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Non-Markovian character and irreversibility of real-time quantum many-body dynamics
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The presence of pairing correlations within the time-dependent density-functional-theory (TDDFT) extension
to superfluid systems is tantamount to the presence of a quantum collision integral in the evolution equations,
which leads to an obviously non-Markovian behavior of the single-particle occupation probabilities, unexpected
in a traditional quantum extension of kinetic equations. The quantum generalization of the Boltzmann equation,
based on a collision integral in terms of phase-space occupation probabilities, is the most used approach to
describe nuclear dynamics and which by construction has a Markovian character. By contrast, the extension
of TDDFT to superfluid systems has similarities with the Baym and Kadanoff kinetic formalism, which,
however, is formulated with much more complicated evolution equations with long-time memory terms and
nonlocal interactions. The irreversibility of quantum dynamics is properly characterized using the canonical
wave functions/natural orbitals and the associated canonical occupation probabilities, which provide the smallest
possible representation of any fermionic many-body wave function. In this basis, one can evaluate the orbital
entanglement entropy, which is an excellent measure of the nonequilibrium dynamics of an isolated system.
To explore the phenomena of memory effects and irreversibility, we investigate the use of canonical wave
functions/natural orbitals in nuclear many-body calculations, assessing their utility for static calculations,
dynamics, and symmetry restoration. As the number of single-particle states is generally quite large, it is highly
desirable to work in the canonical basis whenever possible, preferably with a cutoff. We show that truncating
the number of canonical wave functions can be a valid approach in the case of static calculations, but that such a
truncation is not valid for time-dependent calculations, as it leads to the violation of continuity equation, energy
conservation, and other observables, as well as an inaccurate representation of the dynamics. Indeed, in order
to describe the dynamics of a fissioning system within a TDDFT framework all the canonical states must be
included in the calculation. Finally, we demonstrate that the canonical representation provides a very efficient

basis for performing symmetry projections.
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I. INTRODUCTION

We address the question of whether nuclear dynamics has
a Markovian character or not, and the related aspect, whether
the dynamics of a typically excited isolated nucleus is irre-
versible and how to describe its irreversibility. As we will
show, the main technical tool needed to address these issues is
the set of canonical wave functions or natural orbitals.

Canonical wave functions were introduced in 1957 by
Bardeen, Cooper, and Schrieffer (BCS) to describe super-
conductors [1]. A year earlier, in 1956, Lowdin introduced
a very similar set of single-particle wave functions, which
he called natural orbitals [2-6]. It was proven [2-4] that
the canonical wave functions/natural orbitals can serve as
the most economical way to represent any many-body wave
function as a sum over Slater determinants, each one of which
obviously describes a system of N independent fermions.
The sum of many such Slater determinants, however, de-
scribes in general a strongly interacting system of particles.
After determining the set of canonical wave functions/natural
orbitals one can extract a unique and well-defined set
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of single-particle occupation probabilities, known as the
canonical occupation probabilities, which allows one to eval-
uate the orbital entanglement entropy of the many-body wave
function, which serves as a basis-independent characterization
of its complexity. While such a set of single-particle wave
functions is likely the best way to establish the complexity
of a many-body wave function of an interacting system, the
use of such set become problematic for time-dependent or
nonequilibrium situations. The reason is quite obvious: Due
to particle-particle interactions the single-particle occupation
probabilities are time dependent, and so are also the canonical
wave functions/natural orbitals, and so the appealing first
thought that one can use the canonical wave functions defined
at the initial time in time-dependent problems proves false
right away, even after one time step.

BCS [1] were the first to introduce a highly correlated
many-body wave function to describe fermionic superfluids,
immediately followed by similar suggestions due to Bogoli-
ubov [7] and Valatin [8]. The BCS wave function has the form

©) = [ [ + wafaDI0), |l +lul =1, (1)
k
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where az ag are single-particle creation operators for time-

reversed states, |0) is the vacuum state, and ¢ (§), ¢z(§) are
the corresponding single-particle wave functions depending
on the spatial and spin (and isospin for nuclear systems) coor-
dinate & = (r, 0, T), known as the canonical wave functions.

In general, one follows Bogoliubov and now introduces a
more general type of many-body wave function for a many-
body system with pairing correlations, using creation and
annihilation quasiparticle operators and the corresponding
many-body wave function,

of = Zj[uk(sw(s) @), 3)

o = Zj[v,’z@)w(@ LU EYE), @)

|®) = Nl_[ak|0), )
k

where N is an appropriate normalization constant and with
the reverse relations

v = Z:[HZ@WZ F v, ©)

Y(E) = ij[vi(é)a,‘i + e ()], @)

where ¥ (&) and (£) are the field operators for the cre-
ation and annihilation of a particle with coordinate & =
(r,o, 1), (&), vi())T are the quasiparticle wave functions,
and the integral implies also a summation over discrete vari-
ables when appropriate. The quasiparticle wave functions
ui (&), vi(§) are determined by solving the Hartree-Fock-
Bogoliubov (HFB) equations and are eigenstates of the
corresponding HFB quasiparticle Hamiltonian.

The BCS approximate many-body wave function is an
excellent candidate for an electronic superconductor, when
the pairing correlations are limited to a very narrow en-
ergy interval around the Fermi level, and the single-particle
wave functions have a negligible energy dependence. For
nuclei, neutron and proton matter in neutron stars and cold
atoms, however, when the pairing interactions are strong
and the mixing occurs among states rather well separated
in single-particle energy, the assumption that the u; (&) and
v (&) components of the quasiparticle wave functions have
similar spatial dependence is not valid anymore. In the
Hartree-Fock-Bogoliubov approximation, the quasiparticle
components u;(§) and vi(§) have very different spatial be-
havior. In particular while the v (&) components in the case of
nuclei or isolated finite systems are always square integrable
[9], the ux (€ ) components most of the time are continuum type
of wave functions, which are not square integrable.

In Sec. II we will describe how canonical wave
functions/natural orbitals are defined, Sec. II A, and relevant
aspects of the Bloch-Messiah decomposition, Sec. IIB. In
Sec. III we will discuss generalized Bogoliubov quasiparti-
cles, which become relevant in reactions, when both partners
are superfluid, as in the case of nuclear fission or collision be-
tween heavy ions. In Sec. IV we will discuss several particular
aspects which are relevant in the subsequent analysis of the

time-dependent equations for fermionic superfluids. In Sec. V
we describe some new aspects of the particle number projec-
tion for fermionic superfluids, which will be illustrated in the
case of nuclear fission in the following section. In Sec. VI A
we discuss under what circumstances the use of a reduced set
of canonical wave functions is beneficial. In Sec. VIB, we
discuss the non-Markovian character of the fission dynamics.
In Sec. VIC, we discuss the relevance of particle number
projection and also the use of the reduced set of canonical
wave functions in dynamic simulations. And in Sec. VID we
will illustrate the irreversible fission dynamics and its charac-
terization by the means of the orbital entanglement entropy. In
Sec. VII we will summarize our main findings.

II. CANONICAL WAVE FUNCTIONS

The set of quasiparticle wave functions ug(§), vi(§) is
twice the size of the set of canonical wave functions
dr (&), ¢r(§). These two sets of quasiparticle wave functions,
however, are related and one can derive one set from the
other and vice versa; see Ref. [10] and the text below. Prac-
tice shows that using a significantly reduced set of functions
¢ (&), ¢z(§), with occupation numbers ny = |vg|? is often
sufficient to represent the many-body wave function |®) with
sufficient accuracy [10]. The quasiparticle wave functions
u (&), vi(§) are very useful to describe low-energy excitations
of the many-body system and their corresponding eigenvalues
E; > 0 play a similar role as the particle eigenstates in a
normal system.

The canonical wave functions can be determined after di-
agonalizing the overlap Hermitian matrix,

O = (velvi), ®)

and the resulting canonical ¥; components, defined below,
satisfy the relations

(VilVi) = mibp, 9

where n; are the canonical occupation probabilities [10]. It
follows that the overlap matrix of the fi; components is also
diagonal,

(Ul = (1 — m )z, (10

and the average particle number is given by

N=>"m=Y Gl =Y (wlv). (1)
k

k k

One should note that the occupation probabilities ny = (V4 |¥¢)
are different from (vi|vy), these latter ones not being gauge
invariant. As a rule, the eigenvalues n; are double degenerate
for even-even nuclei and, depending on the formulation, the
eigenvalue spectrum is either discrete for systems in a finite
box or a mixture of discrete and continuous spectrum in an
infinite box. The number of v; components for either the
proton or neutron subsystems is 28 = 2N, N,N; for neutrons
and protons respectively in a finite box, where N, , . are
the number of lattice points in the corresponding Cartesian
direction.
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It is useful to introduce the unitary transformation and,
correspondingly, the set of eigenvectors, which diagonalizes
O,

Z Oklulm = ukmnm’ Zu]jmukn = Smnv (12)
! n
Ou =Y Uimnlds,,. (13)

VeE) = Y UL In(E), Tu(E) =Y Upvi(E), (14)
m !

w(8) = D U, Tn(E). 0(E) =) U (). (15)
m !
The columns of the matrix U, are the eigenvectors of the
overlap matrix, and they are used to construct the canonical
wave functions V,(§) and @i, (§). As before, the spatial, spin,
and isospin coordinates are labeled by £ = (r, o, 7).
Recently Chen et al. [11] implemented a solution of the
HFB self-consistent equations directly in the canonical basis
set of wave functions. Since the canonical wave functions
are not the same as the quasiparticle wave functions, solving
explicitly the HFB equation within such a basis set requires
the introduction of a large number of Lagrange multipliers,
which have to be evaluated at each iteration. One must re-
diagonalize the canonical wave functions at each iteration,
which makes a very cumbersome numerical implementation
for large sets of canonical wave functions, which are needed
in practice, as we show below. By contrast, solving the
HFB equations self-consistently using standard diagonaliza-
tion methods is a rather simple procedure, which is widely
used in practice with rather large basis sets. After completing
the iterative procedure, the determination of the canonical
basis set requires only one diagonalization of the overlap
matrix defined in Eq. (8), which is only half the size of the
HFB matrix, followed by a unitary transformation from the
original quasiparticle wave functions to the new canonical
quasiparticle wave functions, see Eqs. (14) and (15).

A. Relations between the canonical wave functions ¢ .. (§)
and the quasiparticle wave functions @; .. (§), V;,+.(§)

The canonical occupation probabilities and wave functions
for an even system are defined as

n(E. &)=Y Vi), (16)
k
Idé&/n(é, ENr(E") = mepy - (§), (I7)
Y b G} (E) = bcer, (18)
It
(¢l,r|¢l’,r’) = 6[,[’81.1/7 (19)
where T =4, I =1,...,Q, and n; are double degenerate.

This definition of the canonical wave functions has an ambi-
guity, as their phases are undefined. While the overall phases
of the ¥, components are irrelevant for the definition of the
normal number densities, the relative phases of the {i; and
¥ components are crucial for the correct reproduction of the

anomalous density. The set of wave functions ¢; (&) can
be introduced for any many-body system and as such were
introduced first by Lowdin in 1956 and called natural or-
bitals [2-6] and it can be shown that they represent the most
economical way to represent accurately a many-body wave
function.

Using canonical WFs one can show that the many-body
wave function |®) has the structure (up to an overall irrelevant
phase)

Q
©) = [[/1 =1+ iga) .a] ))0), 20)
=1

where a;' . are creation operators for the canonical wave func-
tions ¢; . (§) = (gla;r |0) defined in Eq. (17) and that |®) is a
quasiparticle vacuum for the canonical quasiparticle operators
al,l’ |q>> = 0,

O‘lT,Jr 0 u v 0 a;r,+

a;r’i _ Up 0 0 —VUp a;-’i (21)
o+ v, 0 0 u ay |

7 0 —Up up 0 ap —

alT,+ 0w v, 0 O‘IT,+

a;’_ — up 0 0 —Up (x;‘,_ (22)
ap + Up 0 0 up o+ ’

ap— 0 —Up Up 0 o —

where p= (I, +)and p= (I, —) and u, = /1 —n; > 0 and
v, = /n; > 0 are assumed to be non-negative [12-15]. One
can now introduce the corresponding quasiparticle wave func-
tions,

&, = I[ﬁz,z(é)W(E) +VEW ()] (23)

@ = I[VE‘,,(EWT(E) +u V@) 24

U (8) = V1 =gy (8), (25)
V:(6) = T/, ¢ (§), (26)

or in matrix form,
) 2 g0 @) e ©) (VY o
o) = g\ E) 5.©)\ v
The time-reversal symmetry between the two ¢; (&) of
the doublet is not a necessary condition in order to uniquely
evaluate the anomalous density, as one can show that a unitary
transformation between the two time-reversed canonical wave
functions ¢; +.(£) does not change the Cooper pair wave
function or the anomalous density,

W€, 0) =N Y 97 (B (0) = ¥ (O (E)],  (28)
I}

as the quantity in square brackets is a 2 x 2 Slater determi-
nant and where N is the normalization constant. This wave
function is invariant with respect to an arbitrary unitary trans-
formation between ¢; . (&) for fixed /, and therefore ¢; 1. ()
do not need to be related by time-reversal symmetry.
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Since the anomalous density «(§,&") = —« (€', &) is by
definition antisymmetric, the representation of the many-body
wave function in the canonical basis is well defined only if the
two canonical wave functions ¢; 1.(£), and correspondingly
the wave functions @ .(§), ¥, .(§), have a well-defined
relative phase

- 1— n; %

() =1, . Vi (8), (29)
- 1— n; %
U:(§) = -1,/ o Vi (&), (30)

and if the WFs iz(£) and ¥;(¢) are defined by Egs. (14)
and (15). One can check that these relations ensure the
antisymmetry of

K, 0) =) T (B (§)
It

=)o/ =) ()1 (6). G
It

The issue with using the functions ¢;.(§), ¢; () as
independent eigenfunctions is their relative phase ambiguity.

The canonical ¢;(§) = ¢14(§) and ¢(§) = ¢, —(§) with

correct relative phases are

/RS, W (§)
1(§) = Vi ¢r(§) = = (32)

Specifying these phases correctly is necessary to obtain
correct answers when computing overlaps between different
HFB vacua using Pfaffians [16-18]. Furthermore, the
quasiparticle wave functions {i; ; (§) and ¥; ; (§) are useful for
evaluating density matrices between different HFB vacua.

B. Bloch and Messiah decomposition

Bloch and Messiah [13], Ring and Schuck [12] used the
following relations between the quasiparticle and field opera-
tors (note that these authors used a reverse order of creation
and annihilation operators):

() ()-( 2)0).
w05 DE DG Y
-6 D6 D 2

where we have dropped the quasiparticle labels and particle
coordinates £, U is a2 x 2 real block-diagonal matrix, and
V is a 2 x 2 real block skew-symmetric matrix if 0 < n; <
1. Otherwise, if ny = 0 or 1, then the corresponding 2 x 2
matrices are real-diagonal. Comparing these relations with
Egs. (14) and (15) it is easy to see that the matrix C~! = /7.
We use M7 for a transpose of a matrix M.

(33)

(35)

III. GENERALIZED BOGOLIUBOV QUASIPARTICLES

We will describe here a generalization of the Bogoliubov
quasiparticle creation and annihilation operators, which can

be useful in several applications, which we describe below.
Let us separate the space into two regions defined by the
Heaviside functions

OLE)+Or(E) =1, OLE)ORE) =0, (36)
1 z<£0
Or() = {O o (37
and introduce also the field operators
Vi p®) = ¥ (E)OLRE). (38)

The separation of the space into two parts can be perform in
any manner, e.g., a Swiss cheese type, with hole belonging to
one part and the filled part to the other.

One can then define the generalized Bogoliubov quasipar-
ticles

oy u e 0 v 0
a;k _ 0 ug (&) 0 v i(§)
are | v7 () 0 uj () 0
R k 0 U;ék(%-) u;k(é)
Vi)
Vr(§)
“Nwo | 39)
Yr(&)
and one can then define the many-body wave function
(40

@) = N [ [ er.crr 10,
k

which will describe two uncorrelated superfluid fermion sys-
tems in two different parts of the space. By defining a new set
of Bogoliubov quasiparticles through a unitary transformation

i i
7 Z (Uk,l Vk,l) g
+ — * *
o ; Vi Ui 0‘;,1
and a similar transformation for the corresponding annihi-
lation operators one recovers the original definition of the

Bogoliubov creation and annihilation operators and the usual
definition of the quasiparticle vacuum,

@) = N ] [ w0 -10).
k

(41)

(42)

These new type of Bogoliubov quasiparticles are useful when
studying the importance of the relative phase between two
condensates, prepared either independently or in a controlled
manner as discussed in Refs. [19-21].

The interaction of two superfluids, which at some point
in time are spatially separated, is a quantum problem likely
even more mysterious than quantum entanglement. To ap-
preciate how unusual this problem is one has to invoke the
description of either Bose-Einstein condensates or fermionic
superfluid systems. In both cases one introduces the Bogoli-
ubov quasiparticles, see Eqgs. (3) and (4), in which one has
the vy (£) and the v, (£) components of the quasiparticle wave
functions. The v;(§) component is a wave function of a spin
1/2 particle, for which, according to Max Born’s quantum
mechanics “dogma” [22-24], the quantity |vi(r, o, )|d3r is
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interpreted as the probability to find a fermion with spin o
and isospin 7, in the three-dimensional (3D) spatial volume
d3r, and which in principle can be measured, in a similar
manner as the spin o or the isospin t, can be measured. On
the other hand it is totally unclear what the u;(§) component
describes, apart from the fact that % lug(r, o, T)|?d>r is the
probability for the specific single-particle quantum state to
be unoccupied, basically a “ghost particle.” In spite of this
lack of interpretation of the components of the quasiparti-
cle wave functions, for many decades now theorists happily
use the HFB approximation without ever wondering what is
the meaning of the u,(r, o, T) component of the quasiparticle
wave function. Moreover, the pairing potential explicitly de-
pends on these u components and it extends in space, much
further than the matter distribution of the many-body fermion
wave function [9]. Therefore, the ground-state properties eval-
uated in the HFB approximation depend in a critical manner
on the “mysterious” properties of the u components of the
quasiparticle wave functions, which “describe” the probability
to find a “ghost particle,” with corresponding wave functions
which have coordinates and even a time dependence, with a
finite probability to “find” it in little volume in space d°r.

The list of questions arising in the treatment of superfluids,
which have not been asked yet, is even longer. Assume that a
fermionic superfluid, and even a bosonic one as well [21,25],
approaches another normal system, and it is a relatively “safe”
distance such that the matter distributions of the two systems
have a negligible overlap and that the particle-particle interac-
tion is short ranged. The pairing field of the superfluid system,
however, since it extends well beyond its own matter distribu-
tion, creates an “external” pairing field in the normal system
and as a result pairing correlations are induced in the normal
system. In condensed matter systems, similar situations are
well known at the interface of a superfluid and an insulator,
but in that case the “border region” between the superfluid and
the insulator is of the order of the atomic distances and the two
system basically touch each other. In the case of nuclei and
cold atom systems [19-21] this is clearly not the case when
two nuclei collide, and before the matter overlap between the
reaction partners occurs, the pairing fields of the two partners
already “know” about the presence of each other, neglecting
for the sake of the argument the presence of the long-ranged
Coulomb interaction between protons in the two nuclei.

And this “communication” problem and exchange of “in-
formation” between spatially separated superfluid systems is
even more complicated than the mere influence of the pairing
field of one system on another system. For the sake of the ar-
gument imagine that two hypothetical nuclei with zero electric
charge (in order to exclude long-range Coulomb interaction)
or two fermionic neutral superfluid cold atomic clouds are
separated by a distance much larger than the average interpar-
ticle separation in each system or larger than the range of the
interparticle interaction. Such systems are still able to “com-
municate” due to the fact that the uy(&)-quasi-particle wave
function components are continuum wave functions. Thus any
change in one system, due to its own quantum evolution due to
the short-range interaction between the particles localized in
that system, is “communicated” via the uy(&)-quasi-particle
wave function components to the other system, which in

principle could be at the other end of the universe. One might
argue that this is simply an artifact of mixing systems with dif-
ferent particle numbers in the HFB approximation. However,
this argument cannot be valid for systems with a finite number
of particles, where the probability to have a system with a very
large number of particle is exponentially small and insufficient
to bring in material contact the two systems, as can be easily
shown by performing a particle number projection, see Sec. V.

Moreover, even after particle number projection of the
HFB equations the anomalous densities and the corresponding
pairing fields have tails much longer than the matter distribu-
tion of the two subsystems. It is not clear yet whether within
a theoretical treatment of the pairing correlations, where the
particle numbers are exactly conserved, the pairing field will
cease to have longer tails than the regular mean field. Even
after particle number projection the tails of the pairing fields
are not affected, see Sec. V. Using the two type of generalized
Bogoliubov quasiparticle described above one can address
these questions at least within the HFB approximation after
particle number projection.

IV. TIME-DEPENDENT EQUATIONS

One can prove that using either the full set of the original
quasiparticle wave functions ug, v, or the canonical set @i, Vy
by solving the corresponding time-dependent evolution equa-

tions
S0 () (kA N\(k
()= S)@) @

one obtains the same normal n(€, ) and anomalous « (&, ¢)
density matrices. The explicit time dependence was here
suppressed.

The main difference with the static case is that if one starts
with a system of canonical quasiparticle states at any time ¢,
then at the next time step the new set of quasiparticle states
ceases to be canonical. In practice this is not a problem if one
uses at all times the full set of quasiparticle states. However,
it is known that if at any given time one chooses to represent
the density matrices using canonical quasiparticle states, then
for a sufficient accuracy one can obtain their representation
with a significantly reduced number of states. For example,
in performing fission dynamics simulations of an actinide
nucleus one needs to represent the quasiparticle states on a
spatial lattice of typical size N,N,N, = 30 x 30 x 60 [26-28],
in which case the total number of proton and neutron quasipar-
ticle states is 2 x 2 x N;N,N, = 216 000. At any time during
the time evolution one can, however, introduce the set of
canonical quasiparticle states and represent the same normal
and anomalous densities with a comparable numerical accu-
racy with about 5000 states or less, see Ref. [10] and Sec. VI.
As a matter of fact, in static calculations accurate solutions
were obtained with a significantly reduced set of canonical
wave functions [11]; for example, in the case of 2*°Pu these
authors reproduced the static states binding energies with at
most 400 neutron orbitals and 300 proton orbitals, but see also
Sec. VL.

The main reason one needs a number of orbitals greater
than the particle number for static calculations is the need to
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reproduce the anomalous density « (r, o, ¥, o’), which in the
case of a local pairing potential diverges as 1/|r — /| in the
limit when |r — | — 0, as was shown in Ref. [9]. This type
of divergence is similar to the divergences one encounters
in quantum field theory and they require a renormalization
and regularization of the anomalous density, which was per-
formed for the first time in Refs. [29,30] and implemented in
a more accurate manner later [26-28]. The physical reason
why such a divergence appears is that for most fermionic
superfluids one has a range of scales, from the range of in-
teraction ry, the average interparticle separation 1//n, and
the s-wave scattering length a satisfying approximately the
inequality

1
rg K 3—n < lal, (44)

7

for example in dilute neutron matter in the neutron star crust
or in cold fermionic atoms in the unitary regime when ry —
0 and |a| — oo [31-42]. As Tan [32-34] has proven this
singularity is present at all energies and all temperatures,
irrespective of whether the system is superfluid or not, and
in nuclei this behavior is related to the short-range correla-
tion between nucleons, a phenomenon known since the 1950s
[43—47] and observed in the last few years in experiments at
JLAB [48-51] and studied theoretically by many [20,52-57].
On regularization one can limit the sum over the quasiparticle
wave functions to an energy interval close to the Fermi level
and at the same time renormalize the strength of the pairing
interaction, so as to obtain the same pairing field A(§), irre-
spective of the quasiparticle energy cutoff.

The singularity of the anomalous density matrix « (&, ¢)
leads to a universal behavior of the occupation probabilities
of the canonical states at large momenta n(p) o 1/p* [32-34],
which is also observed in simulations of nuclear systems, both
in the static and time-dependent cases [10,58-60]. It is easy to
check that the anomalous density matrix diverges in the same
manner even in the BCS-approximation, when

1 & — 1
S B P 45
" 2[ \/(sk—u>2+A2] “

as

A=Y V. (46)
k

where &, 1, A, and g are the (canonical) single-particle ener-
gies, the chemical potential, the pairing gap, and the strength
of the pairing interaction, unless the sum in Eq. (46) is “arti-
ficially” cutoff and the strength of the pairing interaction g is
renormalized accordingly, a procedure widely used in nuclear
physics for decades [12], after the necessary “excuses” have
been expressed, such as the “total energy of the ground state
has converged.”

If one uses an incomplete set of quasiparticle wave func-
tions, then the antisymmetry of the anomalous density « (€, ¢)
is lost and one should enforce it by hand as follows, see also

Eq. (28),
k(r,o,r,—0)=—k(r,—o,r,o) = (®|Y(r, o)y, —c)|P)

Q
_ % 33— 0)

=% [=1
Q
3V o —0), (4]

where r = r/, since one needs only the spatial diagonal part of
the anomalous density in typical simulations or equivalently
considering only local pairing fields. Implementing this sim-
ple correction ensures that in simulations with an incomplete
set of quasiparticle/canonical wave functions the total particle
number is conserved, even though other quantities are not
reproduced correctly, see Sec. VI.

V. PARTICLE-NUMBER PROJECTION

For particle number projections we need to evaluate density
matrices [15]

i, €' Ino) = (@Y7 (ENY(E)|D(no)), (48)
R(E, & no) = (PIY EW(E)|P(0)), (49)
K&, &' o) = (Pl W EIP0)), (50)

where | P (1)) = exp(i1\7 10)|®), which in terms of canonical
quasiparticle wave functions (QPWFs)

2Q . ~ P
o TE(E )Tk (£ )2
A, & o) = (@D (o)) kZ:lj Tr@m T D
2Q P
e VE(E)(E)erm
R(E.E o) = (®|D(no)) ; i Y
2 w®E)
= ’ _ k
K(E.&'Ino) = (@D (o)) k:Zl TTem e Y
where 2 = N,N,N; and with the overlap given by
Q .
(@D(n0)) = [ [ [uf + *™v7]
k=1
Q
=[] + ™ — Dngl, (54)
k=1
Q .
|@(n0)) = [ [y + ™ v,ala)|0)
pn=1
2 v
= L[] I:uﬂ exp <62i"°ia;az>] 10), (55)

where 7y is a gauge angle. The particle number distri-
bution is given by P(N) = (®|P|®) where the particle
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projector is

s [T dno o
p= / 2—777:e’"°(N_N), (56)
—7

T4 e .
P(N) = / 2—’77:e*'N"°]_[[u§+e2'"0v2], (57)
- k=1

ZP(N) =1. (58)
N

One can show that the N-particle number-projected many-
body wave function is given by

]_[Q | Un 1 2 ; h
Ny = 1= +da | 10, (59
=" rn S ;uuaﬂaﬂ %, 69
where
Q

1 .
vy 1) (60)

2
o, i
pn=1 ui

is the wave function of a “Cooper pair,” also known in the
literature as a geminal. The number projected wave function
|®V) is a sum of linearly independent N-particle Slater de-
terminants. |®V) is a state of N/2 “Cooper pairs” |W) with
proper normalization.

For an arbitrary operator O the particle number projected
value in a state with exactly N particles is defined as [15]

(0") = (@"|010"), (61)
(@[0]®) = > P(N)(O"), (62)
N

V) =

where the fact that the operator P = [T 4 im@-N) 5 5
projector was used. The particle number projected number
density matrix is

1 T d .
AEEIN) = o f_ ) T V(e €' o)
(63)
N = / dE A€, EIN), (64)
2Q 2Q
D e =) NPW), (65)
k=1 N=1
D PN, E' NN = 7i(E, E'ln), (66)
N

and similar corresponding equations for the anomalous num-
ber densities © (£, £'|N), K (&, &'|N).

In order to evaluate various particle number projected num-
ber densities it is helpful to introduce an additional new set of
particle number projected occupation probabilities

N /” dng e "N (®|D(1))e*™ _ P(N —2) 67)
“ 7 ) .2 P(N) Wl +e¥mvl T P(N)
™ dng e N (P|P PN
mﬁ:/ dno e <2 | (1_70))2E k( )’ 68)
—x 2m P(N) uj + e*mouy; P(N)

with i > 0and Y > 0. The particle number projected den-
sity matrices have then the form

2Q
A, E'IN) = ) WYV EWE), (69)
k=1

2Q
R EIN) =) Wi EmE), (70)
k=1

2Q

K(EEIN) =) M) ). (71)

k=1

One can show that

A—npm) +ndi) =1, N=) "ndiy. (72
k

For fiy = m; =1 Egs. (69)—(71) lead to the corresponding
particle number unprojected number density matrices. In
Egs. (69)—(71) the probabilities Py(N — 2), P,(N) are eval-
vated as in Eq. (57), but with a missing contribution from
quasiparticle state k,

Q
T d . .
P(N) = / —”Oe*’N"0| [ [ + ™). (73)

b
4 Ik

From these expressions one can write in straightforward man-
ner the corresponding expressions for the particle number
projected normal number, kinetic, current, spin, spin-current,
and anomalous densities. What is notable about Eqs. (69)—
(71) is that the contribution of the troublesome self-interacting
term is excluded in all these one-body densities and their
use is free of the self-energy problem widely discussed in
literature [61-70]. Hupin ef al. [69] have obtained similar,
though somewhat more complicated, relations.

A serious issue, which is not completely resolved within
DFT and other mean-field frameworks is the so-called self-
interaction often raised as a limitation of DFT for either
normal and superfluid systems, see Ref. [71] for a re-
cent review and many earlier references. Within Kohn-Sham
framework [72] the exchange and correlation contribution to
the energy density functional are “parametrized” on an equal
footing as a functional or function of the number density, and
for that reason it appears that the single-particle contribution
to the number density appears as a self-interaction for a sys-
tem with one particle only in particular. In the case when
only two-body interactions are present, in order to evaluate the
total energy of the system one needs to evaluate the two-body
density matrix

n(&, ¢, ¢ E) = (@I EV IOV EHY(E)IP)
= 3, Mg, &) —mi(E, ¢, 0]
+neorr(§, ¢, ¢, &), (74)
n @, &) = (@Y OYE)), (75)
Neorr (€, 8,8, 8") = (&, k™", ¢, (76)

where neo (€, ¢, ¢', &) here is given only in the case of a HFB
many-body wave function |®). Clearly the two-body density
matrix vanishes when either §€ = ¢ or & = ¢’ by definition
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and so does its explicit form in case of an HFB many-body
wave function, see Eq. (47), which is used in the extension
of DFT, in the spirit of the Kohn-Sham DFT approach, to
superfluid systems, called the superfluid local density approx-
imation (SLDA) [31,36,42,73]. It is clear that self-interacting
contribution arising from the pairing correlations to the corre-
lation energy is absent.

Therefore, the only source for a self-interacting energy
contribution can appear from the parametrization of the ex-
change contribution in DFT, a problem which is absent when
using the particle number projected number density. In the
treatment of the unitary Fermi gas in Refs. [31,36] a relatively
large discrepancy was observed when comparing the quantum
Monte Carlo (QMC) results to the SLDA results only in the
case of two fermions with opposite spins, where exchange
is absent, but the self-interacting energy is present in the
energy density functional, as the unprojected particle number
density was used. For larger particle numbers the agreement
between QMC and SLDA results was always within the QMC
statistical errors.

With the particle number projected densities one can eval-
uate the energy of a nucleus for a fixed particle number within
DFT, as in the ideology of DFT the energy is well defined
once the energy density functional is known and the relevant
number densities as well. In the mean-field framework, theo-
rists refer to this recipe as the projection either before or after
energy variation. The difference between “variation before” or
“variation after” recipes is only in the manner the quasiparticle
wave functions are determined. In the “after variation” ap-
proach, one solves the unprojected mean-field equations and
determines the energy minimum and the particle and/or the
angular and/or parity projection are performed after the min-
imum is found and the projected energy is calculated. In the
projection-before-variation approach, one performs the varia-
tion on the projected energy functional at first and determines
the minimum energy subsequently. In determining the next
step in a self-consistent procedure one can use, however, the
number projected densities instead of the particle number
unprojected energies and in principle arrive at the same result.
We want to stress that particle number projection is very
inexpensive to perform and as a result one can perform DFT
calculation for superfluid systems with exact particle numbers
and in this case the self-energy terms are entirely absent. In
“parameterizing” the energy density function, therefore, one
can treat independently the exchange and the pairing correla-
tion energies, thus removing a difficulty with the theoretical
treatment of such systems [71].

VI. EXAMPLES FROM FISSION SIMULATIONS

A. On the use of a reduced set of canonical wave functions

All our fission dynamics simulations were perform us-
ing a fully self-consistent set of quasiparticle wave functions
on a spatial lattice 30> x 60 fm® with a lattice constant
of / =1 fm, corresponding to a momentum cutoff in one
direction p¢y = wh/l ~ 600 MeV /c, corresponding to a nu-
cleon kinetic energy of more ~180 MeV (or more than 360
MeV Kkinetic energy in the center of mass for two colliding

TABLE I. In the first column we state the number of canonical
wave functions with the largest occupation probabilities, for equal
number of proton and neutron states, for a specific initial state near
the outer fission barrier for 2*°U, used by us in fission dynamics
simulations. In the last row we show the corresponding quantities
evaluated with the full set of quasiparticle wave functions, obtained
by solving the static self-consistent DFT equations with appropriate
constraints [28]. In the subsequent columns we show the total en-
ergy (in MeV), total neutron and proton particle numbers, and total
quadrupole (in b) and octupole (in b*?) deformations evaluated with
the corresponding set of quasiparticle wave functions. The calcula-
tions were performed on spatial lattice 2 = N,N,N, = 30% x 60 with
a lattice constant of 1 fm, and the size of the full set of quasiparticle
wave function is 2 = 2 x 30? x 60 = 108 000, for either proton or
neutron systems. For this simulation trajectory the initial state was
given a 1.17 MeV energy boost for the collective quadrupole modes
[28]. All densities were evaluated with either the usual quasiparticle
or the canonical wave functions, as specified in the first column, at
the beginning of the simulation.

No. States Energy N Z (N 03

500 —1779.19 14394 91.99 169.73 22.29
1000 —1780.64 143.97 92.00 169.76 22.29
2000 —1782.64 14399 92.00 169.78 22.29
5000 —1785.31 144.01 92.00 169.79 22.30
50 000 —1785.41 144.01 92.00 169.79 22.30
108 000 (canonical) —1785.41 144.01 92.00 169.79 22.30
108 000 (standard)  —1785.41 144.01 92.00 169.79 22.30

nucleons), significantly larger than the Fermi energy of sym-
metric nuclear matter and very close to the upper energy
considered in chiral EFT approaches. The self-consistent
equations were solved for the nuclear density functional
SealLLL1 [74], at first using the HFBTHO code [75], after
which we ported the proton and neutron number, current,
kinetic energy, and anomalous densities to our 3D spatial
lattice and continued the self-consistent procedure until full
convergence. The size of the HFBTHO basis set for either
proton or neutron system was about 8000 compared to the
basis set of our 3D spatial lattice, which was 108 000. In
Table I we display some properties of the initial state at the
top of the outer fission barrier, evaluated with the full set of
quasiparticle wave functions obtained in the self-consistent
procedure described here or using the entire set of canonical
wave functions instead or only a reduced set of canonical wave
functions, selected with the largest occupation probabilities.
As expected the last two entries in the Table I are identical. It
is important to compare, however, the initial converged energy
obtained with the HFBTHO code —1, 780.73 MeV, which is
considerably above the energy —1, 785.41 MeV we obtain on
the 3D lattice.

On the other hand the total initial energy, particle numbers,
and deformations are reproduced adequately only when at
least 5000 canonical wave functions are taken into account.
One might have naively assumed that using 500 canonical
wave functions for both proton and neutron systems the prop-
erties of the initial state would be quite well reproduced,
as Chen et al. [11] expected. These authors used used 400
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TABLE II. In the fission run performed with initial set being the
entire set of canonical wave functions as in Table I, we have evaluated
the final proton and neutron numbers in the final states, but using
only the states 500, ...,50000 with the largest initial canonical
occupation probabilities, using initial conditions listed in Table I with
boosting.

No. States  Z; Zy AZ N; Ny AN
500 91.99 91.87 0.12 143.94 141.74 2.20
1000 92.00 91.89 0.11 143.97 141.86 2.11
2000 92.00 91.90 0.11 143.99 141.95 2.04
5000 92.00 91.91 0.09 144.01 142.11 1.90
50 000 92.00 92.00 0.01 144.01 143.48 0.52

108000  92.00 92.00 1.0 x 107° 144.01 144.01 2.9 x 107°

and 300 canonical wave functions for the neutron and proton
systems in order to evaluate the energy of the fission isomer
240py, which should be compared with our claim that at least
5000 canonical wave functions are needed to obtain a com-
parable accuracy for the total energy of a similar nucleus.
Reducing the number of canonical wave functions from 5000
to 2000, see Table 1, leads to a significant error in the energy.
In Table II we have evaluated the final proton and neutron
numbers, where we used the entire set of canonical wave
functions to evolve the system, see penultimate row in Table I,
within a reduced set of quasiparticle wave functions with
the corresponding largest initial occupation probabilities, in
the range from 500 to 50 000, for both neutron and proton
subsystems. This demonstrates that the naive choice of a re-
duced set initial quasiparticle wave functions, which however
reproduced accurately the initial neutron and proton numbers
cannot reproduce the corresponding final total neutron and
proton numbers.

It is important to appreciate that in the results reported in
this subsection, we have always performed the simulations
with either the full set of quasiparticle wave functions or
equivalently with the full set of canonical wave functions, and
we have always obtained perfect agreement between these
runs, as expected. The point we are making is that if one
assumes that only a reduced set of canonical wave functions
would be numerically accurate, then simply selecting a re-
duced set of canonical wave functions with initially largest
occupation probabilities 74 (0) in evaluating the properties of
the final state one does not obtain correct results, see also

TABLE III. Initial and final state convergence, same as Table II,
with initial O,y = 140.02 b and Q3 = 14.63 b%/2.

No. States  Z; Zy AZ N; Ny AN
500 91.97 91.61 0.36 143.96 139.74 421
1000 91.98 91.64 0.34 144.00 139.92 4.07
2000 91.99 91.66 0.33 144.02 140.06 3.96
5000 91.99 91.69 0.30 144.03 140.33 3.70
50 000 91.99 91.97  0.017  144.03 143.23 0.80

108000  91.99 91.99 6.5 x 10° 144.03 144.03 1.1 x 10~™*

Table III. We will come back to this aspect from a different
point of view in the Sec. VIC.

A feature we generally observe in our time-dependent sim-
ulations is that the quality of the initial state plays a significant
role in the accuracy of the entire simulation until the fission
fragments (FFs) are fully separated. Better converged solu-
tions for the initial state lead to significant increase in the
accuracy of the simulations, judged by either the conservation
of the particle numbers or total energy. Comparing the results
obtained with either the full set of quasiparticle wave func-
tions, last row in Table I, with the full set of the canonical wave
functions we observed relative errors at the level of 10~%-~8,
after performing about 30 000 time steps, depending on the
quantity. The total particle number is conserved at the level
of 107778 and the total energy at the level of noticeably less
than 1 KeV, and thus a relative error less than 107°.

B. Non-Markovian character of fission dynamics

In Fig. 1 we compare the initial canonical occupation prob-
abilities 7, (0) for both neutrons and protons, which change
by more than 20 orders of magnitude, numbers we claim are
numerically accurate, see also Ref. [10], with the final oc-
cupation probabilities (1) = ¥ d§|vi (&, 1)|?, obtained from
the time-evolved v; components of the quasiparticle wave
functions. As we mentioned above and in Refs. [10,58-60],
even if one starts with a set of canonical wave functions, at
the next time step these wave functions fail to remain canoni-
cal. This is understandable, as in a framework where particle
collisions are allowed, and they are allowed when pairing is
taken into account beyond the static BCS approximation, the
single-particle occupation probabilities change [10,26,27,76—
81] and the canonical occupation probabilities change in time,
which means the entropy of the system changes. See the
discussion in Sec. VID.

In Figs. 2 and 3 we plot the sum of the absolute changes
in the single-particle occupation probabilities n;(¢) at some
fixed time intervals At = 97 fm/c and the absolute differ-
ences between the initial and time-dependent single-particle
occupation probabilities. Similar results have been reported in
Ref. [58], however, with slightly different initial conditions
for the same nucleus 2*°U with the same NEDF Seal.L.1 but
for smaller values of At =37 fm/c. In that case the initial
quasiparticle wave functions were obtained using the code
HFBTHO [75], placed on the 3D spatial lattice, and only
adjusting the proton and neutron chemical potentials to fix
the correct average particle numbers. In all the simulations
reported here we have run the static SLDA code on the 3D
spatial lattice until full self-consistency was achieved. Since
the phase space is much larger on a 3D spatial lattice than
that used in HFBTHO code and since the kinetic energy and
anomalous densities are formally diverging in a 3D space [9],
the self-consistent SLDA equations need to be regularized and
renormalized [28,29]. One important benefit of performing
this additional self-consistency evaluation of the SLDA equa-
tions on the 3D spatial lattice is a much more numerically
accurate solution of the TDSLDA equations.

These results demonstrate that during the entire fission
dynamics, even after full the FF spatial separation, these
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FIG. 1. In the upper and lower panels we show the initial and
final proton and neutron single-particle occupation probabilities,
evaluated performing a fission simulation of 2*°U with the NEDF
SealL1, starting near the top of the outer fission barrier, with the full
set of initial quasiparticle wave functions, see Table III, until the FFs
are partially fully separated. Since the occupation probabilities are
double degenerate, we display only 1/2 of their spectrum, in this case
only = 54000. The results presented in this figure were obtained
with 0,y = 140.02 b and Q3 = 14.63b*/? set of initial conditions.

occupation probabilities evolve with time, as expected for
a nonequilibrium process of an isolated quantum system.
These results provide a direct confirmation of the mechanism
envisioned by Bertsch [58,76,77,80,82,83], describing how
nuclei experience shape changes through the redistribution
of the single-particle occupation probabilities, facilitated by
the pairing correlations and the correct implementation of
the hydrodynamic continuity equation. The mechanism for
nuclear shape change advocated by Bertsch implies that the
single-particle occupation probabilities change through inde-
pendent jumps at the single-particle level crossings and that
these jumps are uncorrelated [76,77,80,82,83].

While the total particle number ), ni(¢t) is conserved
during the time evolution, the individual single-particle

: :
—e—Neutrons
—e—Protons

0 1
0 500

1000 1500 2000 2500 3000
t [fm/c]

FIG. 2. Total absolute difference between single-particle occu-
pation probabilities at time ¢ and time ¢ + Af, where Ar = 97 fm/c.
The two shaded regions indicate when the neck is first formed be-
tween the fission fragments (left) and when it ruptures (right). Initial
conditions are the same as in Fig. 1.

occupation probabilities change significantly, and one might
be naively led to assume that the change of a particular
occupation probability 0 < ni(t) < 1is random. If that would
be the case, then exactly as in the case of Brownian motion
one would expect that

o (t) = \/Z[nkm — me(0)] o< V1, (77)
k

while the obviously, at large times, the closely related quantity
o1 (t) illustrated in Fig. 3

01(I)=Z|nk(t)—nk(0)l o, (78)
k

which can be characterized as a “ballistic” behavior of
the single-particle occupation probabilities n(¢), patently a

25 i b
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20+ 1
g
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=
- 10+ p
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FIG. 3. The sum of the absolute differences between the single-
particle occupation probabilities at the initial time and at time z.
Initial conditions are the same as in Fig. 1.
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nonstochastic and therefore non-Markovian behavior. Since
we are solving quantum equations for quasiparticle wave
functions the case can be made that instead of the quantity
o1(t) one should instead consider

oo(t) = Y IV/me(t) = /n(0)], (79)
k

since /ng(t) is proportional to the amplitude of each quasi-
particle wave function vi(§,t), since these wave functions
are the actual variables in the dynamic equations, similarly
to the coordinates in the Langevin equation for example. The
phases of the quasiparticle wave functions carry information
about the currents, which to some extent were previously
characterized by us when defining the collective flow kinetic
energy [26,27]

2
Eeon(t) = / d’w’ (80)

where v(r,t) is the hydrodynamic velocity of the nuclear
matter. Unfortunately, this quantity also includes after scis-
sion the accumulated FF kinetic energy due to their Coulomb
repulsion, known as total kinetic energy of the FFs.

The quantum-mechanical nature of the nuclear shape
proves, however, to be more complex than envisioned by
Bertsch [58,76,77,80,82,83] and these jumps appear to be
highly correlated in time, which is a qualitatively new aspect
of fission dynamics in particular. This aspect is particularly
interesting, since as we have proven in earlier fission simula-
tions [26,27,84], the descent from the top of the outer barrier
to the scission configuration is a highly dissipative process,
in which case one would expect that stochasticity of the dy-
namics might play a crucial role. In the presence of a strong
dissipation, stochasticity in case of classical dynamics and
in numerous phenomenological fission models is modelled
with a Langevin force [85-97]. This is a qualitatively new
situation in nonequilibrium dynamics, so far never discussed
in literature as far as we can judge, where in the presence of
strong dissipation, memory effects are also very strong and
the single-particle occupation probabilities dynamics show a
clear non-Markovian behavior.

The results in Figs. 2 and 3 show that the single-particle
occupation probabilities, illustrated there at time intervals sep-
arated by At = 97 fm/c change rather in a continuous manner
and not as individual jumps. A jump at a “Landau-Zenner
level crossing” is not instantaneous but is coherently coupled
with other jumps, which occur before or after a particular level
crossing and that leads to a rather strong quantum coherence.
In the end the change in the quantity o(¢) instead of being
random has a rather a well-defined directed evolution, towards
the equilibration of the quantum many-body system.

The quantity o (¢) appears to change at two different rates
for times smaller than 500-600 fm/c and at a slower rather
for larger times. We see three different sources for this be-
havior. (i) With time the strength of the pairing correlations
and the absolute magnitude of the pairing gaps decreases,
though it does never vanish, see Fig. 4 and Refs. [26,27,84].
(ii)) The fissioning nucleus and the FFs after separation
still convert deformation energy into thermal energy, which
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FIG. 4. Time frames illustrating the profiles of the neutron (top)
and proton number densities (first column) and the absolute value
so the pairing gap (second column), separated in time by about 500
fm/c. The last row are for colorbars for the densities in units of fm >
and MeV for the pairing gaps. The initial state was the same as in
Fig. 1.

leads to increasing occupation probabilities of higher-energy
single-particle states. (iii) The neck appears to start forming
at times 500-700 fm/c [10,26,58] and scission occurs at time
2300-2700 fm/c, depending on the initial conditions consid-
ered. In all TDDFT simulations one has to choose the initial
nuclear shape but imposing a shape constraint and requiring
that the total energy is near the outer fission barrier. The shape
constraint is not inherent in the many-body Schrodinger equa-
tion and as in the initial Bohr and Wheeler [98] paper this is
merely a theoretical tool used since 1939. The nucleus during
its descent from the top of the fission barrier needs to adjust
to the absence of the artificial shape constraint imposed on the
initial state. For times larger than 500-600 fm/c the nucleus
appears to have settled to a different slower but rather well-
defined rate, a bit higher for the neutron system than for the
proton system. The neck, depending on its size, increasingly
impedes matter, linear and angular momentum, and energy
exchange between the two emerging FFs, and that is another
reason why the rate of “equilibration” we see in Fig. 3 settles
to a smaller value. At the same time, scission, which occurs
at much later times, between 2300 and 2700 fm/c depending
on the initial conditions and NEDF used, does not appear to
affect this rate.

Ever since Boltzmann [99] introduced the classical ki-
netic equations, and later on with their extension to quantum
phenomena by Nordheim [100] and Uehling and Uhlen-
beck [101], it was assumed that two-body collisions lead
to a Markovian behavior of the many-body system and
thus to an absence of memory effects, similarly to the
case of Brownian motion of a single particle. The classical
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Boltzmann [99] and the quantum extension of the collision
integral due to Nordheim [100] and Uehling and Uhlenbeck
[101] were stochastic in character. On the other hand, the
extension of the TDDFT framework to superfluid phenomena
is an extension of the time-dependent mean-field dynamics to
include a particular kind of collision term relevant in super-
fluids [58], as the action of the pairing field A(&,¢) on the
quasiparticle wave functions u (&, t), vi (€, 1), see Eq. (43),
which is not stochastic. The effect of this “quantum col-
lision integral” is equivalent to the action of the collision
term on the phase-space occupation probabilities fi(g, p, t) in
the Boltzmann-Nordheim (BN) [100] or Boltzmann-Uehling-
Uhlenbeck (BUU) [101] kinetic equations. There is, however,
a major difference: While in the “quantum” BN/BUU equa-
tions one operates with occupation probabilities, the TDSLDA
equations [35,36,40,42,58] are formulated in terms of the
quasiparticle wave functions, as expected in the case of a gen-
uine quantum many-body framework. The consequences are
quite fundamental, as TDSLDA can describe dynamical evo-
lution of fermionic superfluids, in particular nonequilibrium
dynamics; quantum turbulence; generation, life, dynamics,
and decay of quantum vortices; entanglement; and nontrivial
aspects of nuclear collisions [19-21,35,41,102,103], which
are not accessible within a BN/BUU framework, since quan-
tum interference and superpositions are not incorporated in
the Boltzmann collision integral, either in its original classical
form or that of Refs. [100,101].

C. Particle-number projection and use of a reduced set
of canonical wave functions in time-dependent simulations

We have estimated average discrepancies between the
particle-number projected and unprojected number densities
obtained within TDSLDA at various times,

ANN,z(t)=\/Z:[n(éyé,t)—ﬁ(é,S,IIN)]z, (81)

and obtained a very similar relative trend, see Fig 5.

In Ref. [10] we have established that the character of the
canonical wave functions depends on the spatial resolution
adopted in the numerical treatment and thus on the lattice
constant /. The canonical wave functions with non-negligible
occupation probabilities are localized in the region where the
matter distribution of the system is nonvanishing and their
number is typically much larger than the number of particles
in the system but significantly smaller than the size of the
entire set, which is 2Q =2 x N,N,N, for one type of nu-
cleons. The spatial support for the canonical wave functions
with negligible occupation probabilities is localized outside
the region where matter distribution is localized. Obviously,
the border between the two regions is not sharp. In this work
we report more accurate estimates for the minimal number of
canonical wave functions needed in order to obtain accurate-
enough numerical solutions in the case of heavy nuclei than
in Ref. [10].

In Fig. 6 we show the total energy *°U as a function
of time, depending on various numbers of canonical wave
functions used as an initial set. With the exception of the
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FIG. 5. The standard deviation of the integrated proton and
neutron particle number projected densities ANz y(¢), defined in
Eq. (81), as a function of time. Somewhat surprisingly the differences
between the integrated particle number projected and unprojected
number densities are very small, remembering that both N and Z
are of O(100), and thus the relative variance is at the level of
O(107*). The initial state was the same as in Table I, but without
the quadrupole collective energy boost.

simulations with the entire set of quasiparticle wave functions
and the entire set of canonical wave functions used as initial
conditions, which are indistinguishable on this plot, every
run performed with any number of wave functions as large
as 50 000 initial canonical wave functions failed to lead to
fission, and moreover the total energy of the system is not
conserved, the Oy of the entire system basically does not
change in time, and the nucleus only keeps ‘“heating up.”
For any set of initial conditions, using the canonical wave
functions with largest occupation probabilities in the interval
500, ..., 50000, the nucleus does not fission but only heats
up. In the lower panel we display the behavior of the quadru-
ple moment of the entire nucleus Q»( () as a function of time
for the same choice of initial conditions as for the upper panel.
Only for the case when the entire set of quasiparticle or canon-
ical wave functions is used the nucleus fissions; otherwise,
its size remains basically unchanged as a function of time.
In this case the initial condition had an additional excitation
energy of about 1.17 MeV and the simulations performed with
a reduced set of canonical wave function still did not fission.
In Fig. 6, we report simulations performed with various
limited sets of initial canonical quasiparticle wave functions.
In past simulations, when we used a spherical cutoff for the
pairing [29,30,84], which is extremely well suited for static
calculations, we often observed that during time evolution the
system eventually failed numerically (overflow). Only after
we gave up on using a spherical cutoff and implemented
the entire spectrum [28] were we able to consistently obtain
well-behaved numerical solutions. It is remarkable to see that
canonical states with an occupation number less that 10~!°
acquire a significant occupation probability during the time
evolution. Furthermore, we have shown that the naive ex-
pectation that a reduced set of canonical quasiparticle wave
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FIG. 6. Plots of the time dependence of the total energy of 23U,
which theoretically should be conserved, as well as the time depen-
dence of the quadrupole moment, when various cutoffs are imposed
on the initial set of canonical wave functions. The simulation with
either the full set of quasiparticle or canonical wave functions are
visually indistinguishable and in this case the total energy is con-
served. These are results of simulation obtained with the set of initial
deformation listed in Table I.

functions, which reproduce nuclear properties of the initial
state with very good accuracy, can be used to study the dy-
namics of fission, is incorrect.

The vast majority of simulations performed by other
authors use the TDHF+-BCS or TDHF+TDBCS approxima-
tion [104-112], where TD denotes time dependent and HF
Hartree-Fock. Either the BCS or TDBCS approximations are
further approximations to the TD Hartree-Fock-Bogoliubov
(TDHFB) equations with cutoffs in the number of levels
allowed to participate in pairing. Moreover, both BCS and
TDBCS assume the spatial profiles of the |u|> and |v|?
components of the quasiparticle wave functions are identical,
as in the initial BCS approximation [1] for weak pairing corre-
lations. Even further, the continuity equation is violated in the
TDHF+TDBCS approximation [112], which is still widely

used today despite this [104—112] (to list a few studies). In
Ref. [113] a TDHFB implementation in a reduced basis set
was used, which according to our present analysis might be
problematic.

Both BCS and TDBCS represent more limited approxima-
tions than evolving a truncated set of canonical quasiparticle
wave functions, or using a spherical cutoff, as was originally
done in Ref. [84]. As described above, all trajectories per-
formed in the canonical basis with a cutoff did not fission. This
is likely the reason why BCS and TDBCS simulations of (in-
duced) fission [104—112] start with initial compound nuclei on
the potential energy surface of the fissioning nucleus that are
well below the saddle-point state of the nucleus considered.
Only in such situations, for configurations where the Coulomb
repulsion considerably exceeds the nuclear surface energy,
could such simulations produce separated fission fragments.

As Meitner and Frisch [114] correctly suggested, the nu-
cleus during fission behaves like a liquid drop. Fission is due
to the competition between the Coulomb and surface energies,
and a correct hydrodynamic description of the nuclear shape
dynamics is crucial both at the classical and quantum level.
How to achieve the correct description in the case of nuclei
was not clear until Bertsch [76-78,80] identified the crucial
role played by the pairing dynamics in the shape evolution
of a fissioning nucleus, which was confirmed in 2016 in
the first correct implementation of pairing dynamics for this
process [84].

The projected particle number probability distributions
P(N), see Eq. (57), for protons and neutrons obtained are
shown in Fig. 7, are slightly asymmetric with respect to the
average proton Z = 92 and neutron N = 144 numbers. In
Figs. 8-10 we show the differences between the unprojected
and particle-number-projected number densities for protons
and neutrons in the case of the induced fission of 230U at
the top of the outer barrier, at the scission configurations,
and for fully separated FFs. From the time-dependent full set
of QPWFs we evaluated particle-number projected densities
with only 5000 canonical quasiparticle wave functions. The
agreement between the particle-number projected and unpro-
jected densities at each selected time during the evolution had
very small relative errors, see also Fig. 5.

D. Irreversibility in isolated quantum systems

Another relevant aspect for the nuclear dynamics, which
can be revealed with the help of canonical wave functions, is
the irreversible time evolution of an isolated nuclear system,
before it emits any nucleons or before it couples with the
electromagnetic fields and emits photons or later on S par-
ticles after coupling with the weak interactions. An isolated
excited nucleus has a vanishing von Neumann or Shannon
entropy, which naively would point to the absence of any
irreversible time evolution of such a system, which clearly is
incorrect. At the classical level one can evaluate the Boltz-
mann entropy of an excited system, which would clearly
characterize the irreversible time evolution of the system. The
nonequilibrium evolution of isolated quantum systems can
be characterized, however, with the help of the entanglement
entropy [115-117]. The entanglement entropy is nonvanishing
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FIG. 7. In the upper and lower panels we show the probabilities
P(N) defined in Eq. (57) for protons and neutrons, respectively, in
the initial and final states and used in producing Figs. 8-10, without
any energy boost, as discussed in the text.

even in the ground states of interacting systems [118]. There
is, however, no unique definition of the entanglement entropy,
as is well known [10,11,58-60,100,101,118-143]. For nuclear
systems, and particularly for heavy nuclei, which have an
enormous number of degrees of freedom only the orbital
entropy can be evaluated in the near future,

Ink(l)ln ny(t)

- gi[l Ol =m0, (82)

Sit)=-—

where g is the spin-isospin degeneracy and the number of
single-particle canonical occupation probabilities is of the
order of O(10*), determined at each time shown with
a symbol in Fig. 11. The entanglement entropy in addi-
tion provides an insight on the complexity, or the minimal
number of independent Slater determinants, required to ac-
curately describe a dynamic process as a function of time
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FIG. 8. Differences between unprojected and particle number
projected number densities at the top of the outer barrier for 2°U.

[10]. At different times during the evolution the complexity
of the many-body wave function changes, depending on how
effective is the repopulation of the single-particle states due
to the particle-particle interactions, beyond the naive mean
field. In a simple one Slater determinant time-dependent ap-
proximation, known as TDHF, the single-particle occupation
probabilities do not change in time.

Other authors have considered higher-order entropies, such
as two-body entropies [128,133,134], however, only in much
smaller single-particle spaces than what is needed to simulate
dynamics of complex nuclei, such as fission. The single-
particle occupation probabilities are not well defined, as their
values depend of the basis set one uses in order to evaluate
them, and a superfluid system is particular example. As has
been well known for decades, the canonical wave functions
or the natural orbitals [2-5] are the smallest possible set to
represent a many-body wave functions in terms of single-
particle orbitals as a sum over N-particle Slater determinants,
as in particular is needed in shell-model calculations [127].
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FIG. 9. Differences between unprojected and particle number
projected number densities at the scission configuration, for the en-
tire system along the fission direction z axis and along the x axis and
at y = 0 in the inserts, centered at the heavy on the left and at the
light on the right fission fragments respectively at scission. In this
case and in Figs. 8 and 10 the initial state was the same as in Table I
but without a boost of the collective quadruple mode.

For example, evaluating the entanglement two-body entropy
[128] would require defining the two-body density matrix,

ma(5, 6,6, 8) = (@ EW CWEOUE)IP),  (83)

which in the case of nuclear systems simulated on a spatial
lattice is an object with (2 x 2 x NxNyNz)4 coordinates, a
quantity too large to fit in any classical supercomputers in the
foreseeable future.

Here we will illustrate the irreversible fission dynamics in
the largest simulation we have performed on a spatial lattice
482 x 120, which required 4609 nodes with 27 654 GPUs
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FIG. 10. The same as in Fig. 9 but for the fully separated FFs.
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FIG. 11. The orbital entropy S(¢) as a function for time for fission
of 2°U in a large simulation box 482 x 120 fm® for two of the
simulations reported in Ref. [144], for two different set of initial
conditions. The initial deformations of the fissioning nuclei were
0» = 159.64 b and Q3 = 17.80 b¥/? for one trajectory (solid lines)
and Qy = 135.25 b and Q3 = 12.44 b*? for the other trajectory
(dashed lines), near the top of the outer barrier. The entropy is plotted
separately for proton and neutron subsystems and for the entire
fissioning system. For more details concerning these simulations see
Ref. [144].

on the Summit supercomputer for about 15 wall-hours for
a single fission trajectory, in one of the largest (if not the
largest) direct numerical simulation ever reported, see Fig. 11.
Similar results have been reported in Refs. [10,58-60] for
both fission and for a 233U +2*¥U collision at 1500 MeV in
center-of-mass frame; however, for much smaller simulation
boxes. The orbital entanglement entropy is very large initially,
as expected in a system with very strong pairing correlations.
As the nucleus evolves towards scission it heats up, achieving
temperatures above 1 MeV [26,27,84] and the pairing correla-
tions weaken, but they do not disappear, see Refs. [26,27,84]
and Fig. 4. As Magierski et al. [20] have recently shown,
even in the high-energy collisions of *°Zr +°°Zr, due to the
excitation of the Higgs pairing mode [145,146], pairing corre-
lations, which are absent in the initial nuclei, acquire a large
amplitude at very large excitation energies in the proximity
of the Coulomb barrier of the colliding nuclei of the com-
pound nucleus formed in this collision. While approaching the
scission configuration, the matter exchange between the two
halves of the fissioning nucleus slows down and completely
stops after scission, which in the Fig. 11 is around 1 000 fm/c.
After the two FFs separate, they are highly excited, and in
particular the light FF is also very highly deformed, and both
fragment relax, and the entanglement entropy increases with
time, as the single-particle levels are repopulated, reaching
values almost equal to the initial entanglement entropy of
the cold strongly correlated nucleus near the top of the outer
barrier. The temperature of the final FFs is significantly larger,
the remaining pairing correlations are weaker, and while one
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FIG. 12. The time evolution of the canonical occupation proba-
bilities for neutron and proton levels at the initial time, scission, and
the final time for the same data presented in Fig. 11. The upper panel
correspond the trajectory shown with dashed limes, while the lower
panel corresponds to the trajectory shown with solid lines in Fig. 11.

process favors more occupation particle redistribution, the
other works in the opposite direction.

In Fig. 3 and Sec. VIB we observed the non-Markovian
behavior of the quantity oy(r) = ), [nk(t) — n(0)|, which
had a higher essentially linear rate of change before the neck
is formed and a slower, also almost linear, rate for larger
times. Between the initial state and scission the canonical
occupation probability spectrum acquires a somewhat sharper
Fermi surface, see Fig. 12, which explains why the orbital
entropy decreases. In the final state the canonical occupation
probability spectrum moves towards that of the initial state,
which again explains why the orbital entanglement entropy
increases. These two time-dependent behaviors of the o (¢)
and S(¢) are thus correlated and now we see how.

In the large simulation box we studied the fission of 2*°U
we thus have clearly identified two regimes. In this very large
simulation box the FFs still evolve in time when they reach the
box walls and they clearly did not reach thermalization. One
might be tempted to isolate each FF separately and follow its

evolution in its own center of mass. This can appear phys-
ically motivated, as at sufficiently large spatial separations
one expects that the FFs can hardly influence each other any
longer, apart from the relatively weak Coulomb field. It is,
however, not clear how one can formally proceed, since apart
from the v, (&, t) quasiparticle wave functions, which can be
very well localized inside a specific FF, the time evolution
of a specific FF is also controlled by the u(&,#) component
of the quasiparticle wave functions, which are mostly fully
delocalized, as we discussed in Sec. III, and through these
components the two FFs can “communicate” with each other.
This formal aspect of the TDDFT has not been developed yet.

This quantum nonequilibrium entanglement entropy
[115-117] has an unexpected behavior at first sight, but this
behavior is also observed in the evolution of other much sim-
pler systems of strongly interacting fermions [147-154]. As a
final remark, even though we have illustrated the dynamics of
a heavy nucleus with only a few examples, the same features
were observed for several hundred fission trajectories and
heavy-ion collisions we have performed over the years for
various actinides and combination of heavy-ions, the latest
still unpublished.

While we have not shown the occupation probability spec-
trum at scission, qualitatively it looks somewhat similar to the
final occupation probability in the final state shown in Fig. 1.
As we have discussed above, even if one starts a dynamical
simulation with a set of canonical wave functions, they cease
to be canonical at the next time step. The canonical occupation
probability spectrum has to be determined separately at each
time is needed, following the procedure outlined in Sec. II. In
Fig. 12 we show canonical occupation probabilities, needed
to evaluate the orbital entropy S(¢) at the initial, scission,
and final time. Unlike the final occupation probability spec-
trum shown in Fig. 1 the canonical occupation probability
has a qualitatively similar character at any time. At scis-
sion, however, both neutron and proton canonical occupation
probabilities show noticeably shorter tails, which explains the
nonmonotonic behavior of the orbital entropy S(z) illustrated
in Fig. 11.

VII. CONCLUSIONS

The use of a reduced set of canonical wave
functions/natural orbitals could be a good approximation
for treating a variety of static problems when a reduced
set of single-particle states with non-negligible occupation
probabilities above a certain threshold are chosen. Unlike
the normal number density, the anomalous number density
and the kinetic energy density are strictly diverging in
the case of local pairing potentials [9], since for large
energies in 3D the single-particle occupation probabilities
behave as n[e(p)] o« 1/e%(p) o< 1/p*, and regularization and
renormalization are required in order to ensure accurate and
reproducible results. The 1/p* behavior of the canonical
occupation probabilities is cutoff at momenta of the order
of Aqcp in nuclear systems or at fi/ry, where ry is of the
order of the range of the size of the particles. The canonical
wave functions are also very useful when performing particle
and/or angular momentum projections [155].
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We have presented compelling arguments for the use of
a full set of quasiparticle wave functions in time-dependent
density-functional-theory simulations. The use of a smaller
set of quasiparticle wave functions, or approximations such
as TDBCS, lead to incorrect results or even fail to fission
entirely. In a correct implementation of the dynamics, quasi-
particle levels with even very small occupation probability,
including those completely negligible at an initial time, quite
often are populated at a later time to such a level that the final
results could be qualitatively different between approximate
and exact results. One should remember that the TDBCS
approximation, which is a further approximation of the full
TDHEFB, is still using a reduced set of initial canonical quasi-
particle wave functions, an approximation which leads to
errors, as we have shown here. This approach quite widely
used by a number of practitioners, which apart from violating
the continuity equation, and thus failing to correctly describe
the nuclear shape evolution, can lead to results quite different
from the full TDDFT framework. In systems with strong
pairing, such as nuclear systems and cold atom systems, the
u and v components of the Bogoliubov quasiparticle wave
functions, where the u component often lies in the continuum,
or the exact time-reverse canonical orbitals ¢ (&) and ¢r(§)
have very different spatial profiles and cannot be treated in
the BCS approximation.

We have demonstrated that using static self-consistent so-
lutions of the DFT including pairing correlations with local
pairing potentials lead different results, depending on whether
one uses a BCS or a full HFB implementation of pairing cor-
relations, the final solution depends quite strongly on the level
of spatial resolution adopted, either by using a spatial lattice or
a set of appropriately rescaled harmonic oscillator wave func-
tions, as in the very popular code HFBTHO [75,156]. This is
an important aspect of defining various nuclear energy den-
sity functionals, since because of the inherent divergence of
the anomalous density [9], the self-consistent equations have
to be regularized and renormalized [29,30] in each specific
numerical implementation, in total analogy with running cou-
pling constants in quantum-field theory, and it is not enough
to specify the values of the coupling constants alone but
also the equivalent spatial resolution used in order to obtain
nuclear masses, charge radii, and other nuclear properties.
This aspect becomes even more important in time-dependent
simulations, since depending on the level of spatial resolution,
the available phase space varies significantly and so does
the dynamical evolution and the instantaneous single-particle
occupation probabilities. Ignoring these aspects, particularly
in simulation at relatively low spatial resolutions leads to
vastly different properties of the final states, and thus the

confrontation of the theory with experimental data becomes
questionable.

Finally, we have shown how the use of time-dependent
canonical occupation probabilities allows the determination
of the orbital entanglement entropy, which provides insight
into the irreversible dynamics of isolated quantum systems.
This, in particular in the case of fission dynamics, also gives
information about the time dependence of the complexity of
the many-body wave function of a strongly interacting sys-
tem. The presence of pairing correlations within the TDDFT
extension is tantamount to the presence of a quantum col-
lision integral in the evolution equations [58], which leads
to an obviously non-Markovian behavior, unexpected in the
presence of strong dissipation in a traditional Nordheim [100]
and Uehling and Uhlenbeck [101] formulation of the quantum
kinetic theory. The extension of the TDDFT framework to su-
perfluid systems has similarities with the Baym and Kadanoff
extension framework [157,158], see also the independent
work of Keldysh [159]. These extensions of the nonequilib-
rium dynamics are, however, much more complex as they
rely on very complex memory and nonlocal kernels, and their
application to such a complex phenomenon as nuclear fission
would be numerically impossible in the foreseeable future.
Unlike the von Neumann or Shannon entropy, which vanishes
for an isolated quantum system and thus fails to describe
the irreversible dynamics and the expected thermalization
of the excited nuclei, the orbital entanglement entropy is likely
the most useful characterization of the quantum dynamics of
an isolated nucleus, which can be evaluated for rather complex
time-dependent many-body systems.
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