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The semimicroscopic particle-hole dispersive optical model is adapted for a description of the main properties
of charge-exchange giant spin-multipole resonances in medium-heavy closed-shell parent nuclei. The adapted
model is implemented to evaluate the strength functions, transition densities, and branching ratios of direct
one-nucleon decay for charge-exchange giant spin-dipole resonances in the 48Ca, 90Zr, 132Sn, and 208Pb parent
nuclei. Some of the calculation results are compared with available experimental data.
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I. INTRODUCTION

Being related to high-energy collective nuclear excitations
of particle-hole type, giant resonances (GRs) are the object
of extended experimental and theoretical studies (see, e.g., a
monograph, Ref. [1]). There is a great variety of GRs; each
one is characterized by the following main energy-averaged
quantities: the strength functions, transition densities, and
probabilities of direct one-nucleon decay. To evaluate the
mentioned GR characteristics, it is necessary to employ a
nuclear model, allowing to take together into account the
main relaxation modes of particle-hole (p-h)-type states as-
sociated with GRs. These modes are Landau damping, and
coupling mentioned states to the single-particle (s-p) contin-
uum and to many-quasiparticle configurations (the spreading
effect).

In the last decade, the semimicroscopic particle-hole dis-
persive optical model (PHDOM) was proposed [2] and then
adapted to describe the above-mentioned characteristics of
various GRs in medium-heavy closed-shell nuclei (Refs. [3,4]
and references therein). The PHDOM is a microscopically
based extension of the standard and nonstandard continuum-
random-phase-approximation (cRPA) versions to take the
spreading effect into account. Within the model, Landau
damping and coupling (p-h)-type states to the s-p continuum
are described microscopically in terms of a realistic partially
self-consistent mean field and Landau-Migdal p-h interaction,
while the spreading effect is treated phenomenologically via
the energy-averaged p-h self-energy term. The real part of this
term is determined by the imaginary part via a proper disper-
sive relationship. Within the PHDOM, the GR characteristics
are described in a wide excitation-energy interval, including
distant “tails” of considered GRs.

In this paper, we adapt the PHDOM to a description
of the main properties of charge-exchange (isovector) giant
spin-multipole resonances (IVGSMPR(∓) s) in medium-heavy
closed-shell parent nuclei. As a stage in the PHDOM-based

systematic study of the mentioned GRs, we employ the
adapted model to evaluate the main characteristics of the
charge-exchange giant spin-dipole resonances (IVGSDR(∓))
and their overtones (IVGSDR(∓)2) in the 48Ca, 90Zr, 132Sn,
and 208Pb parent nuclei. This work is a continuation of the
recent study reported in Ref. [4], where the PHDOM-based
description of Gamow-Teller and charge-exchange giant
spin-monopole resonances in the mentioned parent nuclei is
given. Moreover, all the model parameters specified in Ref. [4]
are used in the present work. The employed model is a deep
modification of the rather old study detailed in Ref. [5], where
an intuitive method of cRPA extension to taking the spreading
effect into account has been used. Also, we mention a
possibility to describe, within the properly extended PHDOM
version, the effect of tensor correlations on the formation of
IVGSMPR(∓) s. The first step in this direction (in applying
to Gamow-Teller resonance and its overtone in 208Bi) was
recently done [6]. Here, we point out the special interest in
studying the IVGSDR(∓) strength functions, which are related
to the neutron skin in the respective parent nucleus via the
non-energy-weighted sum rule. In this work, we also use (in
the spirit of the study of Ref. [7]) the method, allowing to
specify, within the model, evaluation of the partial branching
ratios of GR direct one-nucleon decay, to make a comparison
of these ratios with respective experimental data more
adequate.

To conclude the Introduction, we mention microscopic
self-consistent RPA-based approaches implemented, in
particular, to describe strength functions of IVGSDR(−) in a
few closed-shell parent nuclei [8–10]. In this description, the
spreading effect is simulated by an artificial “smearing
procedure.” Besides other characteristics of this GR
(transition densities, probabilities of direct one-nucleon
decay), properties of the overtone GR were not considered
within these approaches. Although PHDOM is not a fully
self-consistent model, it demonstrates unique abilities in a
semimicroscopic description of the main properties of various
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GRs in medium-heavy closed-shell nuclei (examples are given
in Refs. [3,4]). We also note that the PHDOM is not directly
related to the well-known single-quasiparticle dispersive
optical model (see, e.g., Refs. [11,12] and references therein).
Similarity in formulation of these models consists in describ-
ing the spreading effect (phenomenologically and in average
over the excitation energy) via, respectively, the p-h and s-p
self-energy terms, which are independent of one another. Be-
ing averaged over a relatively small energy interval involving
many chaotic states, evaluated characteristics of related sim-
ple modes of high-energy nuclear excitations are independent
of this interval. It is noteworthy that the energy density of
chaotic (many-quasiparticle) states is described by statistical
models.

The paper is organized as follows. In Sec. II, we show those
PHDOM relations, which can be directly used in evaluating
the main energy-averaged characteristics of charge-exchange
giant spin-multipole resonances in medium-heavy closed-
shell parent nuclei. In Sec. III, these relations are employed
for calculations of characteristics of charge-exchange giant
spin-dipole GRs and the overtones of these GRs in the parent
nuclei mentioned above. A discussion of the obtained results
and a comparison with available experimental data are given
in Sec. IV. Section V contains our summary and concluding
remarks.

II. MODEL RELATIONS

In spherical nuclei, IVGSMPR(∓) s are characterized by
the quantum numbers of “transferred” isospin third projection
T3 = ∓1 (related to excitations in the β (∓) channels), total
momentum J, spin S = 1, and, by neglecting tensor corre-
lations, orbital momentum L [ �J = �L + �S, parity π = (−1)L].
Each L>0 IVGSMPR(∓) has 2S + 1J components.

Since we include in the following analysis the GR dou-
ble transition density, we start our consideration of the
main PHDOM relations (contrary to the presentation of
Ref. [4]) with the Bethe-Goldstone-type equation for the p-
h Green’s functions (the effective p-h propagators) in the
charge-exchange spin-flip channels, Ã(∓)

S (x, x′, ω) (x is a set
of s-p coordinates; ω is the excitation energy) [2]. The
mentioned equation contains, in particular, a p-h interac-
tion responsible for the formation of collective (p-h)-type
excitations. Within the PHDOM, this interaction is taken
as Landau-Migdal forces, having the following spin-isospin
part:

F s−is
L−M (x1, x2) = G′(�τ1�τ2)(�σ1 �σ2)δ(�r1 − �r2). (1)

For spherical nuclei, the effective p-h propagator might
be expanded in terms of irreducible spin-tensor operators
TJLSM (�n). By neglecting tensor correlations and consider-
ing only the charge-exchange spin-flip p-h channels, one
presents

Ã(∓)
S (x, x′, ω) = (rr′)−2

∑
JLM

Ã(∓)
JLS (r, r′, ω)TJLSM (�n)T +

JLSM (�n′
).

(2)

Radial (two-dimensional) elements of these expansions
obey the respective Bethe-Goldstone-type integral equations:

Ã(∓)
JLS (r, r′, ω) = A(∓)

JLS (r, r′, ω)

+ 2G′
∫

A(∓)
JLS (r, r1, ω)Ã(∓)

JLS (r1, r′, ω)
dr1

r2
1

.

(3)

In these equations, the excitation energy of the (Z ±
1, N ∓ 1) isobaric nuclei, ω = Ex + Q(∓), is counted off
from the parent-nucleus (Z, N) ground-state energy. Here,
Q(∓) are the differences of the ground-state energies of the re-
spective isobaric and parent nuclei, and the excitation energy
of the mentioned isobaric nuclei, Ex, is counted off from the
ground-state energy of these nuclei. The key PHDOM quan-
tity is the energy-averaged “free” p-h propagator A(x, x′, ω)
related to the model of noninteracting independently damp-
ing p-h excitations [2]. Listed in the Introduction, the main
relaxation modes of these excitations are together taken into
account in the expression for the “free” propagator. In Eq. (3),
the quantities (rr′)−2A(∓)

JLS (r, r′, ω) are radial elements of the
expansion [like Eq. (2)] of the “free” p-h propagator taken
in the charge-exchange spin-flip channels. To present rather
cumbersome expressions for these radial elements, we employ
the study of Ref. [13], where the expressions for the elements
4π (rr′)−2A(∓)

000(r, r′, ω), derived within the PHDOM, are given
in detail. The following substitution of the squared kinematic
factors in these expressions,

(
t000
(π )(ν)

)2 = 1

4π
δ(π )(ν)(2 jπ + 1) → (

t JLS
(π )(ν)

)2

= 1

2J + 1
〈(π )‖TJLS‖(ν)〉2, (4)

allows one to get the expressions for the elements
(rr′)−2A(∓)

JLS (r, r′, ω). These expressions contain the occupa-
tion numbers nμ for proton (μ = π ) and neutron (μ =
ν) levels with μ being the set of single-particle quantum
numbers nr,μ, jμ, lμ[(μ) = jμ, lμ]; the bound-state ener-
gies εμ and radial wave functions r−1χμ(r); and proton and
neutron optical-model-like Green’s functions of the radial
s-p Schrödinger equations, in which the mean field has an
additional term proportional to the strength of the p-h self-
energy term responsible for the spreading effect, [–iW(Ex)
+ P(Ex)]. The mentioned s-p radial Schrödinger equations
also determine the proton and neutron optical-model-like
radial continuum-state wave functions, r−1χε>0,(π )(r) and
r−1χε>0,(ν)(r), having the standing-wave asymptotic behav-
ior and obeying the δ-function energy normalization in the
limit W = P = 0. These wave functions are used below in
describing strength functions of direct one-nucleon decay of
IVGSMPR(∓) s.

The effective p-h propagators of Eqs. (2) and (3) determine,
in particular, the double transition densities, having the radial
(two-dimensional) elements

R(∓)
JLS (r, r′, ω) = − 1

π
ImÃ(∓)

JLS (r, r′, ω), (5)

as it follows from the spectral expansion of the effective
propagator [2]. The radial elements of the double transition
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densities of Eq. (5) are related to the J component of a given
IVGSMPR(∓) and, in contrast to the cRPA limit (W = P
= 0), cannot be factorized in terms of the respective radial
elements of one-body transition densities. Strictly speaking,
namely, the energy-averaged double transition density (in-
stead of the energy-averaged one-body transition density)
should be used in an analysis of reaction cross sections of GR
excitation [14].

Let V (∓)
JLSM (x) = τ (∓)VL(r)TJLSM (�n) be s-p external fields

(probing operators), leading to excitation of the J component
of IVGSMPR(∓) of multipolarity L (τ (∓) are the isobaric Pauli
matrices). The external-field radial part is taken as VL(r) = rL

for describing the respective main-tone GRs, and as V ov
L (r) =

rL(r2 − ηL ) for describing the related (first-order) overtone
GRs. The parameter ηL is found from the condition of minimal
excitation of the main-tone GR in the β (−) channel by the
respective “overtone” external field (see below).

The radial elements of the double transition densities of
Eq. (5) determine the strength functions related to the above-
mentioned external fields, as follows:

S(∓)
JLS (ω) = − 1

π
Im

∫
VL(r)Ã(∓)

JLS (r, r′, ω)VL(r′)drdr′. (6)

The full and J-averaged strength functions, S(∓)
L (ω) and

S̄(∓)
L (ω), respectively,

S(∓)
L (ω) =

∑
J

(2J + 1)S(∓)
JLS (ω) = (2S + 1)(2L + 1)S̄(∓)

L (ω),

(7)

are of practical interest. (Hereafter, the index S = 1 at full
and J-averaged quantities is omitted). In a similar way, one
can define J-averaged double transition densities, having the
radial (two-dimensional) elements:

R̄(∓)
L (r, r′, ω) = 1

(2S + 1)(2L + 1)

×
∑

J

(2J + 1)R(∓)
JLS (r, r′, ω). (8)

These quantities determine, in particular, the J-averaged
strength functions of Eq. (7):

S̄(∓)
L (ω) =

∫
VL(r)R̄(∓)

L (r, r′, ω)VL(r′)drdr′. (9)

Within the PHDOM, most of the GR characteristics
might be expressed in terms of the effective field intro-
duced in nuclear physics by Migdal [15]. The effective
fields, Ṽ (∓)

JLSM (x, ω), have the same isobaric and, in neglecting
tensor correlations, spin-angular dependence, as the above-
considered external fields have [6]. Within the PHDOM, the
effective-field radial parts, Ṽ (∓)

JLS (r, ω), are defined by the inte-
gral relations as follows:∫

Ã(∓)
JLS (r, r′, ω)VL(r′)dr′ =

∫
A(∓)

JLS (r, r′, ω)Ṽ (∓)
JLS (r′, ω)dr′.

(10)

These relations together with the PHDOM basic equations
for elements of the effective p-h propagator [Eq. (3)] allow

one to get the equations for the effective-field radial parts:

Ṽ (∓)
JLS (r, ω) = VL(r) + 2G′

r2

∫
A(∓)

JLS (r, r′, ω)Ṽ (∓)
JLS (r′, ω)dr′.

(11)

These equations are, obviously, simpler than Eq. (3).
The effective-field radial parts of Eq. (11) determine most

of the main characteristics of IVGSMPR(∓) J components.
The expressions for these characteristics, related to the respec-
tive external field and considered in a wide excitation-energy
interval, are given below.

(i) The expressions for the strength functions S(∓)
JLS (ω) fol-

low from Eqs. (6) and (10):

S(∓)
JLS (ω) = − 1

π
Im

∫
VL(r)A(∓)

JLS (r, r′, ω)Ṽ (∓)
JLS (r′, ω)drdr′.

(12)

(ii) The expressions for the radial (one-dimensional) el-
ements of the projected (one-body) transition densities,
ρ

(∓)
JLS (r, ω), follow from the definition of these quantities [14],

ρ
(∓)
JLS (r, ω) =

∫
R(∓)

JLS (r, r′, ω)VL(r′)dr′/[S(∓)
JLS (ω)]

1/2
, (13)

and the use of Eqs. (6), (10), and (11):

r−2ρ
(∓)
JLS (r, ω) = − 1

π
ImṼ (∓)

JLS (r, ω)/2G′[S(∓)
JLS (ω)]

1/2
. (14)

Similarly to the definition of Eq. (13), one can define radial
elements of J-averaged projected transition densities:

ρ̄
(∓)
L (r, ω) =

∫
R̄(∓)

L (r, r′, ω)VL(r′)dr′/[S̄(∓)
L (ω)]

1/2
. (15)

These quantities might be expressed in terms of the re-
spective J components according to definitions of Eqs. (8)
and (15):

ρ̄
(∓)
L (r, ω) = 1

(2S + 1)(2L + 1)

∑
J

(2J + 1)

× ρ
(∓)
JLS (r, ω)

[
S(∓)

JLS (ω)

S̄(∓)
L (ω)

]1/2

. (16)

(iii) The expressions for the doubly partial and partial
strength functions (differential probabilities) of IVGSMPR(−)

direct one-proton decay accompanied by population of the
product-nucleus neutron-hole states ν−1, S(−),↑

JLS,(π )ν , and S(−),↑
JLS,ν ,

respectively, are the following [2,16]:

S(−),↑
JLS,(π )ν (ω)

= nν

(
t JLS
(π )(ν)

)2
∣∣∣∣
∫

χ∗
ε=εν+ω,(π )(r)Ṽ (−)

JLS (r, ω)χν (r)dr

∣∣∣∣
2

(17)

and

S(−),↑
JLS,ν =

∑
(π )

S(−),↑
JLS,(π )ν (ω). (18)

The respective expressions for the direct one-neutron decay
strength functions related to the J component of IVGSMPR(+)

follow from Eqs. (17) and (18) after substitutions: (–) →
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(+), ν ↔ π . [These expressions are abbreviated below as
Eqs. (17′) and (18′)].

We now provide comments to the above-given expressions
for the main characteristics of IVGSMPR(∓) s.

(1) The strength functions S(∓)
JLS (Ex ) obey the non-energy-

weighted sum rule (NEWSRL ), which is independent of J:

NEWSRL =
∫

S(−)
JLS (Ex )dEx −

∫
S(+)

JLS (Ex )dEx

=
∫

V 2
L (r)n(−)(r)r2dr. (19)

Here, n(−)(r) is the neutron-excess density in the parent
nucleus. This relation is also valid in cRPA. To verify the
strength-function calculations, it is reasonable to compare
with unity the fraction parameter xc

JLS defined for a large
cutoff excitation energy Ec

x :

xc
JLS =

[∫ Ec
x

0
S(−)

JLS (Ex )dEx −
∫ Ec

x

0
S(+)

JLS (Ex )dEx

]/
NEWSRL.

(20)

The J-averaged strength functions of Eq. (7) obey the
sum rule of Eq. (19) and determine the J-averaged frac-
tion parameter, x̄c

L = x̄(−),c
L − x̄(+),c

L , similarly to Eq. (20).
In the same way, one can consider the fraction parameters
x̄(∓)

L (δ(∓)
12 ) = ∫ Ex,2

Ex,1
S̄(∓)

L (Ex )dEx/NEWSRL defined for given

excitation-energy intervals δ
(∓)
12 = Ex,1−Ex,2.

(2) The above-given expressions related to characteris-
tics of main-tone GRs are also valid for overtone GRs after
the substitution VL(r) → V ov

L (r). The parameter ηL in the
definition of the radial part V ov

L (r) of the probing operator,
leading to excitation of related IVGSMPR(∓)2, can be found
from the condition of minimal excitation of IVGSMPR(−) by
the respective “overtone” operator [4]: min

∫
S(−),ov

L (Ex )dEx,
where integration is performed over the main-tone GR region.
This region is placed at the low-energy distant “tail” of the
overtone-GR full strength function.

(3) Calculations of the (one-dimensional) radial elements
of the projected one-body transition densities, ρ

(∓)
JLS (r, ω), per-

formed in accordance with Eq. (14) might be verified by the
relations

S(∓)
JLS (ω) =

[∫
VL(r)ρ (∓)

JLS (r, ω)dr

]2

, (21)

which follow from Eqs. (13), (5), and (6). As follows
from the comparison of these relations with Eqs. (5) and
(6), only in evaluating the strength functions S(∓)

JLS (ω) might
the double transition densities be approximated by the
product of respective (i.e., related to the same external
field) projected one-body transition densities and there-
fore might be considered as the projected double transition
density:

R(∓),pr
JLS (r, r′, ω) = ρ

(∓)
JLS (r, ω)ρ (∓)

JLS (r′, ω). (22)

Within cRPA, factorization of the double transition density
takes place independently of the external field.

(4) The full strength function of IVGSMPR(−) direct one-
proton decay into channel ν, S(−),↑

L,ν (ω), is defined via the

respective J components of Eq. (18) by a relation similar to
Eq. (7). This strength function together with the full strength
function of Eq. (7) determines the partial branching ratio of
the above-mentioned decay from a given excitation-energy
interval:

b(−),↑
L,ν (δ(−)

12 ) =
∫

δ
(−)
12

S(−),↑
L,ν (ω)dω

/ ∫
δ

(−)
12

S(−)
L (ω)dω. (23)

Substitutions (–) → (+), ν → π in Eq. (23) together with
Eqs. (17′) and (18′) lead to an expression [abbreviated be-
low as Eq. (23′)] for the partial branching ratio of direct
one-neutron decay of IVGSMPR(+) into channel π . Respec-
tively, the expressions for total branching ratios of direct
one-nucleon decay of IVGSMPR(∓) follow from Eqs. (23)
[and (23′)]:

b(−),↑
L,tot (δ(−)

12 ) =
∑

ν

b(−),↑
L,ν (δ(−)

12 ),

b(+),↑
L,tot (δ(+)

12 ) =
∑
π

b(+),↑
L,π (δ(+)

12 ). (24)

In neglecting preequilibrium decay, the differences of
full strength functions, S(−)

L (ω) − ∑
ν S(−),↑

L,ν (ω) = S(−),↓
L (ω)

and S(+)
L (ω) − ∑

π S(+),↑
L,π (ω) = S(+),↓

L (ω), can be considered
as the statistical-decay strength functions of IVGSMPR(∓).
Within cRPA, these strength functions go to zero (the uni-
tary condition for one-nucleon decay strength functions).
Respectively, the total branching ratios of direct one-nucleon
decay determine the branching ratios of statistical decay of
IVGSMPR(∓):

b(∓),↓
L = 1 − b(∓),↑

L,tot . (25)

These relations follow from Eqs. (23), [(23)′] and (24) and
the above-given definitions of the statistical-decay strength
functions. A comparison with unity of branching ratios b(∓),↑

L,tot

of Eq. (24) [or b(∓),↓
L of Eq. (25)] allows one to estimate

the contribution of the spreading effect to the formation of
respective GRs.

(5) In contrast with the GR strength function and transition
density, which are the characteristics of collective motion, the
probabilities (or branching ratios) of GR direct one-nucleon
decays are the characteristics of the interplay of collective
and s-p motions. To make more adequate a comparison of the
direct one-nucleon decay branching ratios of Eqs. (23) and
(23)′—evaluated by Eqs. (17), (17)′, (18), and (18′)—with re-
spective experimental data, following Ref. [7] we recalculate
these branching ratios. The recalculating procedure takes into
account (i) a more complicated structure of product-nuclei
one-hole states μ−1 populated after decay (by the use of the
respective spectroscopic factor SFμ); (ii) sensitivity of the
direct-decay characteristics to potential-barrier penetrability
for escaped nucleons [by the use of the s-p optical-model
transmission coefficients Tλ(ε) ]. For instance, the expression
for the doubly partial strength function of direct one-proton
decay of the J component of IVGSMPR(−), recalculated in
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TABLE I. The model parameters specified in Ref. [4] and used for evaluation of characteristics of IVGSDR(∓) and IVGSDR(∓)2 in
the parent nuclei under consideration. The mean-field parameter r0 = 1.21 fm and spreading parameter � = 3 MeV are taken as universal
quantities [4].

Nucleus U0 (MeV) Uls (MeV fm2) a (fm) f ′ g′ α (MeV−1) B (MeV)

48Ca 54.34 32.09 0.58 1.13 0.85 0.25 5.34
90Zr 55.06 34.93 0.61 1.05 0.68 0.51 5.24
132Sn 55.53 35.98 0.63 1.00 0.71 0.26 5.84
208Pb 55.74 33.35 0.63 0.98 0.73 0.24 5.12

accordance with Eq. (17), has the form:

Š(−),↑
JLS,(π )ν (ω) = SFνS(−),↑

JLS,(π )ν (ω)

× Tπ (ε = εν + ω + �ε)/Tπ (ε = εν + ω).
(26)

Here, Tπ = 1 − exp[−4ηπ ], where ηπ is the imaginary part
of the s-p optical-model scattering phase shift, and �ε =
�εν + �ωmJ with �εν = ε

expt
ν − εν and �ωmJ = ω

expt
mJ − ωmJ

being differences of the experimental and calculated ener-
gies of the neutron-hole state and of the GR maximum,
respectively.

The last comment concludes presentation of the PHDOM-
based relations, allowing one to evaluate the main character-
istics of IVGSMPR(∓) s and their overtones in medium-heavy
closed-shell parent nuclei. In the next section, these relations
are used in applying to IVGSDR(∓) and IVGSDR(∓)2 (Jπ =
0−, 1−, and 2−; L = S = 1). Here we note that the sum rule
of Eq. (19) for the L = 1 main-tone GRs,

NEWSRL=1 = 1

4π

∫
r2n(−)(r)d�r = 1

4π
(N〈r2〉n − Z〈r2〉p),

(27)

is related to the neutron skin of the respective parent nucleus.
For this reason, experimental studies of the strength functions
of IVGSDR(∓) are the object of special interest.

III. PROPERTIES OF IVGSDR(∓) AND THEIR OVERTONES

The following input quantities are used in employing
relations of Sec. II for evaluation of the main characteristics
of IVGSDR(∓) and their overtones in the 48Ca, 90Zr, 132Sn,
and 208Pb parent nuclei: (i) the realistic (Woods-Saxon-type)
phenomenological partially self-consistent mean field
described in detail in Ref. [3]; (ii) the Landau-Migdal forces
of Eq. (1); (iii) the imaginary part W (Ex ) of the strength
of the energy-averaged p-h self-energy term responsible for
the spreading effect [the real part, P(Ex ), is determined by
the imaginary part via the proper dispersive relationship].
The values of mean-field parameters, the Landau-Migdal
parameter g′ = G′/300 MeV fm3, and “spreading” parameters
[parameters of the energy dependence of W (Ex ) ] have been
specified in Ref. [4], where the PHDOM-based description

FIG. 1. The strength functions S(−)
J (Ex ) of 0−, 1− , and 2− J components of IVGSDR(−) evaluated within the PHDOM in parent nuclei

under consideration (dashed, dashed-dotted, and dotted lines, respectively). The J-averaged strength functions S̄(−)(Ex ) (full lines) are also
shown.
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FIG. 2. Evaluated full and J-component strength functions [multiplied by 1/4π and (2J + 1)/4π , respectively] of IVGSDR(−) in 208Bi in
a comparison with experimental data of Ref. [17].

of Gamow-Teller and charge-exchange giant spin-monopole
resonances in the parent nuclei under consideration has been
proposed. For the reader’s convenience, the values of model
parameters specified in Ref. [4] and used below for evaluation

of characteristics of the considered dipole resonances are
listed in Table I.

We start presenting the calculation results with the evalu-
ated strength functions S(∓)

J (Ex ) and S̄(∓)(Ex ) of IVGSDR(∓)

FIG. 3. Evaluated J-averaged strength functions of IVGSDR(−) in the parent nuclei under consideration (full lines) approximated by the
Lorentz-type energy dependence (dashed lines). The cRPA limits of mentioned strength functions (thin lines) are also shown.
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FIG. 4. The same as in Figs. 1 and 3, but for IVGSDR(+) in 48Ca and 90Zr parent nuclei.

in the parent nuclei under consideration (hereafter, the in-
dices L = S = 1 at the characteristics of spin-dipole GRs
are omitted). Evaluated by Eq. (12) the J-component strength
functions of IVGSDR(−) in the parent nuclei under considera-
tion are shown in Fig. 1 together with the J-averaged strength
function of Eq. (7). This presentation is specified in Fig. 2,
where the evaluated J-component and full strength functions
of IVGSDR(−) in 208Bi, 2J+1

4π
S(−)

J (ω), and 1
4π

S(−)(ω), are
shown in a comparison with respective quantities deduced
from the experimental data of Ref. [17]. For a compari-
son with related experimental data, the evaluated J-averaged
strength functions are approximated by the Lorentz-type en-
ergy dependence and, also, compared with the respective
cRPA limit (Fig. 3). Similarly to the results shown in Figs. 1
and 3, the evaluated strength functions of IVGSDR(+) in the
48Ca and 90Zr parent nuclei are shown in Fig. 4. In these

nuclei (in contrast with the 132Sn and 208Pb parent nuclei)
the Pauli blocking effect decreases the IVGSDR(+) strength
without a marked change of GR structure. In heavy nuclei,
having a large neutron excess, this effect reduces IVGSDR(+)

up to a few resonances related to weak low-energy (p-h)-
type spin-dipole excitations. This statement is illustrated by
Fig. 5, where the evaluated J-averaged strength functions of
IVGSDR(+) in 132Sn and 208Pb parent nuclei are shown. The
small total relative strength of these resonances is discussed
in Sec. IV. As for overtone GRs, we show in Figs. 6 and
7 (similarly to Figs. 3 and 4) only the evaluated J-averaged
strength functions of IVGSDR(∓)2 in the parent nuclei under
consideration.

From the evaluated J-averaged strength functions one
can deduce the following parameters of IVGSDR(∓) and
IVGSDR(∓)2 in the parent nuclei under consideration: (i)

FIG. 5. Evaluated J-averaged strength functions of IVGSDR(+) in 132Sn and 208Pb parent nuclei.
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FIG. 6. The same as in Fig. 3, but for IVGSDR(−)2.

the fraction parameters x̄c and x̄(∓),c evaluated accord-
ing to Eqs. (7) and (20) for the cutoff excitation energy
Ec

x = 80 MeV; (ii) the energy E (∓)
x,m and total width �(∓)

of the respective strength-function maximum approximated

by the Lorentz-type energy dependence; (iii) large enough
excitation-energy intervals δ

(∓)
12 = Ex,1−Ex,2, which include

the respective main strength-function maximum, and related
to these intervals the relative strengths x̄(∓)

12 /x(∓)
c , mean ex-

FIG. 7. The same as in Fig. 4 (the second part), but for IVGSDR(+)2 in the parent nuclei under consideration.
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TABLE II. Evaluated within the PHDOM parameters of IVGSDR(−) in the parent nuclei under consideration. (Notations are given in the
text).

Nucleus x̄c (%) x̄(−),c (%) E (−)
x,m (MeV) �(−) (MeV) δ

(−)
12 (MeV) x̄(−)

12 /x̄(−),c E (−)
x,mean (MeV) σ (−) (MeV) b(−),↑

L,tot (%)

48Ca 106.4 128.3 19.2 13.6 5.7–32.8 0.90 22.1 8.8 40.3
90Zr 108.3 145.0 14.8 16.9 0.0–31.6 0.89 20.8 10.4 16.3
132Sn 96.6 103.5 22.1 14.2 7.9–36.4 0.92 24.6 9.0 15.5
208Pb 98.4 104.5 21.2 12.3 8.9–33.5 0.90 23.2 7.9 15.8

citation energies E (∓)
x,mean (defined as the ratio of the first to

zero moments), and energy dispersions σ (∓). The above-listed
parameters are given in Table II for IVGSDR(−) in the parent
nuclei under consideration and in Table III for IVGSDR(+) in
the 48Ca and 90Zr parent nuclei. In Table IV, the reduced list
of parameters evaluated for IVGSDR(∓)2 in the parent nuclei
under consideration is given. The values of parameter η in
definition of the “overtone” external-field radial part are also
given in Table IV.

A large volume of calculation results concerned with
the projected (one-body) and double transition densities of
IVGSDR(∓) and IVGSDR(−)2 in the parent nuclei under con-
sideration are illustrated by a few examples. In particular, for
the mentioned nuclei we show in Figs. 8 and 9 the radial
elements of the projected transition densities ρ

(−)
J=1(r, Ex,m1 )

calculated by Eq. (14) at the maximum of the strength func-
tions of, respectively, 1(–) − IVGSDR(−) and its overtone.
Radial elements of various projected transition densities,
ρ

(−)
J (r, Ex,mJ ), ρ̄ (−)(r, Ex,m), evaluated according to Eqs. (14)

and (15), are compared in Fig. 10, where these elements
are shown for IVGSDR(−) in 208Bi taken as an example. To
imagine the difference between the real and projected dou-
ble transition densities [Eqs. (5) and (22), respectively], we
consider these densities for 1(–) − IVGSDR(−) in 208Bi also
taken as an example. In Fig. 11, the radial elements of these
densities evaluated at Ex = Ex,m1 are compared along two
lines: r = r′ and r + r′ = 2rm [ rm is related to the maximum
of ρ

(−)
J=1(r, Ex,m1 ) radial dependence shown in Fig. 8].

Presenting the branching ratios of direct one-nucleon decay
of IVGSDR(∓) in the nuclei under consideration evaluated
within the PHDOM is started with the total branching ratios
b(∓),↑

tot of Eq. (24) (Tables II and III). Given in these tables,
the branching ratios are evaluated for the chosen excitation-
energy intervals δ

(∓)
12 . Direct one-proton decay of IVGSDR(−)

in 208Bi is the object of special study, because in such case
the experimental data concerned with partial branching ratios
for a few decay channels are available [18]. In Table V, the
partial branching ratios b(−),↑

ν (δ(−)
12 ) evaluated according to

Eqs. (17), (18), and (23) for the mentioned decay channels
and the recalculated branching ratios b̌(−),↑

ν (δ(−)
12 ) of Eqs. (26),

(18), and (23) are given together with experimental spectro-

scopic factors, SF expt
ν , and experimental and calculated s-p

energies, ε
expt
ν and εν , respectively. The values �ωmJ = 0

are used in calculations performed with the use of Eq. (26),
because the experimental and calculated energies E (−)

x,m of the
considered GR are in close agreement (see below). Since the
similar experimental data for Gamow-Teller resonance (GTR)
in 208Bi are also known [19], we evaluate the respective partial
branching ratios for this resonance, using the same calculation
scheme and the same set of model parameters. The obtained
results can be considered as a reasonable supplement to our
recent study reported in Ref. [4] (see Introduction). Two sets
of partial branching ratios calculated for considered GRs are
compared with respective experimental data of Refs. [18,19]
(Table V).

IV. DISCUSSION OF RESULTS

Discussion of calculation results is started with the strength
functions and related parameters of IVGSDR(∓) in the parent
nuclei under consideration (Figs. 1–5, Tables II and III). (i)
The mentioned strength functions exhaust well enough the
non-energy-weighted sum rule of Eq. (19). The evaluated J-
averaged fraction parameters x̄c

L [the definition is given after
Eq. (20)] are generally close to unity (Table II). The obtained
moderate deviations from unity might be related to neglecting,
by RPA, ground-state correlations (“core-polarization” effect)
in evaluation of the neutron-excess density employed in eval-
uation of NEWSRL=1 according to Eq. (19). An attempt to
take this effect into account within cRPA has been under-
taken in Ref. [22], but not completed. (ii) Being the ratio of
integral strengths of IVGSDR(+) and IVGSDR(−), the ratio
of fraction parameters x̄(+)c

L /x̄(−)c
L depends essentially on the

Pauli blocking effect and reaches the small values of 0.07
and 0.06 for the 132Sn and 208Pb parent nuclei, respectively.
This ratio is not too small for the 48Ca and 90Zr parent nuclei
(Tables II and III). Strong suppression of the IVGSDR(+)

strength due to the Pauli blocking effect takes place in heavy
nuclei. In these nuclei, the intershell distance (the mean en-
ergy of s-p dipole transitions) is comparable with the mean
energy difference of s-p proton and neutron levels, having
the same quantum numbers (approximately this difference is

TABLE III. The same as in Table II, but for IVGSDR(+) in 48Ca and 90Zr parent nuclei.

Nucleus x̄c (%) x̄(+),c (%) E (+)
x,m (MeV) �(+) (MeV) δ

(+)
12 (MeV) x̄(+)

12 /x̄(+),c E (+)
x,mean (MeV) σ (+) (MeV) b(+),↑

L,tot (%)

48Ca 106.4 21.9 10.3 5.8 4.6–16.1 0.74 12.0 4.0 16.0
90Zr 108.3 36.8 9.9 7.9 1.9–17.8 0.77 13.4 4.9 2.8
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TABLE IV. Evaluated within the PHDOM parameters of IVGSDR(∓)2 in the parent nuclei under consideration.

Nucleus η (fm2) x̄c (%) x̄(−),c (%) E (−)
x,m (MeV) �(−) (MeV) x̄(+),c (%) E (+)

x,m (MeV) �(+) (MeV)

48Ca 23.5 98.7 144.2 31.7 26.4 45.5 24.4 22.9
90Zr 30.2 96.4 212.6 33.1 27.2 116.1 21.3 29.1
132Sn 38.6 98.1 120.1 36.2 22.5 22.0 15.9 16.2
208Pb 48.6 98.3 125.2 37.5 19.6 26.9 16.4 12.8

proportional to N–Z). As a result, a few occupied levels ν

from the neutron excess do not allow the appearance of p-h
excitations (νπ−1), having a large spin-dipole strength. (iii)
The energy dependence of strength functions S(−)

J (Ex ) related
to the J = 0 and J = 1 components of IVGSDR(−) exhibits
the well-formed resonance, having weak pygmy resonance(s)
at its low-energy part (Fig. 1). The energy dependence of
strength function S(−)

J=2(Ex ) exhibits a two-bump resonance,
having a rather strong pygmy resonance. For this reason [due
to a large statistical factor related to the (J = 2)-component in
Eq. (7)], the J-averaged strength function of IVGSDR(−) also
exhibits the two-bump energy dependence, which is purely
described by the Lorentz-type energy dependence (Figs. 1
and 3). Additional broadening of the main maximum of the
S̄(−)(Ex ) strength function, appearing within the model, due
to a difference of the energy of S(−)

J (Ex ) maxima and to
the two-bump structure of S(−)

J=2(Ex ), might be considered as
“second-order” Landau damping of IVGSDR(−). (iv) As it
follows from a comparison of strength functions S̄(−) evalu-
ated within cRPA and PHDOM (Fig. 3), the spreading effect
gives the main contribution to the formation of IVGSDR(−) in
the 90Zr, 132Sn, and 208Pb parent nuclei. The total branching
ratio of direct one-proton decay of these GRs [evaluated by
Eq. (24)] is about 16% (Table II). Only for 48Ca, contributions
of the Landau damping + s-p continuum and spreading effect
are comparable [the mentioned branching ratio is about 40%
(Table II)]. (v) As mentioned above, the Pauli blocking effect
on the properties of IVGSDR(+) in the 48Ca and 90Zr parent
nuclei is not too large. For this reason, the energy dependence

FIG. 8. Taken at the excitation energy Ex = Ex,m1 , the radial el-
ement of the projected transition density, ρ

(−)
J=1(r, Ex,m1 ), evaluated

within the PHDOM for 1(–) − IVGSDR(−) in the parent nuclei under
consideration.

of strength functions S(+)
J (Ex ) and S̄(+)(Ex ) is similar to that

for the respective strength functions of IVGSDR(−) in the
mentioned parent nuclei (Fig. 4, and Figs. 1 and 3). Due to the
Pauli blocking effect, the strength of IVGSDR(+) in the 132Sn
and 208Pb parent nuclei is strongly suppressed [item (ii)]. As a
result, the respective strength functions S̄(+)(Ex ) exhibit only
a few weak low-energy resonances (Fig. 5) and are essentially
different from the related strength functions S̄(−)(Ex ) (Fig. 3).
(vi) Parameters of the considered IVGSDR(∓) deduced from
the evaluated J-averaged strength functions discussed above
are listed in Tables II and III (notations are given in Sec. III).
The respective experimental data are scant. We note here the
experimental values of energy E (−)

x,m = 21.1 ± 0.8 MeV and
total width �(−) = 8.4 ± 1.7 MeV deduced in Ref. [19] from
the 208Pb(3He, t)-reaction cross section. The respective calcu-
lated values (Table II) are in reasonable agreement with these
experimental data. (vii) The J-component and full strength
functions deduced from an analysis of 208Pb ( �p, �n)-reaction
cross sections [17] are shown in Fig. 2 in a comparison with
the respective quantities evaluated within the PHDOM. As
follows from this comparison, the full strength function is
reasonably described. Here we note a possibility to describe,
within the model, the contribution of tensor correlations to the
formation of IVGSMPR(∓). As follows from the preliminary
study reported in Ref. [6], an adequate description of the
spreading effect is needed to describe details of the strength
distribution. From this point of view, the RPA-based studies
of tensor correlations undertaken in Refs. [17,23] seem to us
not completed.

As mentioned in the Introduction, the PHDOM is an ex-
tension of cRPA. For this reason, there is a possibility to
describe within the model properties of high-energy GRs. In

FIG. 9. The same as in Fig. 8, but for 1(–) − IVGSDR(−)2.
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FIG. 10. Radial elements of projected transition densities,
ρ

(−)
J (r, Ex,mJ ) (dashed, dashed-dotted, and dotted lines for, respec-

tively, J = 0, 1, and 2) and ρ̄ (−)(r, Ex,m ) (full line), evaluated for
IVGSDR(−) in 208Bi.

the present study, this possibility is realized for a description
of the overtone GRs, IVGSDR(∓)2, in the parent nuclei un-
der consideration. Evaluated within the model the J-averaged
strength functions of IVGSDR(−)2 and IVGSDR(+)2 (Figs. 6
and 7, respectively) exhaust well enough the related NEWSR:
the respective fraction parameters x̄c are found to be close
to unity (Table IV). The strength functions exhibit a broad
resonance, which is formed mainly due to the Landau damp-
ing + s-p continuum. The parameters of this resonance, the
energy of the strength-function maximum and total width (Ta-
ble IV), are typical for high-energy GRs. These parameters,
as a majority of the IVGSDR(∓) parameters, evaluated within
the PHDOM, can be considered as a prediction for future
experimental studies.

In addition to strength distributions, transition densities
also belong to the main characteristics of GRs. As examples,
we show in Figs. 8 and 9 the radial elements of projected
(one-dimensional) transition densities, ρ

(−)
J=1(r, Ex,m1 ) and

ρ
(−),ov
J=1 (r, Ex,m1 ), evaluated at the maximum of the (J = 1)-

component strength function of, respectively, IVGSDR(−) and
IVGSDR(−)2 in the parent nuclei under consideration. As ex-
pected for well-formed GRs, these transition densities exhibit,

FIG. 11. The radial elements of real and projected double transi-
tion densities, R(−)

J=1(r, r′, Ex,m1 ) and R(−),pr
J=1 (r, r′, Ex,m1 ) (full and thin

lines, respectively), taken at the energy Ex,m1 of 1(–) − IVGSDR(−) in
208Bi and evaluated within the PHDOM at two lines: r = r′ (a) and
r + r′ = 2rm (b).

respectively, nodeless and one-node radial dependence. The
example of the evaluated J-dependent and J-averaged radial
elements of the projected transition density of IVGSDR(−) in
208Bi is given in Fig. 10. A possibility of approximate factor-
ization of the energy-averaged double transition density might
be illustrated by comparison of this quantity with its projected
partner [Eq. (22)]. Considering (J = 1)−IVGSDR(−) in 208Bi
as an example, we compare in Figs. 11(a) and 11(b), respec-
tively, diagonal and “antidiagonal” parts of radial elements

TABLE V. The partial branching ratios of direct one-proton decay of GTR and IVGSDR(−) in 208Bi evaluated within the PHDOM for a few
decay channels (notations are given in the text). The experimental data are taken from Refs. [18–21]. The related excitation-energy intervals
considered are given in Table II of Ref. [4] and Table II of this work.

GTR IVGSDR(−)

ν−1 SF expt
ν [20] εν (MeV) εexpt

ν (MeV) [21] b(−),↑
ν (%) b̂(−),↑

ν (%) b(−),↑
ν,expt (%) [19] b(−),↑

ν (%) b̂(−),↑
ν (%) b(−),↑

ν,expt (%) [18]

3p1/2 1.0 7.23 7.37 1.15 1.05 1.8 ± 0.5 1.20 1.18 0.95 ± 0.28
2 f5/2 0.98 8.08 7.94 2.50 2.75 Incl. in 3p3/2 2.49 2.49 2.10 ± 0.61
3p3/2 1.0 8.3 8.27 1.05 1.07 2.7 ± 0.6 2.42 2.42 2.79 ± 0.81
1i13/2 0.91 9.22 9.00 0.01 0.01 0.2 ± 0.2 3.51 3.19 3.41 ± 0.98
2 f7/2 0.7 10.8 10.07 0.08 0.13 0.4 ± 0.2 2.78 2.24 3.14 ± 0.91
1h9/2 0.61 11.51 10.78 0.02 0.03 – 1.11 0.82 0.97 ± 0.27
Sum 4.81 5.05 4.9 ± 1.3 13.50 12.34 13.4 ± 3.9
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of these transition densities evaluated at the maximum of
strength function S(−)

J=1(Ex ) (Fig. 1). The proximity of real
and projected double transition densities, considered at the
GR maximum, makes it reasonable to employ the projected
(one-body) transition density in an analysis of cross sections
of GR excitation (see, also, Ref. [14]).

The ability to describe probabilities (or branching ratios)
of GR direct one-nucleon decay is a unique feature of the
PHDOM. In Table V, we show partial branching ratios cal-
culated within the model and then properly specified for a few
channels of direct one-proton decay of GTR and IVGSDR(−)

in 208Bi. Calculation results are in reasonable agreement with
respective experimental data. The use of the specification
procedure does not change significantly the description of
experimental branching ratios.

V. SUMMARY AND CONCLUDING REMARKS

In this work, we present the method for a theoretical
investigation of the main properties of charge-exchange giant
spin-multipole resonances in medium-heavy closed-shell
parent nuclei. Being based on the properly adapted
semimicroscopic particle-hole dispersive optical model, the
method is applied to the description of the main characteristics
and parameters of charge-exchange giant spin-dipole
resonances and their overtones in the 48Ca, 90Zr, 132Sn, and

208Pb parent nuclei. Giant resonance strength distributions,
transition densities, and probabilities (branching ratios) of
direct one-nucleon decay are evaluated with the use of model
parameters taken from a similar study of the main properties
of Gamow-Teller and charge-exchange giant spin-monopole
resonances in the same parent nuclei. Calculation results are in
reasonable agreement with experimental data, which are few
in number, so that most of the obtained results might be con-
sidered as predictions. Results presented in this work together
with obtained early results support the statement that the
employed model is a useful tool for theoretical investigation
of properties of various giant resonances in medium-heavy
closed-shell nuclei. Implementation of the properly extended
model to take into account the effect of tensor correlations on
the formation of giant resonances is in order.
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