scattering angles. This is

due to the fact that the antineutrino cross section involves
a destructive interference between the T and T ′ channels
[see Eq. (20)] and is therefore more sensitive to nuclear
effects.

Theoretical predictions within the CDFMM∗ model in-
cluding both QE and 2p-2h MEC contributions are in good
agreement with the data in most of the kinematical situations
explored. Only at scattering angles approaching 90◦ and above
one can see a hint of a difference, although in these situations
only a small number of data points with large uncertainties
exist.

The CDFMM∗ results for the total flux-unfolded integrated
cross sections per nucleon are given in Fig. 11 being compared
with the MiniBooNE [37,38] and NOMAD [39] data (up to
100 GeV). As can be seen in Fig 11, the 2p-2h MEC con-
tributions are needed in order to reproduce the MiniBooNE
data. Also, the contributions of different parts of the scaling
to the total cross sections are presented in Fig. 11. The main
contribution to the cross sections comes from the part of
the CDFMM∗ scaling function between −1 � ψ∗ � 1. The
CDFMM∗ model with 2p-2h MEC clearly overpredicts the
NOMAD data. On the contrary, the results without MEC
contributions (the pure QE results obtained within CDFMM∗

064621-10
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FIG. 10. As for Fig. 8, but now for the νμ CCQE process on 12C. The data are from [38].

model) are in good agreement with the NOMAD data. This
result is consistent with the setup of the NOMAD experiment
that, unlike MiniBooNE, can select true QE, rather than the
“QE-like” events. The role of the 2p-2h MEC is very im-
portant at all neutrino energies, getting an almost constant
value of the order of ≈30%–35% compared with the pure
QE contribution. Here, we would like to mention that the
quasielastic data themselves have been measured not directly
but have been deduced from the so-called quasielastic-like
data by subtracting a background of events in which pions are
firstly produced, but then reabsorbed again. This background
was determined from calculations with an event generator.
Thus, the final QE + 2p-2h data invariably contain some
model dependence [50].

IV. CONCLUSIONS

In this paper we have investigated and developed a new
scaling approach CDFMM∗ using the scaling function derived
in the CDFM, the latter being based on the scaling function
of the relativistic Fermi gas [Eq. (1)]. We use also a new
scaling variable ψ∗ extracted from the scaling properties of
the RMF model in nuclear matter [22]. Within this model we
have obtained a scaling function f QE(ψ∗) [Eq. (18)] in the QE
region using the empirical density distribution of protons to
determine the weight function |F (x)|2. The Fermi momentum
kF in the CDFMM∗ model is not a free parameter and can be
obtained by Eq. (16). With the scaling function f QE(ψ∗) we
calculated the longitudinal and transverse response functions
in both ways: using the scaling function from the CDFMM∗
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FIG. 11. CCQE νμ–12C (νμ–12C) total cross section per neutron (proton) as a function of the neutrino energy. The left panel (a) corresponds
to neutrino cross sections and the right one (b) to antineutrino reactions. The data are from MiniBooNE [37,38] and NOMAD [39] experiments.

and also with the conventional scaling function of the CDFM
model (CDFMM∗ model with M∗ = 1). The CDFMM∗ model
shows the enhancement of the transverse components of the
electromagnetic current. This confirms that using the effective
nucleon mass reduction of M∗ = 0.8 leads to the enhancement
of the transverse response (the RMF model includes some dy-
namical relativistic effects like enhancement of the transverse
response due to the lower components of the nucleon spinors).
We computed the inclusive (e, e′) differential quasielastic
cross section with scaling function f QE(ψ∗), adding the 2p-2h
MEC contribution obtained within the RFG model to the QE
results. The theoretical evaluations are shown in Figs. 8–10
and are compared to the world 12C(e, e′) data. It is found a
reasonable description of the data.

The next step in our study was to use the scaling function
f QE(ψ∗) obtained in CDFMM∗ model to predict the CCQE
(anti)neutrino-nucleus scattering processes that are of interest
for (anti)neutrino oscillation experiments. These calculations,
based on the impulse approximation, are complemented with
the contributions given by two-body weak meson exchange
currents, giving rise to two-particle two-hole excitations. The
model is applied to the MiniBooNE experiment (see Figs. 8–
11). We find that the scaling approach CDFMM∗ including
both QE and 2p-2h MEC leads to results that are in good
agreement with the data in most of the kinematical situa-
tions explored in this research. One can see the contribution
ascribed to the 2p-2h MEC effects that can be even larger
than ≈30%–35% compared with the pure QE responses. This
proves without ambiguity the essential role played by 2p-2h
MEC in providing a successful description of (anti)neutrino-
nucleus scattering data. The results in this work can be
considered as a test of the reliability of the present CDFMM∗

model. The present study gives us a confidence to extend the
use of this model to predict CCQE ν(ν)-nucleus scattering
processes to other nucleus and energies and to other processes,
such as the semi-inclusive CCν reactions and neutral current
processes.

It is crucial to note that the parametrization of the 2p2h
MEC employed in this study is derived from the RFG model
with an effective mass of M∗ = 1. An alternative parametriza-
tion for electroweak 2p2h MEC responses, calculated in the
RMF with an effective mass of M∗ = 0.8, has been introduced
in Refs. [27,28]. This new parametrization, which employs
a semiempirical formula, could provide benefits over the
CDFMM∗ model. Therefore, the initial step to enhance our
model involves adopting this alternative parametrization to
evaluate its potential influence on the subsequent research.

It is shown in our work that the CDFMM∗ model describes
successfully inclusive (e, e′) and ν(ν) CCQE quasielastic
cross section on the basis of the new scaling variable ψ∗
[Eq. (6)], of the empirical density distribution of protons to
determine the weight function |F (x)|2 [Eq. (12)], and of the
corresponding scaling function f QE(ψ∗) [Eq. (18)]. We note
that in the CDFMM∗ model an effective mass M∗ = m∗

N/mN =
0.8 is used. The latter orignates from the interacting RFG
model in which the vector and scalar potentials generate the
effective mass of the nucleon in medium. We should em-
phasize that the CDFMM∗ scaling function keeps the gauge
invariance (that is not the case in the SuSA approach) and
describes the dynamical enhancement of the lower compo-
nents of the relativistic spinors, as well as the transverse
response function. In addition, we note the important fact
that in the CDFMM∗ model the weight and scaling functions
are normalized to unity. It is pointed out that the constructed
realistic CDFMM∗ scaling function is an essential ingredient
in this approach for the description of the processes of lep-
ton scattering from nuclei. Another interesting future project
will be to extend the scaling approach using a constructed
realistic CDFMM∗ scaling function to obtain predictions for
the charge-changing neutrino and antineutrino scattering from
nuclei in the � region.
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