
PHYSICAL REVIEW C 109, 064609 (2024)

Universal separable structure of the optical potential
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Based on a momentum-space in-medium folding model, we disclose the universal separability of the optical
potential, revealing its radial and nonlocality features at beam energies in the range 40–400 MeV and target
mass numbers in the range 40� A� 208. From this microscopic study we find that the nonlocality form factor
is inherently complex and of hydrogenic nature, affecting both central and spin-orbit components of the potential.
A striking outcome from this study is the consistent appearance of a nodal point in the imaginary radial form
factor, notably suppressing surface absorption peaks, in evident contrast with Woods-Saxon’s assumption of an
absorptive peak at the nuclear surface. Our analysis reveals that the complex radial form factor can effectively
be represented as convolutions of uniform spherical distribution with a Gaussian form factor and a Yukawa
term. These robust microscopically driven findings offer new ways for investigating nuclear reactions beyond
the restricting Woods-Saxon and Perey-Buck assumptions.
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I. INTRODUCTION

Supernovae, nuclear spallation, stockpile stewardship, neu-
tron star mergers, nuclear reactors, among many others,
constitute scenarios where multiple nuclear reactions in-
volving stable and exotic nuclei take place. In this context
the optical potential emerges as a primary tool to quantify
scattering and reaction processes [1]. Along this line, phe-
nomenological approaches inspired by Woods-Saxon form
factors [2], supplemented with Perey-Buck nonlocal form fac-
tor [3], have been developed with reasonable success [3–6].
Despite these advances, there is no theoretical justification for
the prescribed form factors associated to flux absorption nor
the nonlocality, a situation which may hinder global models
from further improvements.

From a fundamental standpoint, the challenge is to describe
nucleon-nucleus (NA) scattering starting from the basic inter-
nucleon interaction. A final and ambitious goal would be to
be able to describe scattering processes over a broad energy
range—from a few keV up to hundreds of MeV—and consid-
ering targets over the whole nuclear chart. To this end we rely
on ab initio approaches [7–10] and in-medium microscopic
models [11,12]. Despite the significant advances reported in
the context of ab initio approaches, current applications are
limited to few light targets and low energies, reaching qual-
itative agreement with the data. Microscopic models, on the
other hand, constitute a reasonable and flexible framework to
bridge the basic nucleon-nucleon (NN) interaction with the
optical potential by means of density-dependent NN effective
interactions.

Following a previous work, where a bell-shape nonlocality
in the optical potential was first disclosed [13], we further
scrutinize its momentum-space structure to extract its radial

as well as nonlocal form factors. The study we report here is
based on the Argonne v18NN potential (AV18) [14], suited for
NA scattering at the energies considered, provided minimal
relativity is accounted for [15]. In this case the in medium
effective interaction is taken from the genuine fully off-shell g
matrix solutions of the Brueckner-Hartree-Fock integral equa-
tion. Emphasis is given to retain the genuine nonlocality of the
optical potential at all stages of its calculation.

This work is organized as follows. In Sec. I we introduce
the general framework of the microscopic model, followed by
Sec. III where we present and discuss the separability of the
optical potential from actual folding calculations. In Sec. IV
we present final remarks.

II. FRAMEWORK

The nonrelativistic optical-model potential in momentum
space for nucleon elastic scattering off spin-zero nucleus can
be expressed as [16]

Ũ (k′, k; E ) = Ũc(k′, k; E ) + iσ · n̂ Ũso(k′, k; E ) (1)

with E the center-of-mass (c.m.) kinetic energy, 1
2σ the spin

of the projectile, and n̂ a unit vector perpendicular to the
scattering plane given by n̂=k′×k/|k′ × k|. Here, Ũc and Ũso

denote the central and spin-orbit components of the potential
expressed in terms of the relative momenta k and k′. To
calculate the potential we follow Refs. [11,15,17], based on
an infinite nuclear-matter model to represent the in-medium
NN effective interaction starting from realistic NN bare po-
tentials [18]. The use of the Slater approximation [11,19]
for the one-body mixed density yields the simplified
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FIG. 1. Differential cross section for proton-nucleus elastic scat-
tering as function of the momentum transfer based on AV18 (black
curves) and N3LO (red curves) bare potentials. The data are taken
from Refs. [23–26].

form

Ũ (k′, k; E )

= 4π
∑

α=p,n

∫ ∞

0
z2dz ρα (z) j0(qz)

×
∫

dP nz(P)

〈
1

2
(k′ − P)

∣∣∣∣gpα
K̄

(E + ε̄)

∣∣∣∣1

2
(k − P)

〉
A

(2)

with A denoting antisymmetrization and ρα (z) the density of
nuclear species α at coordinate z. Additionally, the g matrix is
evaluated at the isoscalar density ρ(z), coupling the projectile
p with target nucleon α. In the above nz(P) sets bounds for the
off-shell contributions in the g matrix at coordinate z.

Calculations of optical potentials as in Eq. (2) rely on
two main inputs: proton and neutron ground-state densities,
which in this work are taken from Hartree-Fock calculations
of Ref. [20]; and the bare NN potential, which we have chosen
AV18 because of its ability to account for NN scattering data
up to 320 MeV. This bare interaction is used to calculate
NN g matrices fully off-shell over a mesh of Fermi momenta
kF . We refer the reader to Ref. [18] for further details. The
scattering observables for the resulting nonlocal optical po-
tentials in momentum space are calculated using the SWANLOP

package [21], based on Ref. [22], treating nonlocalities in the
presence of the Coulomb interaction without approximations.

The consistency between the microscopic model and
available data is illustrated in Fig. 1, where we plot the mea-
sured [23–26] and calculated [21] differential cross sections
for proton-nucleus scattering as functions of the momen-
tum transfer. The targets are 40Ca, 90Zr and 208Pb, at the
beam energies of 40, 80, 200, 300, and 400 MeV. Black
curves denote results based on AV18. Being aware that chiral

potentials are not suited for high energies, we still find in-
structive to illustrate its behavior at energies of this study.
Thus, we consider the chiral NN potential up to next-to-next-
to-next-to-leading order (N3LO) [27]. Results for p + 208Pb
scattering based on this chiral interaction are shown with red
curves. As observed, the folding model based on AV18 yields
a reasonable description of the scattering data. In the case
of 40 MeV the calculated differential cross section appears
slightly more diffractive than the data, leading us to set this
as the lowest energy for our study. In the case of the N3LO
interaction for p + 208Pb we observe a gradual departure of
its results from the data, an indication of upper energy limit of
about 290 MeV for this bare interaction.

III. SEPARABILITY

The optical potential in Eq. (2), expressed in terms of
relative momenta k and k′, can be reexpressed in terms of the
momentum transfer q and the mean momentum K, namely,

K = 1
2 (k + k′), (3a)

q = k − k′. (3b)

Hence, if we denote Ũ (K, q)= Ũ (k′, k; E ), then

Ũ (K, q) = Ũc(K, q) + iσ · (K × q) Ũso(K, q). (4)

Each component, Ũc and Ũso, can then be expanded in
terms of Legendre polynomials of w= K̂ · q̂. In this way
we express Ũc(K, q)=∑∞

n=0 Ũ (c)
n (K, q)Pn(w), together with

|K × q|Ũso(K, q)=Kq
∑∞

n=0 Ũ (so)
n+1(K, q)P1

n+1(w). In a recent
study [28] we found that the zeroth-order contribution in each
expansion is sufficient to accurately describe the scattering
observables of the original potential. This remarkable prop-
erty validates focusing solely on the n=0 terms, justifying the
notation Ũc(K, q) → Ũc(K, q), and Ũso(K, q) → Ũso(K, q).

To isolate the nonlocality of Ũc(K, q) and Ũso(K, q), for
now denoted as Ũ (K, q), we define J/(2π )3 =Ũ (0, 0), to-
gether with the ratios

Ṽ (K, q) = Ũ (K, q)

Ũ (K, 0)
, (5a)

H̃ (K ) = Ũ (K, 0)

Ũ (0, 0)
. (5b)

Note that Ṽ (K, q) and H̃ (K ) are complex and dimensionless,
satisfying Ṽ (K, 0)= H̃ (0)=1. Additionally, J is also com-
plex, representing the volume integral of the potential. With
these definitions Ũ (K, q) factorizes as

Ũ (K, q) = J

(2π )3
Ṽ (K, q) H̃ (K ). (6)

In Ref. [13] it was noted that Ṽ (K, q) has a weak de-
pendence on K . We have examined this dependency and
found that by setting Ṽ (K, q)=Ṽ (k0, q), with k0 the on-shell
momentum in the c.m. reference frame, the factorization in
Eq. (6) reproduces the scattering observables of the original
potential. By making this choice we ensure that the forward
(q=0) on-shell matrix element of the potential is reproduced.
This result motivates the definition of the radial form fac-
tor, ṽ(q)=Ṽ (k0, q). The denomination radial refers to the
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FIG. 2. Volume integrals per nucleon Jc/A and Jso/A as functions
of the beam energy.

fact that the conjugate coordinate of q corresponds to the
mean radial distance between the projectile and the center of
the target, hereafter denoted as r. The above considerations
lead to

Ũ (K, q) = J

(2π )3
ṽ(q) H̃ (K ), (7)

to be referred as JvH factorization. We now examine each of
its three terms.

A. The volume integral J

In momentum space, the volume integral J of the potential
is obtained from its matrix element at k=k′ =0, that is to
say Ũ (0, 0). In Fig. 2 we plot the volume integrals of the
potential over the number of target nucleons, J/A, as function
of the beam energy. In the following, subscripts c and so
denote central and spin-orbit components, respectively. Solid,
long-dashed and dashed curves denote results for 208Pb, 90Zr,
and 40Ca, respectively. As observed, Re [Jc/A] is the strongest
term, decreasing monotonically its magnitude by about 25%
over the range 40–400 MeV. The imaginary term, on the
other hand, is much weaker but increasing its magnitude by
∼17% over the same energy range. The spin-orbit strengths
Jso/A are nearly real and constant, amounting to less than
10% of Re [Jc/A]. We have verified that the averaged Jc/A
and Jso/A, considering all three targets and evaluated at each
beam energy, yield nearly the same scattering observables as
the ones obtained from the original potential. These averages
are shown with dotted red curves.

B. The radial form factor v

We now examine the central ṽc(q)=Ṽc(k0, q) and spin-
orbit ṽso(q)=Ṽso(k0, q) form factors. In panels (a) and (b)
of Fig. 3 we show the central ṽc and spin-orbit ṽso radial
potentials as functions of q, respectively. These correspond
to microscopic calculations for p + 40Ca elastic scattering at
40, 80, 200, 300, and 400 MeV shown with dotted, short-
dashed, dashed, long-dashed, and solid curves, respectively.
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FIG. 3. Central (a) and spin-orbit (b) radial form factors as func-
tions of the momentum transfer in the case of p+40Ca scattering.
Results at 40, 80, 200, 300, and 400 MeV are shown with dotted,
short-dashed, dashed, long-dashed, and solid curves, respectively.
Blue solid curves represent ρ̃SL (qR) (see text). Red curves in the
insets represent |Im ṽ(q)|/q2.

The insets show logarithmic plots for |Re ṽc| and |Re ṽso|
(black curves), and the ratios |Im ṽc/q2| and |Im ṽso/q2|
(red curves). Blue solid curves correspond to ρ̃SL(qR)=
3 j1(qR)/qR, the Slater density to be discussed later.

We observe similar diffractive patterns for the real com-
ponents of ṽc in panel (a) and ṽso in panel (b) with their
first nodes at q≈1 and 1.1 fm−1, respectively. In the case
of their imaginary components we found that they behave as
∼q2 near the origin, feature displayed in both insets, where
red curves represent Im [ṽ(q)/q2]. As observed, the diffractive
pattern of this ratio is qualitatively similar to that of their
real counterparts. Apart from the exact location of the nodes,
the diffractive behavior of the Slater density ρSL(qR) has an
appealing resemblance with those shown with black and red
curves in the insets. This observation becomes useful for the
upcoming discussion.
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convention as in Fig. 3.

The radial form factors in coordinate space for the central
potential, vc(r), are displayed in panel (a) of Fig. 4. These
correspond to p + 40Ca scattering at the same energies con-
sidered in Fig. 3, for which we adopt the same notation. We
note that all Re [vc(r)] resemble roughly a two-parameter
Fermi distribution (2pF). Interestingly, the imaginary part of
vc(r) shows nodal points at nearly the same radius, r ∼4 fm.
These nodes are in correspondence with the change of sign in
the curvature of Re [vc(r)], driven by its second derivative.
An interpretation of this feature emerges from the q behavior
of Im [ṽc(q)/q2] displayed with red curves in the insets of
Fig. 3, being qualitatively similar to those for Re [ṽc(q)].
Thus, q2 Im [ṽc(q)/q2] would account for nodes near the
surface of the 2pF distribution. These peculiar features for vc

are also observed for vso.
The full potential in the JvH form involves the product of

three complex terms. The radial part of the optical potential
is driven by Jv, the product of the volume integral and the
radial form factor, being the natural counterpart of conven-
tional Woods-Saxon potentials. Therefore, if J =Jr + iJi, and
v = vr + ivi, then the real part of Jv involves a combination
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FIG. 5. On-shell t matrix for pp and pn channels as functions of
the momentum transfer. Dotted, short-dashed, dashed, long-dashed,
and solid curves correspond to 40, 80, 200, 300, and 400 MeV,
respectively. Black and red curves correspond to real and imaginary
components, respectively.

of both real and imaginary parts of the radial form factor.
The same holds for Im [Jv]. With this in mind, features of
the radial form factor v differ from those of Jv, the radial
potential.

In panel (b) of Fig. 4 we plot the product (J/A)vc as func-
tion of the radius. As observed, the potential is attractive over
the whole range, vanishing smoothly for increasing radius.
Even though the imaginary part of (J/A)vc also vanishes for
increasing radius, at 40 MeV the absorption becomes stronger
above the surface (r � 4.2 fm) than that for higher energies.
Interestingly, Im [Jvc] shows no peak at the surface, in con-
trast with the commonly used Woods-Saxon’s prescription to
model nuclear absorption phenomenologically. These features
for the absorption are also observed for the 90Zr and 208Pb
targets.

Going back to panel (a) in Fig. 4 we notice that the maxima
of Re vc, taking place at r =0, is not a monotonic function
of the energy. They decrease from 40 MeV up to 200 MeV,
followed by a sudden increase evidenced at 400 MeV. This
trend is consistent with ṽc(q) shown in panel (a) of Fig. 3, with
the 400 MeV case (solid curves) above all the other curves.
We have investigated the origin of this trend and found that it
stems from the behavior of the effective interaction at different
energies. To illustrate the point, we have considered the zero-
density g matrix in Eq. (2), corresponding to the free t matrix.
In this case we examine the on-shell element

tpp,pn(q) = 〈
1
2 k′∣∣gpp,pn

K̄
(E )

∣∣ 1
2 k

〉
A
, (8)

where q=k−k′ with k = k′, chosen on-shell in the NA c.m.
In Fig. 5 we show the t matrix as function of the momentum
transfer q for the pp channel [panels (a) and (b)] and pn
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channel [panels (c) and (d)]. The upper and lower panels show
results for the real and imaginary components, respectively.
We observe that the real parts of t follow a smooth behavior
as functions of q with clear separation among the curves as
the energy increases. Such is not the case for the imaginary
components, where the upper and lower curves follow no
uniform order, as indicated by the arrows in panels (b) and (d).

Having in mind the “tρ” approximation for the optical
potential [16] together with Eq. (5a) for Ṽ (K, q), we observe
that the radial form factor ṽc(q) is closely related to the
ratio t (q)/t (q=0). Thus, we have calculated this ratio for
the isoscalar channel, where t0 = tpp+tpn. In Fig. 6 we plot
t0(q)/t0(0) at the same energies considered in Fig. 5. It is
interesting to note how the curve for 400 MeV stays above the
rest, in similar fashion as that for ṽc(q) in Fig. 3. This explains
why vc(0) is maximum in the case of 400 MeV, in addition to
providing arguments for the nonmonotonicity of the maxima
in vc(r).

C. The nonlocality form factor H

In Fig. 7 we plot the resulting nonlocality form factors
H̃c and Hso as functions of K , associated to proton-nucleus
scattering at 200 MeV. The targets are 208Pb, 90Zr, and 40Ca,
following the same pattern convention as in Fig. 2. The green-
shaded profile corresponds to Perey-Buck’s nonlocality form
factor given by

H̃PB = exp(−β2K2/4) (9)

with β =0.85 fm, a typical value. We observe that all targets
show very similar nonlocal behavior, featuring a weaker decay
relative to the Gaussian nonlocality.

Aiming to obtain a simple and accurate representation for
H̃ , we have found useful to represent it as

H̃ (K ) = 1

[1 + η(K )]2

1 + iα(K )

1 − iα(K )
(10)

with η and α real functions obtained directly from H̃ .
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FIG. 7. Bell-shape nonlocality form factor H̃ (K ) for NA scatter-
ing at 200 MeV. The shaded area denotes Perey-Buck nonlocality
form factor with β =0.84 fm.

In Fig. 8 we plot the resulting central and spin-orbit η and α

as functions of (K/k0)2 with k0 the relative momentum in the
c.m. reference frame. Numerical labels on each graph denote
beam energy in units of MeV. Each bunch of colored curves
include results for each of the three targets. We observe that,
at a given energy, all three targets yield similar behavior in
their respective η and α. Thus, to each of these sets we give
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FIG. 8. Nonlocality parameters η and α as functions of (K/k0)2.
See text for explanation of curve patterns.
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an optimal quadratic form of the type (b1x+b2x2) with x=
(K/k0)2. The resulting parametrizations are shown with dotted
curves in Fig. 8, reproducing the scattering observables of the
original potential.

The coordinate-space nonlocality form factor is obtained
from

H (s) = 1

2π2

∫ ∞

0
K2dK j0(Ks)H̃ (K ) (11)

with s=|r′ − r| the difference between post and prior NA rel-
ative coordinates in Perey-Buck’s notation [3]. To gain some
insight from Eq. (10) for H we consider the lowest order term
in the expansions for η and α. Hence, by expressing η≈b2K2,
and α≈a2K2, contour integration in the complex plane yields
the closed form

H (s) =
(
a4 + b4 + 4i a2b3

s

)
e−s/b − 4i a2b3

s e−s
√

i/a

8πb3(b2 + ia2)2
. (12)

The real-argument exponential e−s/b accounts for nonlocality
of the hydrogenic type of range b, in contrast with the com-
monly used Gaussian form factor introduced by Perey and
Buck. The complex-argument exponential, on the other hand,
expresses a strongly dumped oscillatory contribution of range
a
√

2. We also note that the nonlocality H is finite at the origin,
and that for vanishing a it becomes

H (s) = e−s/b

8πb3
. (13)

D. Global representation

In the preceding sections we have examined the leading
features exhibited by each of the three terms participating in
the JvH structure of the optical potential. In this section we
explore a possible representation of the radial form factors,
vc and vso, retaining the microscopic J/A and nonlocality
H̃ (K ) expressed by Eq. (10). The aim here is to reproduce
as closely as possible the microscopic radial form factors v
and with that—through the JvH separable structure of the
potential—the scattering observables of the original folding
potential.

To obtain a suitable representation for the microscopic
ṽc and ṽso, we find it useful to consider the Slater density
ρ̃SL(qR), the three-dimensional Fourier transform of a uni-
form sphere of radius R. The behavior of ρ̃SL is shown in
Fig. 3 with blue curves, with R calibrated to match the first
zero of the spherical Bessel function j1. Although there is no
full correspondence between the zeros of ṽ(q) and ρ̃SL(qR),
we have found that by folding additional form factors it is
possible to reasonably reproduce the scattering observables of
the original microscopic potential. Thus, we have explored the
following convolutions:

Re [ṽc,so(q)] = ρ̃SL(qRx ) e−a2
x q2 1

1 + b2
xq2

, (14a)

Im [ṽc,so(q)] = cy q2ρ̃SL(qRy) e−a2
y q2 1

1 + b2
yq2

. (14b)
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FIG. 9. Differential cross sections as functions of the momentum
transfer based on the microscopic folding model (black curves) and
global fit for ṽ(q) (red curves).

This construction can be interpreted as if ṽc,so results from the
convolution of a Gaussian-smoothed uniform sphere with a
Gaussian-dressed one-meson-exchange interaction. The prod-
uct of the two Gaussian form factors, also Gaussian, would
then account for both the smoothing and the dressing.

We have performed a search of parameters Rx,y, ax,y, bx,y,
and cy, for the central and spin-orbit components, to globally
reproduce the microscopic ṽ at the five beam energies and
the three targets considered in this study. The ability of these
global convolutions to reproduce scattering observables of the
original microscopic potential is illustrated in Fig. 9, show-
ing with red curves the resulting dσ/d	 and black curves
the ones from the original potential. Although red and black
curves do not fully overlap, we note a close correspondence
between them. Improvements can be envisaged if separate
analyses are made to the coupling to target protons and
neutrons, in addition to alternative form factors and search
strategies.

IV. CONCLUDING REMARKS

The universal separability of the optical potential is
grounded in two elements. The first one is its general form,
expressed as Ũ (k′, k)=∫∫

d p′d p ρ̃(p′, p)〈k′ p′ | T | kp〉A , rep-
resenting the convolution between the off-shell mixed density
and a two-body interaction. This general structure is shared
by various formulations of the optical-model potential [1,29–
32]. In Ref. [33] it was demonstrated that this general
expression embodies a well-defined functional structure in
terms of the radial coordinate z, characterized by the local
density ρ(z), leading to the expression in Eq. (2). The sec-
ond element lies in the momentum-space structure of the
potential, displaying negligible angular dependence when ex-
pressed in terms of momenta K and q, together with the
weak dependence of Ṽ (K, q) on K . The emerging com-
plex nonlocality of hydrogenic type, in conjunction with the
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radial form factors constitute intrinsic and well identifiable
components of the microscopic potential. These robust mi-
croscopically driven findings offer new ways to investigate
nuclear reactions beyond Woods-Saxon and Perey-Buck phe-
nomenological prescriptions. This is particularly relevant for
current efforts aimed for the study and description of nuclear
reactions for the rare-isotope era [1].
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