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Symmetry relationship of quantum tunneling and its applications
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Quantum mechanics serves as the fundamental cornerstone for numerous areas of research. Finding simple
and analytical quantum transmission coefficients for potentials is a rare occurrence. Notably, we have discovered
a readily provable yet unreported symmetry tunneling law. For an infinite parabolic potential, it can be proved
analytically that the sum of the one-dimensional tunneling probabilities at incident energies equal to the barrier
height plus or minus any energy deviation is consistently 1. Based on this relationship, the original WKB
approximation and the Kemble’s formula can be generalized to the above-barrier energy region in a simplified
but more accurate manner, referred to as the symmetric WKB approach in this context. For the realistic potential
between two nuclei, numerical results demonstrate that the symmetry relationship at the above-barrier energy
region and the sub-barrier energy is also well satisfied, as well as in the cases of the multichannel WKB method.
The symmetry tunneling law has been effectively extended to the Eckart potential as well. Such symmetry in
tunneling may have universal characteristics but its underlying reason remains to be uncovered, which may help
us to further understand the quantum mechanisms.
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I. INTRODUCTION

In quantum mechanics, a particle with matter wave struc-
ture can penetrate through a potential barrier with the barrier
height higher than its kinetic energy. This microscopic quan-
tum tunneling phenomenon has significant applications on
atomic, molecular, and nuclear physics [1,2]. With the de-
velopment of the engineering and manufacturing, the current
possible controlling quantum tunnelings have been a central
issue in many emerging new fields of the nanoscopic and
mesoscopic scales, such as the Josephson junctions [3,4]. In
nuclear reactions, quantum tunneling happens in the cluster
decay, fission, and fusion reactions and so on [5–11]. How
to determine the quantum penetration probability is a critical
problem among these phenomena.

Given the rarity of analytical solutions for quantum tunnel-
ing in many potential systems, one primary approach involves
solving the Schrödinger equations under specific boundary
conditions via numerical simulations [12,13]. The realistic
potential between two nuclei consists of contributions from
Coulomb interaction, nuclear interaction, and centrifugal in-
teraction. The barrier formed by this potential plays a vital
role in nuclear reactions, which has been systematically stud-
ied in many studies [14–16]. The penetration probability
through this barrier can be obtained by solving the adiabatic
Schrödinger equation using a complex potential (the optical
potential) [17] or adopting the incoming wave boundary con-
dition [18]. For the latter case, a strong absorption condition
inside the Coulomb barrier is imposed in the incoming wave
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boundary condition. The plane wave without reflection at the
pocket minimum is adopted, and the asymptotic Coulomb
function is used to determine the boundary condition at the
long tail of the potential. For multichannel potential pene-
tration, the adiabatic coupled-channel equation is solved to
obtain the quantum tunneling probability. This method has
been used in many previous studies [15,19–22].

The computation time will increase dramatically when
more reaction channels are considered in the coupled-channel
calculations [23]. The semiclassical approaches based on the
WKB method or the path integral approach will give accurate
estimations [24]. For complex systems such as dissipative
tunneling, the semiclassical method is the main feasible tool
due to the difficulty and time-consuming nature of numeri-
cally exact solutions [3,25], which will also provide a better
understanding of physical intuition.

There is a long-standing problem for the application of the
WKB approximation on the above-barrier energy tunneling.
The standard method of applying the WKB penetration for-
mula to the above-barrier energy is to extend the integral range
to the complex plane [12,26,27]. However, this method is not
straightforward. The most popular used formula in nuclear
decay, fission, and fusion reactions is still the original WKB
formula [see Eq. (1) below] or Kemble’s improved version
[28–32].

In this work, a symmetry relationship in tunneling through
the potential barrier of two nuclei is demonstrated, which can
be applied to solve the above-barrier tunneling problem sim-
ply. The present paper is organized as follows. In Sec. II, the
theoretical framework is briefly described. Section III presents
the numerical calculations on two light fusion reaction sys-
tems. Finally, the summary of the article is given in Sec. IV.
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II. THEORETICAL FRAMEWORK

A. Single-channel WKB formula

The WKB transmission probability through the barrier of
the l partial-wave at incident energy E is written as

PWKB
l (E ) = exp

[ − 2�WKB
l (E )

]
, (1)

where

�WKB
l (E ) =

∫ r2

r1

kl (r)dr. (2)

The r1 and r2 in the above integral are the classical turning
points where the potential energy Vl (r) equals to E . The
wave number in the above formula is expressed as kl (r) =√

2μ[Vl (r) − E ]/h̄2 , where μ = m1m2/(m1 + m2) is the re-
duced mass of the projectile and the target with masses m1 and
m2, respectively. Taking the parabolic potential as an example,
when E of the interaction system is equal to the barrier height
VB, r1 tends to be equal to r2 in Eq. (2), so that �WKB(E ) = 0
and PWKB(E ) = 1. However, the analytical results will give
P = 0.5 [12]. An improvement to the WKB formula was
given by Kemble [33], i.e.,

Pl (E ) = 1
/{

1 + exp
[
2�WKB

l (E )
]}

. (3)

Based on this formula, the tunneling probability at the above-
barrier energy will always be 0.5. Therefore, it cannot be used
for above-barrier energies, where the tunneling probability
tends to be 1.0.

The parabolic potential plays an essential role in quantum
mechanics [12] and supersymmetric quantum mechanics [34].
Many calculations could be significantly simplified by adopt-
ing this potential, which enriches our understanding of the
microscopic quantum world. The nuclear potential is often
treated as an approximation of the inverse parabolic potential,
which can be expressed as

V (x) = VB − 1
2μω2x2, (4)

where h̄ω is the curvature of the potential. The tunneling
probability of this potential can be analytically solved [12,35],
namely,

P(E ) = 1

1 + exp
[

2π
h̄ω

(VB − E )
] , (5)

which is often called the Hill-Wheeler (HW) formula. Due
to its simplicity, this HW penetration formula is widely used
[14,36–38]. For the parabolic potential, a special relationship
between the sub-barrier tunneling probability and the above-
barrier tunneling probability can be proved, namely,

P(VB + δE ) + P(VB − δE )

= 1

1 + exp
[

2π
h̄ω

(VB − VB − δE )
]

+ 1

1 + exp
[

2π
h̄ω

(VB − VB + δE )
]

= 1. (6)

It is natural to derive that, when δE = 0, P(VB) = 0.5.
The above feature of the penetration through the parabolic

potential is irrelative to the width or curvature of the poten-
tial, unlike that of the square potential barrier or the Eckart
potential [12]. However, it should be noted this is not usu-
ally the case for any symmetric parabolic potential barrier.
Equation (6) is only fulfilled by solving the Schrödinger
equation under infinite inverted parabolic potential boundary
conditions. For a finite parabolic potential, if the plane-wave
boundary conditions are adopted, the relationship Eq. (6) will
be subject to small disturbances. Because the shape of the
nuclear potential is not exactly parabolic, and the boundary
condition is also not the same as the above case, the penetra-
tion probability at incident energy equal to the barrier height
is also disturbed, as well as the symmetry relationship Eq. (6).

At the above-barrier energy, the penetration probability is
close to 1. The cross sections concerned are not as sensitive
to the penetration probability as that of sub-barrier energy.
Considering also the existence of the symmetric relationship
between sub-barrier and above-barrier transmission probabil-
ities shown in Eq. (6), a new simple formula is proposed
for applying the WKB formula to the above-barrier energy
region in this work. The probability above the barrier energy
can be deduced reversely according to Eq. (6) from Kemble’s
formula, Eq. (3), namely,

Pl (E ) = 1 − 1

1 + exp
[
2�WKB

l (2VB(�) − E )
]

= 1

1 + exp
[−2�WKB

l (2VB(�) − E )
] ,

= 1 − Pl (2VB(�) − E ), (7)

when E > VB(�), with VB(�) being the barrier height at the
�th angular momentum. The turning point used in the above
formula is obtained as the same one as when the incident
energy is 2VB(�) − E . This formula is named the symmetric
WKB (SymWKB) method. By solving the below-barrier tun-
neling probability using the WKB formula, according to the
above equation, the above-barrier tunneling probability can be
derived directly without further calculations. For instance, if
the barrier VB is 10 MeV, the tunneling probability by WKB
at E = 8 MeV is 0.4, then the tunneling probability at the
symmetry position relative to the barrier, i.e., E = 12 MeV,
would be 1 − 0.4 = 0.6.

Finally, the total capture cross section is expressed as a sum
over partial waves at the center-of-mass energy E , which is

σ f (E ) =
∑

l

σl (E ) = π

k2
0

∑
l

(2l + 1)Pl (E ), (8)

where the incident wave number is expressed as k0 =√
2μE/h̄2.

B. Multichannel WKB formula

The multichannel WKB formula can be derived based on
the local transmission matrix method [24,39]. It is obtained
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from the coupled-channels equations as follows:

− h̄2

2ν

d2

dx2
unn0 (x) +

∑
m

[Vnm(x) + εmδn,m − E ]umn0 (x) = 0,

(9)

where εn is the excitation energy for the nth channel. unn0 (x) is
the wave-function matrix, where n refers to the channel and n0

specifies the incident channel. The incoming wave boundary
conditions for unn0 (x) are given by

unn0 (x) → Tnn0 e−iknx (x → −∞), (10)

→ δnn0 e−iknx + Rnn0 eiknx (x → ∞), (11)

where kn =
√

2m(E − εn)/h̄2 is the wave number for the nth
channel.

After some approximations, see more details in Ref. [24],
the multichannel WKB tunneling probability is obtained as

P =
∑

n

∣∣∣∣∣〈n|
∏

i

[∑
m

|m(xi )〉eiqm (xi )
x〈m(xi )|
]
|n0〉

∣∣∣∣∣
2

, (12)

where q(x)={2μ[E−W(x)]/h̄2}1/2, with Wnm(x) = Vnm(x) +
εnδn,m. |m(x)〉 is the eigenvector of the matrix W(x) with the
eigenvalue of λm(x), and qm(x) ≡

√
2m[E − λm(x)]/h̄2.

For a one-channel problem, Eq. (12) is equal to the original
WKB formula in Eq. (2). For a multichannel problem, the
drawback of the WKB equation is also inherited. The tun-
neling probability calculated by Eq. (12) is generally higher
than the exact value when the incident energy is near the
eigenbarriers. Two prescriptions are proposed to deal with
this problem, including the dynamical norm method and the
eigenchannel approach [24]. Since the second approach was
proved to agree with experimental data better than the first
one, we try to test it in the following.

In the eigenchannel approach, the penetrability is obtained
by a weighted sum of the penetrability for each eigenbarrier,

P(E ) =
N−1∑
n=0

wnPn(E ), (13)

where Pn(E ) is the penetrability for the eigenpotential λn(x).
In the weight factors, wn are assumed independent of the
distance and usually predicted at the barrier positions [40–42].

In Ref. [24], the coordinate dependence of W(x) is prop-
erly taken into account assuming that it is independent of
energy. The procedure is as follows. Starting from the low-
est eigenbarrier B0 and considering the original one channel
WKB approximation P0(B0) = 1, it can be obtained from
Eq. (13) that P(B0) ∼ w0P0(B0) ∼ w0, when E = B0. Then
the first weight factor ω0 for the lowest eigenbarrier is ob-
tained. Repeat this procedure N − 1 times; the weight factor
for the (k + 1)th eigenbarrier will be

wk = PWKB(Bk ) −
k−1∑
i=0

wi, (14)

where Bk is the barrier height of the (k + 1)th eigenbarrier,
and PWKB is the multichannel tunneling probability calculated

by Eq. (12). The weight factor for the highest eigenbarrier
λN−1(x) is evaluated as

wN−1 = 1 −
N−2∑
i=0

wi, (15)

in order to keep the unitarity.
After the penetrability is written as Eq. (13), the multi-

channel problem can be reduced to a summation of a different
one-channel problem. We can substitute the Pn(E ) with the ex-
act one, which can be obtained from solving the one-channel
Schrödinger equations. In this work, we test if Pn(E ) can be
substituted with the SymWKB formula, Eq. (7).

III. RESULTS AND DISCUSSIONS

A. Test of single-channel WKB formula
with AW-type WS potential

The fusion of the symmetric 28Si + 28Si reaction and the
asymmetric 17O + 144Sm reaction are used as examples to
test Eq. (7). At first, we test the tunneling probability with
the Akyüz-Winther (AW)-type Woods-Saxon (WS) potential
[45], which is widely used in different reactions [46]. It
gives the potential parameters V0, R0, and a0 as 53.759 MeV,
7.108 fm, and 0.6345 fm for 28Si + 28Si and 62.130 MeV,
9.195 fm, and 0.654 fm for 17O + 144Sm. The angular mo-
mentum is taken from zero to the value where the tunneling
probability is too weak to make contributions.

In Figs. 1(a) and 1(b), the penetration probability at
zero angular momentum is plotted at linear coordinates and
logarithmic coordinates, and the fusion cross sections for
28Si + 28Si are presented in Figs. 1(c) and 1(d) at differ-
ent coordinates, respectively. In Fig. 1, labels SC and WKB
denote the single-channel calculation by the quantum tun-
neling method [47] and the WKB formula, Eq. (1). The
results labeled as SymWKB represent that above-barrier pen-
etration probabilities and cross sections are deduced from
the sub-barrier predictions according to Eq. (6). The re-
sults of the HW formula in Eq. (5) are shown as dashed
lines.

From Fig. 1(a), it can be seen that the results of Exact,
HW, SymWKB are almost overlapped, which demonstrates
that Eq. (6) applies well to this potential. The calculated
penetration probability of the original WKB formula quickly
increases up to 1 near the barrier energy and deviates a lot
from other calculations, and the semiclassical SymWKB re-
sults are still almost undistinguished from the results of Exact.
This proves the applicability of Eq. (7). Meanwhile, according
to the results shown in Fig. 1(b), the HW results are signifi-
cantly higher than all other results. This is due to the parabolic
approximation used in the HW formula, which decreases
the barrier width and tends to overestimate the tunneling
probability.

After summing up the partial fusion cross sections at
each angular momentum, the total cross sections can be ob-
tained. Comparing the cross sections shown in Figs. 1(c) and
1(d), it can be seen that the results calculated by the WKB
method overestimate the total fusion cross sections at the
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FIG. 1. The single-channel penetration probability Pl=0 with zero
angular momentum at linear coordinates (a) and logarithmic coor-
dinates (b), and fusion cross sections at linear coordinates (c) and
logarithmic coordinates (d) for the 28Si + 28Si reaction under the
AW-type Woods-Saxon potential. The experimental fusion cross sec-
tions (open circles) are from Ref. [43]. The results by numerically
solving the quantum equation (Exact) are shown as the solid lines.
The WKB prediction and its reversed calculation SymWKB are
presented as densely dashed and densely dotted lines. The results
of the Hill-Wheeler formula are shown as dashed lines.

above-barrier energy. The situation of the calculated cross
sections by different methods is similar to that of tunneling
probability. At the above-barrier energy region, the results of
the Exact, HW and SymWKB methods are overlapped and
are smaller than those of the WKB method. In the sub-barrier
energy region, the WKB method makes excellent predictions
that coincide with those of the Exact method, as well as those
of the SymWKB method. The results of HW overestimate a
lot compared to the Exact results. The above results demon-
strate the accuracy of semiclassical SymWKB results, which
is quite close to the accuracy of the exact quantum mechanical
results in this case.

FIG. 2. Same as Fig. 1 but for the 17O + 144Sm fusion reaction
under the AW-type Woods-Saxon potential. The experimental fusion
cross sections (open circles) are from Ref. [44].

The penetration probability at zero angular momentum and
the fusion cross sections for the 17O + 144Sm fusion reaction
are given in Figs. 2(a) and 2(b) and Figs. 2(c) and 2(d),
respectively. This is a very asymmetric reaction compared
to the previous one. Similar to the results shown in Fig. 1,
the tunneling probabilities and the cross sections predicted
by the original WKB method are larger than those of other
methods at the above-barrier energy region. Moreover, the
results calculated by the Exact, HW and SymWKB methods
are also overlapped. At the sub-barrier energy region, the HW
formula tends to overestimate the sub-barrier fusion cross
sections. Similarly, the Wong formula which is derived from
the HW formula has also been shown to overstate the results
[19,26]. The WKB predictions at the sub-barrier energy region
are undistinguished from the exact quantum calculation based
on the calculations in this work. This character makes the
SymWKB method a more suitable simple tool for the one-
channel tunneling problem at both the above-barrier and the
sub-barrier energy regions.
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FIG. 3. The ion-ion potential V for reactions 28Si + 28Si and
17O + 144Sm at zero angular momentum. A dotted line represents
the results of the AW-type Woods-Saxon nuclear potential plus a
dot Coulomb potential, and the nuclear potential containing a fitted
Woods-Saxon potential is shown as a solid line.

B. Test of single-channel WKB formula
with general WS potential

To test Eq. (7) for general cases, we test the fitted Woods-
Saxon potential in this step. We obtain the parameters of
the Woods-Saxon potential by fitting the experimental data
directly, using the exact quantum model without coupling (Ex-
act) [20,47]. Due to the strong couplings in these two nuclear
reaction systems [43,44], unusual potential parameters are
obtained by considering only one channel. The fitted Woods-
Saxon nuclear potential parameters V0, R0, and a0 are 98.522
MeV, 7.483 fm, and 0.415 fm for the reaction 28Si + 28Si
and 267.930 MeV, 10.315 fm, and 0.226 fm for the reaction
17O + 144Sm. The comparisons of the fitted potential and the
standard AW-type potential for these two reactions are plotted
in Fig. 3. It can be seen that the fitted potential parameters
deviate a lot compared to the standard AW-type potential.
The solid lines in the figure clearly show that the shape of
the fitted Woods-Saxon potential is far from a parabolic one,
especially for the reaction 17O + 144Sm. The fitted potential
of this reaction decreases sharply inside the potential pocket.
In Figs. 4 and 5, the penetration probability at zero angular
momentum and the fusion cross sections at linear coordinates
and logarithmic coordinates are presented for 28Si + 28Si and
17O + 144Sm, respectively.

FIG. 4. Same as Fig. 1 but for the 28Si + 28Si reaction under the
fitted Woods-Saxon potential.

From Fig. 4, it can be seen that results of the Exact and
SymWKB methods are almost overlapped at all subplots,
which demonstrates that Eqs. (6) and (7) apply well to this
potential. The calculated penetration probability of the origi-
nal WKB formula quickly increases up to 1 near the barrier
energy and deviates a lot from other calculations. The results
that are shown in Figs. 4(a) and 4(c) demonstrate that cal-
culations by the WKB method still highly overestimate the
total fusion cross sections. In the sub-barrier energy region,
WKB and SymWKB make excellent predictions that coincide
with the Exact method. With this fitted potential, the deviation
of the WKB and the Exact results are significantly larger than
that shown in Fig. 1, as well as the deviation of the HW and
the Exact results. This is because the new potential deviates
from parabolic further in the fitting process.

The results of the reaction 17O + 144Sm are given in Fig. 5.
In this figure, the results calculated by the SymWKB method
are very close to those of the Exact method at the above-
barrier energy region. Similar to that of the previous reaction,
the cross sections are overlapped at the sub-barrier energy

064602-5



WEN, LIN, JIA, YANG, MA, AND YANG PHYSICAL REVIEW C 109, 064602 (2024)

FIG. 5. Same as Fig. 1 but for the 17O + 144Sm fusion reaction
under the fitted Woods-Saxon potential.

region. Moreover, the results by the WKB and HW formulas
deviate more obviously from the Exact results than those
shown in Fig. 2. The SymWKB results are still good approx-
imations compared to the Exact method. Similar to the HW
formula and other simple formulas, it should be noted that
Eqs. (6) and (7) cannot be used for the prediction of very
heavy and very light fusion reactions, where other mecha-
nisms such as the deep-inelastic scattering, incomplete fusion,
or the oscillations and resonance structures appear [6,28,48].

C. Test of multichannel WKB formula

In this work, we adopt the same coupled potential as
that tested in Ref. [24] for the convenience of comparison.
Considering a three-level problem, the coupling potential is
expressed as

W(x) =
⎛
⎝V (x) F (x) 0

F (x) V (x) + ε F (x)
0 F (x) V (x) + 2ε

⎞
⎠, (16)

FIG. 6. Multichannel calculation of cross sections at linear coor-
dinates (a) and logarithmic coordinates (b) for a three-level coupled
potential in Eq. (16). The solid lines denote the Exact results by
solving the coupled-channels equation. The multichannel calculation
with the WKB formula Eq. (12) is denoted as the densely dashed
lines. The multichannel prediction with the eigenchannel approxi-
mation [Eq. (13)] and the SymWKB formula [Eq. (7)] are presented
as the dotted lines.

with

V (x) = V0e−x2/2s2
, (17)

F (x) = F0e−x2/2s2
f , (18)

where V0 = 100 MeV, F0 = 3 MeV, and s = s f = 3 fm, which
are chosen to simulate the potential between two 58Ni nu-
clei. The excitation energy ε and the reduced mass μ are
set as 2 MeV and 29mN , respectively, where mN = 938 MeV
is the nucleon mass. The barrier height for the uncoupled
barrier is V0. The three eigenbarriers λi(x) are 97.31, 102.0,
and 106.7 MeV, respectively, which are obtained by di-
agonalizing W(x) at the barrier position. In the following
calculations, we substitute the Pn(E ) in Eq. (13) with the
SymWKB formula [Eq. (7)] to test the multichannel WKB
formula.

The results are shown in Fig. 6. Similar to the single-
channel case, the original WKB formula highly overestimates
the tunneling probability at the near-eigenbarrier energy re-
gions, and results predicted by the SymWKB formula for
multichannel calculations agree with the Exact results very
well. The Exact results used in this work are obtained by our
recently developed program KANTBP 3.1 (CCFULL-FEM)

064602-6



SYMMETRY RELATIONSHIP OF QUANTUM … PHYSICAL REVIEW C 109, 064602 (2024)

FIG. 7. The Eckart potential V in Eq. (19). The thin and thick
solid lines represent two cases where (I) VB = 10 MeV and (II) VB =
20 MeV.

[20,21,49–51], which solves the coupled-channels equa-
tion with a very high-accuracy finite-element method. The
calculations indicate that the SymWKB formula is suitable for
multichannel tunneling calculations. This method takes much
less computational power than solving the coupled-channels
equation, which will be more suitable for the very large di-
mensional multichannel tunneling calculations.

D. Extension of the symmetry law to the Eckart potential

Another well-known one-dimensional potential that has an
analytic solution of penetrability is the Eckart potential. This
potential has been applied to various nuclear physical research
[52,53]. Its analytical tunneling probability has been listed
in various quantum mechanic textbooks such as Ref. [12].
It would be interesting to check the symmetric law of the
above-barrier and the sub-barrier tunneling probabilities. In
this subsection, we take the potential form as

V (R) = VB/ cosh2(R − RB), (19)

where VB and RB are the potential barrier height and radius. If
8mVB/h̄2 > 1, the analytic solution is

P(E ) = sinh2(πk)

sinh2(πk) + cosh2
[

1
2π

√
8mVB/h̄2 − 1

] , (20)

where k =
√

2mE/h̄2. To be simple, 2m/h̄2 is set as 1
MeV−1 fm−2, and RB is set as 20 fm here. Two cases are tested
in this work including (I) VB = 10 MeV and (II) VB = 20
MeV. The shapes of the potential are plotted in Fig. 7. The tun-
neling probability by the analytic solution in Eq. (20) is shown
as the solid lines. One can see that, when E = VB, the tunnel-
ing probabilities are 0.563 and 0.544 for cases (I) and (II).
Therefore, the symmetry law P(VB + δE ) + P(VB − δE ) = 1
is obviously not fulfilled. However, one could slightly adjust
the law as

P(VB + δE ) + aP(VB − δE ) = 1. (21)

FIG. 8. The tunneling probability for the Eckart potential. The
Exact results are shown by the thin and thick solid lines, while
the results by the law in Eq. (21) are shown as the thin and thick
dashed lines for the two cases where (I) VB = 10 MeV and (II)
VB = 20 MeV.

It amounts to scaling the new tunneling probability close to
0.5 at the barrier position, and the critical step is to deter-
mine the coefficient a. Submitting the tunneling probability
at δE = 0, namely, E = VB, one could get the value of a as
0.776 and 0.838 based on the above equation. The results by
Eq. (21) are shown in Fig. 8. It is remarkable to find that
the above-barrier tunneling probabilities transformed by the
sub-barrier value agree well, although not exactly, with the
analytic solutions. This may be due to the close shape of this
potential to the inverse parabolic potential, and it would be
interesting to check more potentials later about the application
range and find the deep reason for the symmetry laws.

IV. SUMMARY

In summary, we have found a symmetry relationship in
tunneling between two nuclei. For a parabolic potential,
it is proved analytically that the summation of the one-
dimensional tunneling probability at incident energies VB +
δE and VB − δE is unity. It is also proved numerically that
the symmetry relationship works rather well, although not ex-
actly, for realistic nuclear potentials. The SymWKB formula
is demonstrated to have more accurate predictions than the
HW formula at the sub-barrier energy region and Kemble’s
WKB formula at the above-barrier energy region in different
cases. It is also demonstrated that the multichannel tunneling
probability at the above-barrier energy region can be predicted
in the same way under the eigenchannel approximation, which
produces undistinguished results compared to those of the
Exact method. Moreover, the SymWKB method presented
here for fusion reactions serves as an illustrative example.
If we substitute the WKB method with the Exact method at
below-barrier energies, it is evident that the SymExact method
will also exhibit good performance at above-barrier energies
based on the symmetry tunneling relationship. Because the
WKB method is simpler than the Exact method, which in-
volves solving the Schrödinger equation, it has great potential
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to reduce computational time, particularly when dealing with
more than hundreds of coupled channels such as in studying
the influence of single-particle dissipation effects on fusion
reactions [54]. The well extension of the symmetry tunnel-
ing law to the Eckark potential is also revealed. Due to the
simple form and the accuracy of the symmetry relationship,
the new SymWKB tunneling formula can be used to improve
the realistic calculations in many fields [28–32]. Despite its
effectiveness, the root cause behind this symmetrical tunnel-
ing phenomenon, and if there exist more general symmetry
tunneling laws, still needs to be uncovered to understand the
quantum mechanism.
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