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A relativistic microscopic optical model potential for nucleon-nucleus scattering is developed based on the ab
initio relativistic Brueckner-Hartree-Fock (RBHF) theory with the improved local density approximation, which
is abbreviated as the RBOM potential. Both real and imaginary parts of the single-particle potentials in symmetric
and asymmetric nuclear matter at various densities are determined uniquely in the full Dirac space. The density
distributions of the target nuclei are calculated by the covariant energy density functional theory with the density
functional PC-PK1. The central and spin-orbit terms of the optical potentials are quantitatively consistent with
the relativistic phenomenological optical potentials. The performance of the RBOM potential is evaluated by
considering proton scattering with incident energy E � 200 MeV on five target nuclei, 208Pb, 120Sn, 90Zr, 48Ca,
and 40Ca. Scattering observables including the elastic scattering angular distributions, analyzing powers, spin
rotation functions, and reaction cross sections are analyzed. Theoretical predictions show good agreements with
the experimental data and the results derived from phenomenological optical potentials. We anticipate that the
RBOM potential can provide reference for other phenomenological and microscopic optical model potentials, as
well as reliable descriptions for nucleon scattering on exotic nuclei in the era of rare-isotope beams.
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I. INTRODUCTION

Nuclear reactions constitute an important field in nuclear
physics, which is crucial not only for revealing nucleon-
nucleon (NN) interactions and the structural and dynamic
properties of nuclei [1], but also for understanding the evo-
lution of the stars and the origin of elements in the cosmos
[2–4]. In addition, nuclear reactions also have significant im-
pacts on medical therapy, nuclear power, national security,
etc. Nucleon-nucleus scattering is one of the simplest and
most important processes of nuclear reaction [5]. For decades,
numerous experimental data on scattering cross sections and
polarization observables have been accumulated for different
stable nuclei and a wide range of incident energies [6].

The optical model is an important theoretical tool for
studying nucleon-nucleus scattering. It assumes that the com-
plicated interaction between the incident nucleon and the
target nucleus can be described with a complex mean field
called the optical potential. This divides the reaction flux
into a part describing shape elastic scattering and a part
covering all competing inelastic channels. By solving the
scattering equation of the incident nucleon with the optical
potential, many experimental observables can be calculated,
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including the elastic scattering angular distributions, analyz-
ing powers, spin rotation functions, reaction cross sections,
etc. Hence, the key to an optical model is constructing the
optical potential. For recent reviews on optical potentials, see
Refs. [5,7–11].

The optical potentials can be constructed phenomenolog-
ically or microscopically. The phenomenological methods
within the nonrelativistic framework [12] usually express the
optical potential by a volume term, a surface term, and a
spin-orbit term. Each term can be separated with an energy-
dependent well depth and an energy-independent radial form
factor. The depth and geometry parameters are assumed to be
functions of the incident energy as well as the mass number
of the target nucleus. They are determined using parameter
adjustments to best fit the available experimental data. The
most widely used nonrelativistic phenomenological optical
potentials include the CH89 [13] potential and the KD03
[14] potential. Alternatively, the phenomenological methods
within the relativistic framework are based on the Dirac phe-
nomenology [15,16], which starts from the Dirac equation for
the single-particle motion of a nucleon in the nuclear medium.
Within the Dirac phenomenology, the real and imaginary parts
of the scalar potential and vector potential are parametrized,
from which the central and spin-orbit terms of the Schrödinger
equivalent potential can be derived. A distinct advantage of
relativistic optical potentials is the natural inclusion of the
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spin-orbit potential, which arises from the difference between
the contributions from the scalar and vector potentials. The
most widely used relativistic phenomenological optical po-
tential currently is the global Dirac optical potential (GOP)
constructed by Cooper, Hama, and Clark et al. in a series of
papers [17–20].

Historically, the free parameters of phenomenological op-
tical potentials have been fitted to elastic scattering data on
stable targets. In recent years, with the advances of radioac-
tive ion beam facilities worldwide, the nuclear landscape has
been largely extended. The accumulation of scattering data on
exotic nuclei being produced requires a reliable theoretical op-
tical model for analysis. However, long-distance extrapolation
and uncertainties are inevitable if phenomenological optical
potentials are used to describe the scattering on these exotic
nuclei. For the description of the scattering phenomenology
far away from stability, it is promising to develop microscopic
optical model potentials based on realistic NN interactions
[21–25], whose parameters are nicely calibrated with re-
spect to deuteron properties and NN scattering data in the
free space.

In principle, constructing a microscopic optical potential
requires the full solution of the A + 1 nuclear quantum many-
body problem, with A the mass number of the target nucleus.
This is quite complicated and beyond present capabilities. In
practice, several methods based on suitable approximations
have been developed. Considerable progress in this field has
been achieved in Refs. [26–33]. Among these methods, the
folding method expresses the optical potential as the NN
scattering amplitudes folded with the nuclear density distri-
butions of the target. This method has been applied with
the T matrix [29,34,35] and the G matrix [36,37]. The local
density approximation (LDA) is another effective method to
construct microscopic optical potentials, in which the basic
idea is that the optical potentials are equivalent to the single-
particle potentials in nuclear matter [38]. The LDA requires a
self-consistent solution for symmetric and asymmetric nuclear
matter a priori. In practice, through the improved version,
LDA has been combined with ab initio calculations based
on the nonrelativistic Brueckner-Hartree-Fock (BHF) theory
[39,40], the many-body perturbation theory (MBPT) [33,41],
and the relativistic Brueckner-Hartree-Fock (RBHF) theory
[42–44]. Especially, the combination of the LDA and RBHF
theory, supplemented with minor parameter adjustments, has
yielded a successful relativistic microscopic optical potential
called CTOM [44,45], with which good descriptions of the
experimental data for nucleon-nucleus scattering over a broad
range of targets and a large region of energies have been
obtained.

For the relativistic microscopic optical potentials con-
structed with the LDA, it is crucial to accurately determine the
scalar and vector components of single-particle potentials in
nuclear matter. This can only be accomplished in the full Dirac
space, where the positive-energy states (PESs) and negative-
energy states (NESs) are considered simultaneously [46,47].
In previous studies including CTOM, the RBHF theory for
infinite nuclear matter has been solved with the momentum-
independence approximation [48] or the projection method
[49], where the effects from NESs are neglected. This leads

to ambiguities of the single-particle potentials and, hence, the
constructed optical potentials.

Recently, we achieved the self-consistent RBHF solutions
for symmetric and asymmetric nuclear matter in the full
Dirac space [50–52]. The scalar and vector components of
the single-particle potential are obtained without ambiguities,
which solves the longstanding problem of being unable to
determine the single-particle potentials uniquely in RBHF cal-
culations. The RBHF theory in the full Dirac space has been
successfully applied to study the effective masses in nuclear
matter [53,54], the properties of 208Pb with a liquid droplet
model [55], and neutron star properties [51,56,57].

This work constructs a relativistic microscopic optical
model potential by combining the RBHF theory in the full
Dirac space with the LDA. The elastic scattering angular
distributions, analyzing powers, spin rotation functions, and
reaction cross sections for proton-nucleus scattering will be
investigated to evaluate the performance of the optical poten-
tial. The description of the neutron-nucleus scattering will be
studied in a forthcoming paper.

This paper is organized as follows. The theoretical for-
malism of the RBHF theory in the full Dirac space, the
construction of microscopic optical potential RBOM, and the
extraction of scattering observables are briefly introduced in
Sec. II. In Sec. III, we present the single-particle potentials
in nuclear matter, the optical potentials for proton-nucleus
scattering, the scattering observables, and the uncertainty
quantification for RBOM. Finally in Sec. IV, the overall dis-
cussion is summarized and some prospects are given.

II. THEORETICAL FRAMEWORK

A. The relativistic Brueckner-Hartree-Fock theory
in the full Dirac space

Within the RBHF theory, the single-particle motion of
a nucleon in infinite nuclear matter with the rest mass M,
momentum p, and energy Ep,τ is described with the Dirac
equation

[α · p + β(M + Uτ )]uτ (p, s) = Ep,τ uτ (p, s), (1)

where α and β are the Dirac matrices, s is the spin, and τ

denotes the neutron (n) or the proton (p). Due to the transla-
tional invariance and the parity conservation in homogeneous
nuclear matter, the Lorentz structure of the single-particle
potential operator Uτ can be decomposed as [58]

Uτ (p) = US,τ (p) + γ 0U0,τ (p) + γ · p̂UV,τ (p). (2)

Here US,τ is the scalar potential, U0,τ and UV,τ are the time-
like and spacelike components of the vector potential, and
p̂ = p/|p| = p/p is the unit vector parallel to the momentum
p.

By introducing the effective mass M∗
p,τ = M + US,τ (p),

effective momentum p∗
τ = p + p̂UV,τ (p), and effective energy

E∗
p,τ = Ep,τ − U0,τ (p), one can rewrite the in-medium Dirac

equation (1) in the form of the free Dirac equation. This
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allows one to obtain the PES and the NES analytically:

uτ (p, s) =
√

E∗
p,τ + M∗

p,τ

2M∗
p,τ

[
1

σ·p∗
τ

E∗
p,τ +M∗

p,τ

]
χsχτ , (3a)

vτ (p, s) = γ 5uτ (p, s), (3b)

where χs and χτ are the spin and isospin wave functions of a nucleon.
In the full Dirac space, the matrix elements of the single-particle potential operator can be expressed by US , U0, and UV

[59,60]:

�++
τ (p) = ūτ (p, 1/2)Uτ (p)uτ (p, 1/2) = US,τ (p) + E∗

p,τ

M∗
p,τ

U0,τ (p) + p∗
τ

M∗
p,τ

UV,τ (p), (4a)

�−+
τ (p) = v̄τ (p, 1/2)Uτ (p)uτ (p, 1/2) = p∗

τ

M∗
p,τ

U0,τ (p) + E∗
p,τ

M∗
p,τ

UV,τ (p), (4b)

�−−
τ (p) = v̄τ (p, 1/2)Uτ (p)vτ (p, 1/2) = −US,τ (p) + E∗

p,τ

M∗
p,τ

U0,τ (p) + p∗
τ

M∗
p,τ

UV,τ (p). (4c)

From these matrix elements one can derive different components of the single-particle potential operator:

US,τ (p) = �++
τ (p) − �−−

τ (p)

2
, (5a)

U0,τ (p) = E∗
p,τ

M∗
p,τ

�++
τ (p) + �−−

τ (p)

2
− p∗

τ

M∗
p,τ

�−+
τ (p), (5b)

UV,τ (p) = − p∗
τ

M∗
p,τ

�++
τ (p) + �−−

τ (p)

2
+ E∗

p,τ

M∗
p,τ

�−+
τ (p). (5c)

In parallel, the matrix elements in Eq. (4) can be calculated with the integral of the effective interaction between nucleons, i.e.,
the G matrix in the RBHF theory. As the infinite summation of the bare NN interaction V , the G matrix is obtained by solving
the Thompson equation [48] in nuclear medium:

Gττ ′ (q′,q|P,W ) = Vττ ′ (q′, q|P) +
∫

d3k

(2π )3
Vττ ′ (q′, k|P)

Qττ ′ (k, P)

W − EP+k,τ − EP−k,τ ′
Gττ ′ (k, q|P,W ), (6)

Here P = 1
2 (k1 + k2) is half of the total momentum, and k = 1

2 (k1 − k2) is the relative momentum of the two interacting
nucleons with momenta k1 and k2. The initial, intermediate, and final relative momenta of the two nucleons scattering in nuclear
matter are denoted as q, k, and q′, respectively. The starting energy W denotes the sum of the single-particle energies of two
nucleons in the initial states [50]. The Pauli operator Qττ ′ (k, P) prohibits the nucleons from scattering to the occupied states. For
the sake of brevity, the indexes for PESs or NESs in Eq. (6) are suppressed.

In practical calculations, the Thompson equation (6) is decomposed into partial waves with the total angular momentum J
in the helicity scheme and reduced to a one-dimensional integral equation over the relative momentum k. To avoid the mixture
of different J channels, angular averaging has to be performed on the angles between vectors k and P before partial wave
decomposition [48,61]. Specifically, the Pauli operator Qττ ′ (k, P) is replaced with Qav

ττ ′ (k, P), and the energy denominator W −
EP+k,τ − EP−k,τ ′ is replaced with W − E av

τ (k, P) − E av
τ ′ (k, P).

Constructing a microscopic optical potential requires a unified treatment of the single-particle states below and above the
Fermi surface, i.e., the continuous choice [62,63]. This would bring a singularity in Eq. (6) whenever the starting energy W
is larger than twice the Fermi energy. Adding an infinitesimal iε in the denominator, Eq. (6) can be rewritten as a complex
equation [52]:

〈q′|GJ
ττ ′ (P,W )|q〉 = 〈q′|V J

ττ ′ (P)|q〉 +
∫

k2dk

(2π )3
〈q′|V J

ττ ′ (P)|k〉 Qav
ττ ′ (k, P)

W − E av
τ (k, P) − E av

τ ′ (k, P)
〈k|GJ

ττ ′ (P,W )|q〉

− 〈q′|V J
ττ ′ (P)|k0〉Qav

ττ ′ (k0, P)
W + E av

τ (k0, P) + E av
τ ′ (k0, P)

Aττ ′ (k0, P)

×
[

k2
0

∫
dk

(2π )3

1

4
(
k2

0 − k2
) + iπ

(2π )3

k0

8

]
〈k0|GJ

ττ ′ (P,W )|q〉. (7)
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Here, the quantity k0 denotes the position of the singularity for the energy denominator. The value Aττ ′ (k0, P) =
limk→k0

W 2−[E av
τ (k,P)+E av

τ ′ (k,P)]2

4(k2
0−k2 )

can be calculated by L’Hospital’s rule.
Once the G matrix are prepared, the matrix elements of the single-particle potential operator can be obtained as

�++
τ (p) =

∑
s′τ ′

∫ kτ ′
F

0

d3 p′

(2π )3

M∗
p′,τ ′

E∗
p′,τ ′

〈ūτ (p, 1/2)ūτ ′ (p′, s′)|Ḡ++++(W )|uτ (p, 1/2)uτ ′ (p′, s′)〉, (8a)

�−+
τ (p) =

∑
s′τ ′

∫ kτ ′
F

0

d3 p′

(2π )3

M∗
p′,τ ′

E∗
p′,τ ′

〈v̄τ (p, 1/2)ūτ ′ (p′, s′)|Ḡ−+++(W )|uτ (p, 1/2)uτ ′ (p′, s′)〉, (8b)

�−−
τ (p) =

∑
s′τ ′

∫ kτ ′
F

0

d3 p′

(2π )3

M∗
p′,τ ′

E∗
p′,τ ′

〈v̄τ (p, 1/2)ūτ ′ (p′, s′)|Ḡ−+−+(W )|vτ (p, 1/2)uτ ′ (p′, s′)〉. (8c)

Here kτ
F = (3π2ρ/2)1/3(1 + τ3α)1/3 is the Fermi momentum,

where ρ = ρn + ρp and α = (ρn − ρp)/ρ are the total density
and isospin asymmetry parameter. For the neutron (proton),
τ3 = +1 (−1). In Eq. (8), Ḡ is the antisymmetric G matrix,
where the superscripts denote the PESs or NESs.

The extraction of different components of single-particle
potentials depends on the G matrix, and the calculation of
G matrix, in turn, depends on the single-particle potentials.
Therefore, Eqs. (1), (5), (7), and (8) constitute a coupled sys-
tem which needs a self-consistent solution. We emphasize that
the solution of Eq. (7) yields a complex G matrix, from which
the matrix elements of the single-particle potential operator
(8) and the components of single-particle potentials (5) are
also complex. Details on the RBHF theory in the full Dirac
space can be found in Refs. [50–52].

For simplicity, the spacelike part of the vector potential UV

in Eq. (1) is absorbed by redefining the scalar and the timelike
parts of the vector potential [43]:

ŨS,τ = US,τ − ŪV,τ M

1 + ŪV,τ

, Ũ0,τ = U0,τ + ŪV,τ Ep,τ

1 + ŪV,τ

, (9)

where ŪV,τ (p) = UV,τ (p)/p is a dimensionless quantity. Dis-
cussions of optical potentials in the following only involve
redefined quantities and we continue using the notation US,τ

and U0,τ instead of ŨS,τ and Ũ0,τ .

B. Microscopic optical potential with the improved
local density approximation

In the relativistic scheme, the Dirac equation for the single-
particle motion of a projectile in the field generated by the
target can be written as

[α · p + β(M + US )]ψ (r) = (E − U0)ψ (r). (10)

Here E =
√

p2 + M2 is the energy of the projectile in the
center-of-mass (c.m.) frame of the nucleon and nucleus. p ≡
|p| stands for the momentum of the projectile in the c.m.
frame, which is related to the target mass Mt and the incident
energy Elab with the relativistic kinematics through [64]

p = M2
t

(
E2

lab + 2MElab
)

2Mt Elab + (M + Mt )2
. (11)

The scattering-state Dirac equation for the four-component
spinor ψ = [ϕ, χ ]T is equivalent to two coupled equations for
the upper two-component spinor ϕ and the lower one χ .
Usually, a Schrödinger equivalent equation for the upper com-
ponent is derived by eliminating the lower component in
Eq. (10) in a standard way [65]:[

−∇2

2E
+ Vcent(r) + Vso(r)σ · l + VDarwin(r)

]
φ(r)

= E2 − M2

2E
φ(r). (12)

Here the wave function φ is related to the upper component
ϕ by φ = [D/(E + M )]−1/2ϕ with D = M + E + US − U0. In
Eq. (12), the central term Vcent, spin-orbit term Vso, and Darwin
term VDarwin are related to the scalar and vector potentials
through

Vcent = M

E
US + U0 + 1

2E

(
U 2

S − U 2
0

)
, (13a)

Vso = − 1

2ErD

dD

dr
, (13b)

VDarwin = 3

8ED2

(
dD

dr

)2

− 1

2ErD

dD

dr
− 1

4ED

d2D

dr2
.

(13c)

It can be seen that the central term Vcent is determined
by the cancellation of the scalar and vector potentials, while
the spin-orbit term Vso depends mainly on the derivative of
the difference between the scalar and vector potentials. Since
US and U0 have opposite signs, this automatically gives a
large spin-orbit potential. For the proton-nucleus scattering,
the Coulomb potential Vcoul is added on the central term
Vcent [44]. This allows our optical potential being used con-
veniently in non-relativistic nucleon-nucleus scattering codes.
Although the nucleon-nucleus scattering is described with the
Schrödinger equivalent equation (12), the relativity is im-
portant in the rest of our investigations because of the large
scalar and vector fields and the automatic consideration of the
spin-orbit interactions etc.

In this work, the Schrödinger equivalent optical poten-
tials of a nucleon scattering off a target nucleus are obtained
by means of the LDA, where the optical potential at radial
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distance r can be directly related to the single-particle poten-
tials in nuclear matter with density ρ and isospin asymmetry
parameter α locally:

ULDA(r, ε) = UNM(ε, ρ(r), α(r)). (14)

Here the quantity UNM can be the scalar potential, vector
potential, or their combinations. In the right-hand side of
Eq. (14), ε ≡ εp,τ = Ep,τ − M is the single-particle energy
subtracting the rest mass of a nucleon in nuclear matter. In the
left-hand side, ε =

√
p2 + M2 − M is the kinetic energy of

the projectile in the c.m. frame. In this work, the radial profiles
of the nucleon density ρ(r) and the isospin asymmetry α(r)
are obtained by the covariant density functional theory with
the density functional PC-PK1 [66]. The Coulomb potential
Vcoul is also calculated with the charge density distribution
obtained with PC-PK1.

To consider the finite range correction of the NN inter-
action, a Gaussian form factor is introduced to improve the
optical potentials, i.e., the so-called improved local density
approximation (ILDA) is adopted [39,67]. Finally, with the
range parameter t representing the effective range of the NN
interaction, the optical potential is obtained by the following
integral:

UILDA(r, ε) = (t
√

π )−3
∫

ULDA(r′, ε)

× exp(−|r − r′|2/t2)d3r′. (15)

We call the optical potential UILDA in this work the RBOM
potential. It should be emphasized that t is the only adjustable
parameter in this optical potential. In previous works, this
parameter is usually treated as a free parameter and fitted to
experimental data. In Ref. [33], tc = 1.22 fm for the central
potentials and tso = 0.98 fm for the spin-orbit potentials are
obtained. Similarly, in Ref. [44], the effective range factor t in
Eq. (15) is determined as 1.35 fm for proton-nucleus scatting
and 1.45 fm for neutron-nucleus scattering. In the following
discussions, t = 1.3 fm is adopted, and the uncertainties of the
scattering observables from the varies of the range parameter
t will be discussed afterwards.

C. The extraction of scattering observables

A partial-wave expansion of Eq. (12) leads to the radial
equation{

d2

dr2
+ p2 − 2E [Vcent(r) + VDarwin(r) + l±Vso(r)]

− l (l + 1)

r2

}
u±

l (pr) = 0. (16)

Here l+ = l and l− = −l − 1. This radial equation can be
solved with the standard Numerov method. At large enough r,
the reduced radial functions u±

l is matched to the appropriate
linear combinations of asymptotic functions via

u±
l (pr) ∼ Fl (pr) + C±

l [Gl (pr) + iFl (pr)], (17)

where coefficients C±
l are to be determined. Fl and Gl

are Coulomb functions in a problem without nuclear
potentials [68].

Considering collisions of spin-1/2 nucleons with spin-
0 target, the scattering amplitudes A(θ ) and B(θ ) with the
scattering angle in the c.m. frame θ ≡ θc.m. are obtained from
the relations [64]

A(θ ) = fc(θ ) + 1

p

∑
l

e2iσl [(l + 1)C+
l + lC−

l ]Pl (cos θ ),

(18a)

B(θ ) = i

p

∑
l

e2iσl [C+
l − C−

l ]P1
l (cos θ ). (18b)

Here Pl and P1
l denote the Legendre polynomials and their

derivatives. The Coulomb amplitude fc(θ ) is given by

fc(θ ) = −η

2p sin2(θ/2)
exp{−iη ln[sin2(θ/2)] + 2iσ0}, (19)

where σl = arg �(l + 1 + iη) are the Coulomb phase shifts
with η = (μZe2)/p. Here μ denotes the nucleon-nucleus re-
duced mass and the quantity Z is the charge of the target.

From the scattering amplitudes, it is straightforward to de-
duce the experimental observables, including the differential
cross section dσ/d�(θ ), analyzing power Ay(θ ), and spin
rotation function Q(θ ) [69]:

dσ

d�
(θ ) = |A(θ )|2 + |B(θ )|2, (20a)

Ay(θ ) = 2 Re[A∗(θ )B(θ )]

dσ/d�
, (20b)

Q(θ ) = 2 Im[A∗(θ )B(θ )]

dσ/d�
. (20c)

The elastic cross section σel, reaction cross section σreac,
and total cross section σtot are evaluated with [70]

σel = π

k2

∑
l

[(l + 1)|1 − S+
l |2 + l|1 − S−

l |2], (21a)

σreac = π

k2

∑
l

[(l + 1)(1 − |S+
l |2) + l (1 − |S−

l |2)], (21b)

σtot = π

k2

∑
l

[(l + 1)(1 − Re S+
l ) + l (1 − Re S−

l )],

(21c)

where the S matrices S±
l are related to the coefficients C±

l
by S±

l = 1 + 2iC±
l .

III. RESULTS AND DISCUSSION

A. Single-particle potentials in nuclear matter

In this subsection, we focus on the single-particle poten-
tials of a nucleon in nuclear matter calculated by the RBHF
theory in the full Dirac space with the realistic Bonn A po-
tential [48]. The binding energies per particle and saturation
properties for nuclear matter in a wide range of densities and
isospin asymmetry parameters can be found in Refs. [50,51].
In Fig. 1, we show the real and imaginary parts of the scalar
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FIG. 1. The real and imaginary parts of the scalar potential US,τ and vector potential U0,τ as functions of single-particle energy ε with the
asymmetry parameter α ranging from 0 to 0.8. The density is chosen at ρ = 0.16 fm−3.

potential US,τ and vector potential U0,τ as functions of single-
particle energy ε with the asymmetry parameter α ranging
from 0 to 0.8. The density is chosen at the empirical saturation
density ρ = 0.16 fm−3. The real parts are of the order of
several hundreds of MeV, while the imaginary parts are one
order smaller and vanish for single-particle states below the
Fermi surface. The isospin dependence for Im U0,τ is found to
be much weaker than the others, which is related to the fact
that the isospin dependences of Im U0,τ and Im ŪV,τ in Eq. (9)
are largely and accidentally canceled. With the increase of
single-particle energy, the magnitudes of both Re US,τ and
Re U0,τ decrease, while that of Im U0,τ increases. For Im US,τ ,
a nonmonotonic trend is found, especially for the proton with
large isospin asymmetry. Similarly to what has been observed
in the precursor studies for CTOM in Ref. [43], the imaginary
part of the scalar potential Im US,τ obtained in this work is
negative, especially for protons, which is different from the
positive results usually found in phenomenological Dirac op-
tical potentials [17–19].

In Fig. 2, we show the energy dependence for the real
and imaginary parts of the scalar potential US,τ and vector
potential U0,τ with the density ranging from 0.08 to 0.16 fm−3.
The isospin asymmetry parameter is chosen at α = 0. With the
decrease of the density, the amplitudes of the real parts of the
scalar and vector potentials decrease towards the vanishing
physical limits at extreme low densities. With the increase
of the single-particle energy, the difference in Im U0 among
different densities is also increasing, while the difference in
Im US is decreasing overall.

To construct the microscopic optical potential for nucleon-
nucleus scattering with the ILDA, the scalar and vector
potentials in symmetric and asymmetric nuclear matter at

various densities covering the realistic cases of finite nuclei
(0 � ρ � 0.16 fm−3) are needed. However, it is well known
that the RBHF calculations are not reliable for density ρ <

0.08 fm−3, due to the cluster effects in low-density nuclear
matter. Therefore, it is necessary to extrapolate the results of
single-particle potentials to these low densities. For CTOM
[44], the real parts of the single-particle potentials at ρ =
0.04 fm−3 and the imaginary parts of that at ρ = 0.04 and
0.06 fm−3 are adjusted to achieve the best description of the
selected experimental data. Based on the optimized values
at the auxiliary density points, the natural constraints that
single-particle potentials vanish at ρ = 0, and the theoretical
calculations at ρ > 0.08 fm−3, the polynomial fittings are
employed to derive the single-particle potentials in the full
density space. In this work, to avoid introducing free param-
eters, a quadratic extrapolation Ui(ρ) = aiρ

2 + biρ + ci (i =
S, 0) is adopted for the low-density region ρ � 0.08 fm−3. For
each isospin asymmetry α, three corresponding coefficients
ai, bi, and ci are determined uniquely by the natural con-
straint that Ui(ρ = 0) = 0 together with the continuities of the
single-particle potentials themselves and their first derivatives
at 0.08 fm−3. In practice, the quadratic extrapolation is used
only to get US and U0 in the low-density region with step
�ρ = 0.01 fm−3. Afterwards, the single-particle potentials
for nuclear matter at a given density ρ in the full density
region 0 � ρ � 0.20 fm−3 are obtained with the quadratic
Lagrange interpolation.

In Fig. 3, we show the real and imaginary parts of the scalar
potential US,τ and vector potential U0,τ as functions of density
with α ranging from 0 to 0.8. The single-particle energy ε

is chosen at 90 MeV, as in Ref. [44]. The theoretical results
in shaded regions on the left of ρ = 0.08 fm−3 are obtained
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FIG. 2. The real and imaginary parts of the scalar potential US,τ and vector potential U0,τ as functions of single-particle energy ε with the
density ranging from 0.08 to 0.16 fm−3. The asymmetry parameter is chosen at α = 0.

FIG. 3. The real and imaginary parts of the scalar potential US,τ and vector potential U0,τ as functions of density with the asymmetry
parameter α ranging from 0 to 0.8. The theoretical results in shaded areas on the left of ρ = 0.08 fm−3 are obtained by quadratic extrapolation.
The single-particle energy ε is chosen at 90 MeV.
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FIG. 4. The real and imaginary parts of the central potential
Vcent as functions of the single-particle energy ε with the asymme-
try parameter α ranging from 0 to 0.8. The density is chosen at
ρ = 0.16 fm−3.

with the above mentioned scheme. It can be seen that the
quadratic extrapolations for Re US and Re U0 are very close
to the linear extrapolation. For Im US and Im U0, the quadratic
extrapolations are also plausible.

Starting from the scalar and vector potentials, the real and
imaginary parts of the central potential Vcent in Eq. (13a) are
calculated. They are shown in Fig. 4 as functions of the single-
particle energy ε with the isospin asymmetry parameter α

ranging from 0 to 0.8. The density is chosen at ρ = 0.16 fm−3.
It is found that, with the increase of asymmetry parameter,
the depths of Re Vcent and Im Vcent for the proton increase,
while the results for the neutron decrease. With the increase
of incident energy, the depths of Re Vcent for both proton and
neutron decrease, while the results for Im Vcent are opposite.

In Fig. 5, the real and imaginary parts of the central po-
tential Vcent are shown as functions of single-particle energy ε

with the density ranging from 0.08 to 0.16 fm−3. The asymme-
try parameter is chosen at α = 0. At energy ε ≈ 150 MeV, a

FIG. 5. The real and imaginary parts of the central potential Vcent

as functions of single-particle energy ε with the density ρ rang-
ing from 0.08 to 0.16 fm−3. The asymmetry parameter is chosen
at α = 0.

crossing of curves for different densities for Re Vcent is found,
which implies that the so-called wine-bottle-bottom shape
[65] appears at the surface of the target nuclei. For energy
below 50 MeV, the absolute value of Im Vcent reaches its max-
imum at lower densities, which indicates a surface absorption.
This is in contrast to higher energies, where the absolute value
of Im Vcent reaches its maximum at higher densities, indicating
a volume absorption.

B. Optical potential for proton-nucleus scattering

The real and imaginary parts of the scalar and vector
components of the single-particle potentials are then used
to evaluate the corresponding microscopic optical potential
using the ILDA. The recoil effects are presumably small for
heavy targets, but this may be different for lighter targets. For
consistency, the recoil corrections for all targets are consid-
ered as in Ref. [19], where the Cooper-Jennings recoil factors
[71] in both scalar and vector potentials are introduced:

RS = Mt/
√

s, RV = Et/
√

s. (22)

Here
√

s is the c.m. energy of p + A system, and Et is the total
c.m. energy of the target. For 208Pb, these factors are close to
unity, while, for p + 16O scattering at 400 MeV, RS is 0.92.

In Fig. 6, we show the real and imaginary parts of the
scalar US and vector U0 potentials as functions of the radial
coordinate for p + 208Pb with Elab ranging from 20 to 200
MeV. Their radial profiles resemble the nuclear density, with
minor exceptions found for the imaginary parts of US and U0

at Elab = 20 MeV. With the increase of the incident energy, the
depths of Re US , Re U0, and Im US decrease, while the depth
of Im U0 increases. We find that the real and imaginary parts
have different geometries, especially at 20 MeV for either US

or U0.
Different components of the optical potential for proton-

nucleus scattering can be obtained with the ILDA and the
scalar US and vector U0 potentials. The real and imaginary
parts of the central term Vcent, spin-orbit term Vso, and Darwin
term VDarwin of the optical potential are shown in Fig. 7, as
functions of the radial coordinate for p + 208Pb with Elab

ranging from 20 to 200 MeV. For the central term, as the
energy increases, the depths of the real potentials decrease
while those of the imaginary parts increase. It is noticed that
the location where Im Vcent reaches its maximum magnitude
changes from r � 7 fm at Elab = 20 MeV to r � 0 fm at
Elab = 200 MeV, revealing a transition from surface absorp-
tion to volume absorption. It can also be observed that the
spin-orbit and Darwin terms are marginal compared to the
central terms. These behaviors are consistent with the phe-
nomenological optical potentials [17–19].

In Fig. 8, we compare our central potentials Veff = Vcent +
VDarwin to the ones obtained with the microscopic CTOM [44]
and the phenomenological GOP [20]. Five incident energies
from 20 to 200 MeV are considered. The RBOM potential and
the CTOM potential are both derived from the RBHF calcula-
tions for infinite nuclear matter with the ILDA. Qualitatively,
despite of the differences, including the treatments of NESs,
the low-density extrapolations, and the target densities, the
real and imaginary parts of the central potentials are in good
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FIG. 6. The real and imaginary parts of the scalar US and vector U0 potentials as functions of the radial coordinate for p + 208Pb with Elab

ranging from 20 to 200 MeV.

agreement between the two relativistic microscopic optical
potentials. Quantitatively, the depths of the real central po-
tentials obtained with the CTOM potential are slightly lower
than in the case of RBOM, and the response of the depths of
the imaginary parts with respect to the incident energy is more
evident than with RBOM.

Compared to the cases of microscopic RBOM and CTOM,
the depths of the real and imaginary potentials obtained with
the phenomenological GOP show a much stronger energy
dependence. Besides, the oscillating behavior in the profile
of Im Vcent from r = 4 to 8 fm for GOP at incident energy
Elab = 20 MeV is not observed, neither in RBOM nor in
CTOM. Since the parameters of GOP are determined by fit-
ting to proton-nucleus scattering data with incident energy
no smaller than 20 MeV, the unusual oscillating behavior
found by GOP might indicate its poor applicability for smaller
incident energies.

Figure 9 compares the spin-orbit potentials among RBOM,
CTOM, and the phenomenological GOP. Overall, the discrep-
ancy is much more pronounced than the central potentials
as shown in Fig. 8. Notice that the results for Im Vso from
RBOM are amplified by a factor of 5. In addition to the
magnitudes, apparent discrepancies in the spin-orbit poten-
tials between RBOM and CTOM are found. By replacing
the density distribution of 208Pb in this work to that used
in CTOM, which is obtained by the Hartree-Fock Bogoli-
ubov approach with Gogny D1S force [72], the discrepancies
in the spin-orbit potentials are barely reduced. This implies
that the single-particle potentials US,U0 in RBOM are dif-
ferent from those in CTOM, indicating the importance of
the NESs.

Compared to our RBOM, both the magnitudes and the
energy dependence of the spin-orbit potentials from GOP are
stronger, especially for the imaginary part. For the profiles of
spin-orbit potentials from GOP, the results at Elab = 20 MeV
are not consistent with the other cases with larger incident
energies. This is quite different from the case found with the
RBOM potential, where continuous changes of the profiles
with respect to the incident energies are obtained. Again, the
special behaviors for GOP at small incident energy might be
related to the fact the 20 MeV is on the lower edge of the
incident energies in the fitting procedure.

C. Scattering quantities from the RBOM potential

In this subsection, the present microscopic optical potential
RBOM is assessed through the predictions of the experimen-
tal observables of proton-nucleus scattering for five different
targets 208Pb, 120Sn, 90Zr, 48Ca, and 40Ca with incident ener-
gies below 200 MeV. The elastic scattering differential cross
sections calculated with RBOM for proton scattering off 208Pb
are given in Fig. 10. The corresponding experimental data and
the results calculated with GOP [20] are also plotted in the
same figure. The experimental data adopted in our analysis
are all from the EXFOR library [6], which is a comprehensive
database that gathers the world’s nuclear reaction measure-
ments. Since GOP is restricted down to 20 MeV, we only show
the results calculated with GOP for larger incident energies.
Notice that the curves and data points at the top are true values,
while the others are offset by factors of 10−2, 10−4, etc.

Overall, our results are in good agreement with the ex-
perimental data, especially for the scattering of protons with
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FIG. 7. The real and imaginary parts of the central term Vcent, spin-orbit term Vso, and Darwin term VDarwin of the optical potential as
functions of the radial coordinate for p + 208Pb with Elab ranging from 20 to 200 MeV.

FIG. 8. The real and imaginary parts of the central potentials Veff = Vcent + VDarwin as functions of the radial coordinate for p + 208Pb with
Elab ranging from 20 to 200 MeV, in comparison with the results from CTOM and GOP.
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FIG. 9. The real and imaginary parts of the spin-orbit potentials as functions of the radial coordinate for p + 208Pb with the Elab ranging
from 20 to 200 MeV, in comparison with the results from CTOM and GOP. The results for Im Vso from RBOM are amplified by a factor of 5.

incident energy around 80 MeV. Slight overestimates of the
differential cross sections with smaller incident energies and
underestimates of those with larger incident energies are
found. For large angle scattering with incident energies in
the interval of 60–80 MeV, our angular distributions are flat-
ter than that of GOP and are more likely to be favored by

experimental data, as inferred from existing data for smaller
angles.

In addition to 208Pb, we also show the elastic scattering
differential cross sections calculated with our optical potential
for 120Sn, 90Zr, 48Ca, and 40Ca in Figs. 11–14. They are com-
pared to the experimental data and phenomenological optical

FIG. 10. The elastic scattering differential cross section as a function of scattering angle in the c.m. frame, calculated by the RBHF theory
in combination with the ILDA, for the scattering of protons from 208Pb with energy ranging from 16.0 to 182.0 MeV. The corresponding
experimental data available are shown. For comparison, the results from GOP are also shown.
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FIG. 11. Similar to Fig. 10, but for the scattering of protons from 120Sn with energy ranging from 9.7 to 200.0 MeV.

potential GOP results. Good reproduction of experimental
data with incident energy close to 80 MeV is also found.
Considering that there is no free parameter other than the
range factor t in the RBOM, this assessment clearly shows
the satisfactory performance of the relativistic microscopic
optical potential developed in this work.

An important feature of the relativistic description of
nucleon-nucleus scattering is that the spin-orbit term can be

naturally involved without any additional parameter, which is
significant for the derivation of the spin observables Ay(θ )
and Q(θ ) [73]. In Fig. 15, we show the analyzing power
Ay and spin rotation function Q for a proton scattering off
208Pb calculated with the RBOM potential in this work. The
curves and data points at the top are true values, while the
others are offset by factors of −2, −4, etc. The predicted
phases of Ay and Q look well, whereas the amplitudes are

FIG. 12. Similar to Fig. 10, but for the scattering of protons from 90Zr with energy ranging from 9.7 to 185.0 MeV.
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FIG. 13. Similar to Fig. 10, but for the scattering of protons from 48Ca with energy ranging from 9.0 to 65.0 MeV.

not ideal, especially for those with incident energy above 100
MeV. The results from GOP are also shown for comparison.
Better agreement is found between our calculation and GOP
for smaller energies and angles.

In Fig. 16, we show the reaction cross section for proton
scattering off 208Pb calculated by the RBOM potential. For
comparison, we also show the experimental data available and
the results obtained by the CTOM potential and GOP. It is not
surprising to find that the results from the CTOM potential and

GOP are very close, considering that the experimental data of
proton scattering off 208Pb have been used in the global fitting
of GOP as well as in the optimization of CTOM. For incident
energies below 50 MeV, our results are consistent with the ex-
perimental data, and are close to the results from CTOM. For
energies above, the reaction cross sections are underestimated
by our RBOM potential, while they are overestimated by the
CTOM.

FIG. 14. Similar to Fig. 10, but for the scattering of protons from 40Ca with energy ranging from 10.4 to 160.0 MeV.
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FIG. 15. The quantities Ay and Q as a function of center-of-mass angle, calculated by the RBHF theory in combination with the ILDA, for
the scattering of protons from 208Pb with energy ranging from 16.0 to 185.0 MeV. The corresponding experimental data available are shown.
For comparison, the results from GOP are also shown.

D. Performance of the RBOM potential at high incident energies

As shown in previous subsection, the newly developed
RBOM optical potential performs less well with high incident
energies around 200 MeV. We stress that no parameter has
been adjusted to experimental data. Nevertheless, it is still
beneficial to analyze the physical reason for the unsatisfac-
tory performance of the RBOM potential at high incident
energies.

Taking proton scattering off 208Pb with incident energy
200 MeV for an example, in Fig. 17, we compare the real
and imaginary parts of the central potential Veff as well as
the spin-orbit potential Vso of the RBOM potential with that

FIG. 16. The reaction cross section for p + 208Pb calculated by
the RBOM, in comparison with experimental data available and the
results obtained by CTOM.

of the phenomenological relativistic optical potential GOP.
The results of nonrelativistic optical potential KD03 are also
included in the comparison. First, although both GOP and
KD03 are fitted to experimental data including the cross
section angular distributions, their central potentials show ev-
ident difference. Second, the central potentials from RBOM
are very close to those of KD03. The combination of the
two points might imply that the underestimation of cross
section angular distributions by RBOM is not due to the
central potentials.

For the spin-orbit potentials, as shown in Fig. 17, the mag-
nitudes of the results from RBOM are found to be smaller
than those from both GOP and KD03. Suppressing Im Vso of
RBOM gives no apparent changes of cross section angular
distributions since they are extremely small, while suppress-
ing Re Vso shows clear difference. In particular, doubling
Re Vso leads to results much closer to experimental data at
large angles. According to Eq. (13b), the quantity Re Vso is
related to energy dependence and the density dependence of
single-particle potentials. Considering that the underestima-
tion of angular distributions also holds for other nuclei with
significantly different density distributions in comparison to
208Pb, the density dependence of single-particle potentials
might not be the main reason behind the underestimation.
Therefore, we pay attention to the energy dependence of the
single-particle potentials.

In the left panel of Fig. 18, we show the real part of single-
particle potentials US and U0 as a function of momentum
k in symmetric nuclear matter. The red solid line labeled
“full k-dependence” corresponds to RBOM itself. At high
momentum, the magnitudes of both potentials are weakened,
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FIG. 17. The real and imaginary parts of the central potential Veff as well as the spin-orbit potential Vso as functions of the radial coordinate
for p + 208Pb with Elab = 200 MeV, in comparison with the results from GOP and KD03.

exhibiting a somewhat large momentum dependence. To in-
vestigate the influence of the momentum dependence of US

and U0 on the cross section angular distributions, we make
two modifications. The one labeled “no k-dependence” is ob-
tained by eliminating the momentum dependence by forcing
Re Ui(k) = Re Ui(0) with i = S, 0, while the other one labeled
“25% k-dependence” is obtained by replacing Re Ui(k) by
Re Ui(k) × 0.25 + Re Ui(0) × 0.75. The corresponding cross
section angular distributions for p + 208Pb with incident en-
ergy 200 MeV are shown in the right panel of Fig. 18. It

is clear that by, decreasing the momentum dependence of
Re US and Re U0, larger cross sections and better agreement
with experimental data can be obtained, especially for the
modification that keeps only 25% momentum dependence.
This indicates that the large momentum dependence of single-
particle potentials in nuclear matter is responsible for the
underestimation of the cross section angular distributions at
high incident energies.

For the analyzing power Ay which is dominated by the
spin-orbit potentials, first we find a limited effects on Ay at

FIG. 18. Left: The real parts of single-particle potentials US and U0 as a function of momentum for symmetric nuclear matter at empirical
saturation density. From solid, to short-dashed, to short-dotted, the momentum dependences of ReUS and Re U0 are decreasing. Right: The
corresponding cross section angular distributions for p + 208Pb with incident energy 200 MeV.
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FIG. 19. The analyzing power Ay for p + 208Pb with incident
energy 200 MeV calculated by the RBOM potential, with the magni-
tude of Im US being increased by factors of 2.5, 5, and 7.5. Notice that
the momentum dependence of Re Ui with i = S, 0 has been modified
as shown in Fig. 18.

large angles by doubling Re Vso in Fig. 17. Therefore, the
deviation for Ay is not mainly affected by the real part of
spin-orbit potentials. Considering that the magnitude of Im US

is smaller than that of Im U0, as can be seen in Figs. 1 and 2,
we then manually increase the magnitude of Im US to increase
Im Vso and to see the effects on Ay. In Fig. 19, it is found
that increasing the magnitude of Im US by a factor of 5 does
improve the prediction on Ay, especially for large angles. This
indicates that the small magnitude of the imaginary part of

US is related to the unsatisfactory theoretical predictions of
the analyzing power Ay at high incident energies and large
angles.

E. Uncertainty quantification for the RBOM potential

The uncertainty quantification of optical potentials has at-
tracted increasing attention [74–76]. The RBOM potential is
developed based on the RBHF theory with the improved lo-
cal density approximation, where the realistic NN interaction
Bonn A is used. Therefore, the uncertainty of the RBOM
potential has two sources. On the one hand, the effective
range parameter t in the ILDA cannot be derived from the
RBHF calculation. The relevant uncertainty can be analyzed
by varying the range parameter t within a suitable range. On
the other hand, the NN scattering data and two-body proper-
ties are not sufficient to constrain the parameters of realistic
NN interactions. Even though there is no such systematic
expansion framework for the one-meson-exchange model, the
uncertainty from the NN interaction adopted in this work
can be analyzed by using three different parametrizations
of the Bonn potential, i.e., Bonn A, B, and C. In the left
panel in Fig. 20, we show the elastic scattering differential
cross section for proton scattering on 208Pb calculated with
the parameter t ranging from 1.25 to 1.35 fm. It is found
that the uncertainty due to the adjustable parameters of the
ILDA is very small, especially for small scattering angles.
The inset in this panel shows that increasing the parameter
t reduces the elastic scattering differential cross section, and
the reduction is more apparent around the maxima. The case
with LDA is also depicted in this panel and large derivations
from experimental data are found. The corresponding results

FIG. 20. The elastic scattering differential cross section as a function of scattering angles in the c.m. frame, calculated by the RBOM
potential for proton scattering off 208Pb with incident energy 80 MeV. The left, middle, and right panels correspond to Bonn A, B, and C
respectively. In each panel, the results from ILDA with parameter t ranging from 1.25 to 1.35 fm (shaded regions) as well as LDA (dashed
lines) are shown. The black dots are experimental data. Results with t = 1.25 and 1.35 fm with the Bonn A potential are shown as the inset in
the left panel.
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with Bonn B and Bonn C are shown in the middle and right
panels in Fig. 20, The differences among the three potentials
are mainly reflected at large angles, where the performance of
Bonn A is the best for this incident energy.

IV. SUMMARY

In summary, the RBOM potential, i.e., the relativis-
tic microscopic optical model potential for nucleon-nucleus
scattering based on the relativistic Brueckner-Hartree-Fock
(RBHF) theory in combination with the improved local
density approximation (ILDA), has been developed. The
RBHF calculations for symmetric and asymmetric nuclear
matter are performed in the full Dirac space with realis-
tic nucleon-nucleon (NN) interaction chosen as Bonn A.
The full-Dirac-space calculations have determined the single-
particle potentials uniquely by considering the positive-energy
and negative-energy states simultaneously, thus avoiding the
usually used approximations due to neglecting negative-
energy states. The density distributions of target nuclei are
calculated with the relativistic density functional PC-PK1.
The single-particle potentials at low density below 0.08 fm−3

are extrapolated by quadratic functions. Except for the effec-
tive range parameter in the ILDA, there is no free parameter
in the RBOM potential.

Overall, the RBOM potential reproduces the elastic scatter-
ing differential cross sections for stable targets 208Pb, 120Sn,
90Zr, 48Ca, and 40Ca with incident energy below 200 MeV.
The results of the optical potential is comparable to the widely
used phenomenological relativistic global optical potential.
The predictions of the analyzing power Ay, spin rotation func-
tion Q, and reaction cross section σreac for proton scattering
off 208Pb are also found to be consistent with the experimental
data. The uncertainties of the optical potential resulting from

the range parameter in ILDA and NN interactions are exam-
ined and found to be minor.

The description of the neutron-nucleus scattering will be
presented in a forthcoming paper. For further evaluation of the
performance of the RBOM potential near stability, systemic
studies in a wide range of mass numbers 12 � A � 209 and
incident energies E � 200 MeV are necessary. In parallel,
applying the RBOM potential to exotic nuclei will provide a
reliable framework to investigate the isospin effects in nuclear
structure from a scattering prospect. Furthermore, by folding
the G matrix in coordinate space with the target densities,
one can go beyond the ILDA and construct a relativistic
microscopic optical potential in a more advanced way. It is
interesting to investigate whether the optical potential from
G matrix folding has positive impact on the improvement of
current descriptions at large incident energies and scattering
angles.
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