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Coherent interactions of a fast proton with the short-range NN correlations in the nucleus
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Nuclear structure at short NN distances is still poorly understood. In particular, the full quantum structure
of the nucleus with a correlated NN pair is a challenge to theory. So far, model descriptions have been limited
to the average mean-field picture of the remaining nuclear system after removing the NN pair. In the recent
experiment of the BM@N Collaboration at JINR [M. Patsyuk et al., Nat. Phys. 17, 693 (2021)], the reactions
12C(p, 2pn,)'°B and ">C(p, 2pp,)'°Be induced by the hard elastic pp scattering were studied. Here, n, or p,
denote the undetected slow nucleon in the rest frame of '>C. In contrast to the previous experiments, the residual
bound nucleus was also detected which requires a new level of theoretical understanding. In the present work, we
apply the technique of fractional parentage coefficients of the translationally invariant shell model to calculate
the spectroscopic amplitude of the system NN-B where B is the remaining nuclear system. The spectroscopic
amplitude enters the full amplitude of a nuclear reaction. The relative NN-B wave function is no longer a free
parameter of the model but is uniquely related to the internal state of B. The interaction of the target proton with
the NN pair is considered in the impulse approximation. We also include the initial- and final-state interactions of
absorptive type as well as the single charge exchange processes. Our calculations are in a reasonable agreement

with the BM@N data.

DOLI: 10.1103/PhysRevC.109.064601

I. INTRODUCTION

Short-range NN correlations (SRCs) in nuclei have been
the focus of experimental and theoretical studies for about
three decades, see recent reviews in Refs. [1,2]. It is nowa-
days well established that in medium-to-heavy nuclei about
20-25 % of nucleons are in the state of SRCs. These nucle-
ons populate the part of the nucleon momentum distribution
above Fermi momentum of ~250 MeV /¢ [3]. Most SRCs are
the pn ones, although a fraction of pp-SRCs increases with
missing momentum' at pps = 400-800 MeV/c indicating
the transition from dominating tensor to dominating repulsive
scalar interaction, which follows from the analysis of the
reaction “He(e, ¢'pN) at Jefferson Laboratory [4]. This con-
clusion is also supported by the increasing cross-section ratio
A(e, €' pp)/A(e, €' p) with puiss at pmiss = 400600 MeV /c,
independent of the target nucleus [5].

Most experimental searches for SRCs have been carried
out by detecting a scattered particle (e or p), a recoil proton,
and its partner nucleon, c.f. Refs. [3—8], while the state of
the residual nuclear system was not determined. Hence, the
reaction products may suffer incoherent rescattering processes
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"The missing momentum py,ss is defined as the momentum of the
struck proton in the nucleus rest frame before knock-out.
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in the residual nucleus, leading to the distortions of their mo-
menta and the formation of a highly excited nuclear residue,
which may even be in an unbound state.

In the experiments performed at NIKHEF [9-11] and
MAMI [12], the reaction '°Q(e, ¢’ pp) 4o with production of
14C in the 0T ground state and several excited states (2* at
E* =7.01 and 8.32 MeV, 0T at E* =9.75MeV, and 17 at
E* = 11.31MeV) has been studied. The main idea was to
use specific final states of the outgoing nucleus as a filter for
various reaction processes. For example, '4C in the 07 states
associated with low recoil momentum selects the 'S, internal
state of pp, while '*C in the 17 state selects the 3P states
of the pp pair. In Ref. [11] the two independent theoretical
analyses within the Pavia [13] and Gent [14] models have
been performed concluding that the ground state channel is
well described by introducing central SRCs. On the other
hand, the 1% channel needs to include the intermediate A
excitation [15], thus, clearly demonstrating the importance of
the selection of the quantum state of a residual nucleus for the
observation of SRCs.

In Refs. [16,17], the tensor correlations that influence the
351 and 3D, pn states are found to be important for the
190(e, ¢'pn)'*N exclusive channels with production of '*N
in the 17 states. However, since the energy resolution of the
neutron detector [18] turned out to be not enough to resolve
the separate energy state of '*N, these important theoretical
predictions still remain to be confirmed by new experiments.
In this sense, a more effective way to study pn SRCs (which
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are more abundant as compared to the pp ones) is to use
reactions in the inverse kinematics where the residual nucleus
can also be detected, allowing the final state to be completely
reconstructed without the need for neutron detection.

The first (almost) fully exclusive measurements of the
reactions '>C(p, 2pn,) '°B and '>C(p, 2pp,) '°Be in inverse
kinematics with the collision of carbon nuclei with a momen-
tum of 48 GeV /c with a proton target were recently performed
by the BM@N Collaboration at JINR [19]. The main idea was
to reduce distortions of the reaction kinematics due to initial-
and final-state interactions (ISI/FSI) by detecting an unbroken
nucleus in the final state. This allows to extract more clean
information on the genuine SRC dynamics. An important
feature of this experiment is the detection of a fast residual
nucleus at a finite distance from the point of interaction with
the proton target. Under these conditions, residual nuclei in
short-lived particle-unstable states will not reach the detector.
Hence, only the ground state and low-lying excited states
of the residual nucleus will contribute to the counting rate.
Therefore, it is extremely important that the appropriate theo-
retical formalism, in addition to the correct description of the
SRC pair and its motion relative to the residual nucleus, also
takes into account individual transitions to low-lying excited
states of the residual nucleus.

Theoretical modeling of SRCs is based on the separation
of long-range mean-field interactions and (relatively) short-
range residual two-body interactions, which is confirmed by
microscopic calculations [20-22]. It was shown [22] that for
nuclei with A < 12 the independent particle model (IPM)
predicts the number of the NN pairs in different spin-isospin
states ST with an accuracy of about 10-15 % compared with
a calculation taking into account correlations. In this case,
residual interactions primarily affect the internal wave func-
tion (WF) of the pair. In Ref. [20], the binding energies of
s- and p-shell nuclei were well described by a simple model in
which the pion-exchange spin-isospin interaction acts within
NN pairs of different ST while counting of pairs in a given
spin-isospin state was carried out within the IPM.

In the model of Refs. [23-25], SRCs were dynamically
generated by correlation operators acting on the [PM WE. The
authors showed that the correlation operators (in the two-body
cluster approximation) do not affect the distribution of center-
of-mass (c.m.) momenta of correlated pairs, while most of
the SRCs is generated by the action of correlation operators
on the NN pairs in the lowest internal state of the relative
radial quantum number n = 0 and relative orbital momentum
[=0.

Another SRC model is the generalized contact formalism
(GCF), see Ref. [26] and references therein. In the GCF, the
total number of SRCs is included through nuclear contacts
that can be extracted either from experiment [27,28] or from
microscopic calculations [26,29]. Internal WFs of the NN
SRCs in different spin-isospin states are zero-energy solutions
of the Schrodinger equation with either phenomenological or
chiral two-body interactions. The relative NN-B (i.e., the c.m.)
WF of SRCs is purely phenomenological. Simulations using
the GCF describe the BM@N data [19] very well, although
this model does not include information about the internal WF
of the residual nucleus and, therefore, implicitly gives the total

production rate for all possible internal states of the residual
nuclear system.

In this work, to resolve individual states of the residual
nucleus, we use an approach based on the expansion of the
nuclear wave function in a series of states of the translationally
invariant harmonic oscillator shell model (TISM) [30]. The
basic properties of this approach were formulated in Ref. [31]
where the quasielastic knock-out of d, 7, and « clusters from
1p-shell nuclei by fast protons was studied. Momentum distri-
bution of clusters in the nucleus and spectrum of excitations of
the residual nucleus after fragment ejections were calculated
in Ref. [31] using the shell model taking into account pair
nucleon-nucleon correlations which explicitly demonstrated
the importance of the fractional parentage method. Following
Ref. [31] we assume that the number of SRC pairs in the
nucleus and the WF of the relative motion of the NN pair
with respect to the c.m. of the residual nucleus are deter-
mined by the mean field, while the high-momentum part of
the internal wave function of the NN pair is governed by the
short-range NN interaction. Accordingly, we use the TISM
for the calculation of the spectroscopic amplitude [see Eq. (7)
below] for separation of a two-nucleon cluster from the initial
nucleus and of the WF of relative motion of the cluster and
the residual nucleus. On the other hand, we rely on phe-
nomenology to determine the intrinsic dynamic properties of
SRC pairs. Hence, for the pn SRC pairs with (S, 7) = (1, 0),
the internal WF at high relative momenta (> 0.4 GeV/c) is
identified with the free deuteron WF, while for the NN pairs
with (S, T) = (0, 1)—with the 'Sy WF of free pp scattering
at zero energy.

In the TISM, the harmonic oscillator (HO) potential al-
lows analytical calculation of the spectroscopic amplitudes
and relative NN-B WFs. Residual NN interactions beyond
the HO potential are taken into account by mixing the TISM
configurations in the intermediate coupling scheme [31,32].
We should note here that within the TISM the type of WF of
the relative motion of the cluster X and the residual nucleus
B is determined by the antisymmetry property of the internal
WFs of the nuclei A and B and of the cluster X. As a result, the
number of the oscillator quanta n corresponding to the relative
X — B motion is fixed as

n =Ny — Ny — N, (1)

where N; is the number of oscillator quanta corresponding
to the internal motion in the nucleus/cluster i (i = A, B, X).
This “oscillator rule” is widely used in the theory of nucleon
clusters in light nuclei (see, for example, Refs. [16,33]). Ac-
cording to this rule, when a NN pair is separated from the
ground state of the '>C nucleus, the relative NN-B motion
has either a 2§ or 2D type for the transition to the residual
nucleus in the configuration s*p®, or 0S type for transition
to the s?p® configuration. On the contrary, within the GCF
[26] the effects of antisymmetrization are not involved into
consideration, and for the WF of the relative motion NN-B an
“averaged” Gaussian form is assumed.

Previously, the TISM spectroscopic approach was used
to analyze the experimental data [34,35] on the quasielastic
knock-out of fast deuterons from light nuclei ®’Li and '2C
by protons at 670 MeV. In these (p, pd) processes, the large
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FIG. 1. The amplitude of the process A(p, ppN)B. The lines
are marked with four-momenta of the particles: the initial (p4) and
final (pp) nuclei, beam proton (p,), correlated NN pair (py), struck
proton (p,), outgoing fast protons (p; and p4), and outgoing slow
nucleon (ps).

momentum transfer (1.6 GeV/c) from the proton beam to
the knocked-out deuteron selects the high-momentum compo-
nent of the internal pn WF associated with compact deuteron
configurations. The TISM allows to describe the shapes of the
measured spectra when absorptive ISI and FSI are taken into
account [36,37].

In Ref. [38], the quasielastic interaction with the dineutron
p(nn) — d + n has been experimentally studied in addition to
the p(pn) — d + p. In Ref. [39], the measured ratio of events
(nn) /(pn) has been reproduced reasonably well assuming the
dominance of the A-isobar mechanism of the p(nN) — d +
N process [40]. The review of these works was done in [37].

The paper is organized as follows. In Sec. II we explain
the underlying model starting from the impulse approximation
(IA) amplitude. The ISI and FSI are included in the eikonal
approximation. Then, in Sec. IIIl we compare our results with
the BM@N data [19] and also give predictions for the absolute
cross sections. Section I'V contains the summary of our results
and possible further steps.

A 1/2
S§=(2> (Wa| W5, nA, Ux)

Lg Sp Js

II. THE MODEL

The Feynman diagram of the IA amplitude is displayed in
Fig. 1. For brevity, we use the notation “X” for the correlated
NN pair. The corresponding invariant matrix element is then
expressed as follows:

i’ , i’ )
MIA _ Mhard(p3, 1, pl) ;»pN(pX PS) A*)XB(pA PB)

S —m?+ie py—my+ie’

(2)
where Mhpqa(p3, pa, p1) is the amplitude of hard elastic pp
scattering, I'4_, xp(pa, pp) and I'y_, ,n(px, ps) are the decay
vertices. Since the nucleus B and nucleon 5 are on the mass
shell, the decay vertices can be expressed in terms of the
WFs of the relative motion in momentum space and particle
energies (see derivation in Ref. [41]):

ils~xB(pa, PB) x(ZEBmA>]/2 30 M
— =S Qr )Py (—py),
Py —m2 +ie A Van (—Px

3)

iTx—pw(px. ps) _ (2Esmx\'?
PR S () @oY2yx(py). ()
p; —m- + 1€

2
where all quantities on the right-hand side (r.h.s.) are defined
in the rest frame (r.f.) of decaying particle, i.e., of the nucleus
A in Eq. (3) and of the NN pair in Eq. (4). ¥"%(—py) is
the WF of the relative motion of the NN pair and nucleus B,
where n is the number of the oscillator quanta, A is the orbital
angular momentum, and M, is its z component.” Vx(p,) is
the internal WF of the NN pair. The factor +/2 in the r.h.s. of
Eq. (4) comes from the antisymmetrized plane wave product
WEF of the decay nucleons. The normalization conditions of
the WFs are

/d3ph/fff4£(p)}2 =1, )

/ dEplyx () =1, (©6)

where in the last equation the sum over spin and isospin z
components of the decay nucleons is implicitly assumed. In
Eq. (3), S is the spectroscopic amplitude of the transition
from a given state of the nucleus A to a given state of the
system X B, see Refs. [42,43]:

W sl

LMy | L S J

Jo tV/ L+ 1)(28 + 1)(2J5 + 1)(2Jo + 1) U(ALxJoSx; LJx)

X AANALfI ) LST [(A — 2)Npl fel(Apup)opLpSeTp; nA, 2Nx [ fx 1(Ax px )ox Ly Sx Tx { L})
x (JpMpJoMo|JM) (AM pJx My |JoMo) (TgM7, Tx M7, |T M7). @)

*Minus sign in the argument is related to the definition of the WF in the coordinate space, see Eq. (8) below.
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Here, the internal WF of the initial nucleus Y, =
[ANALfIA)aLSTIMMy) is characterized by the follow-
ing quantum numbers: Nj—the number of the oscillator
quanta, [f]—the Young scheme, (Au)—the Elliott symbol,
L, S, J—the orbital, spin, and total angular momenta, re-
spectively, T—isospin, M and My—z components of J and
T, respectively. o denotes some possible additional quantum
numbers needed for complete definition of the state. Similar
quantum numbers are also used to characterize the inter-
nal WFs of the final nucleus Wg = [(A — 2)Np[ fz](Apitp)ap

J

LBSBTBJBMBMTB)’ and NN correlation Wy=|2Nx [fX]()\X Ux)
axLxSxTxJxMxMry,). The numbers of oscillator quanta sat-
isfy the oscillator rule, Eq. (1). In Eq. (7), the standard
notations for the 6j and 9 symbols are used, as defined in
Ref. [44], while the factor (---) is the fractional parentage
coefficient (FPC) of the TISM. The FPC enters the decompo-
sition of the internal fully antisymmetric WF of the nucleus
A to the products of fully antisymmetric internal WF of the
nucleus B, WF of the relative motion of B and NN correlation
X, and fully antisymmetric internal wave function of X :

[ANA[f1(Ap)aLSTM MsMr) = Z(LBMLBLML|LML) (AMALXM | LM £)(SpMg, Sx M, |SMs) (TgMp, Tx M7, |T M7)
X (ANALf 1A ) LST (A — 2)Ng[ fpl(Appn)opLpSpTp; n A, 2Nx [ fx 1(hx px Jorx Lx Sx Tx {L})
X [(A = 2)Nplfpl(App)apLeSpTeM,Ms,Mr,)
X YV (Rp — Rx) 12Ny [ fx 100 pex otx Ly Sx Ty My, Ms, My, ), (®

where the sum is taken over all quantum numbers apart from those entering the WF of the nucleus A. In Eq. (8), the WF of the

nucleus B depends on the fixed set of variables xi, x, ..

., X4o—> while the WF of the correlation X depends on the remaining

variables x4_; and x4. Here, x; = (r;, A;, t;) denote the position r;, spin A;, and isospin #; variable of the ith nucleon. The c.m.

coordinates of the nucleus B and correlation X are

RB:—ZI',' (9)

and

Ry = 3(ra_1 +ra). (10)

respectively.’

As discussed in Sec. I, only the ground state and low-lying excited states of the residual nucleus contribute to the reaction rate.
This excludes the excitation of the « core and selects the states of the residual nucleus with the minimum number of oscillator
quanta. The FPC of the TISM can be expressed via the FPC of the conventional shell model, and for the considered case the

following relationship is used [42]:

(ANF™[F1OILST (A — bNG™ [ f5](Apies)LsSsTas n A, bNx [ fx 10ux pux )Lx Sx Tx {L})

A n/2 A4 1/2 A —1/2
=(—1)"(m> ( b) (b) (P TUAIWLST |7 f) s Lo SsTi: p°Lfx ) Cx i )LSx Tie)

x (PPLfx)Ox x )LSx T In A, BNx [ fx 1(hx 1ax )Lx Sx Tx ), (11)

where b is the number of nucleons in the cluster X.
Equation (11) is derived by applying the Bethe-Rose-Elliott-
Skyrme theorem [45,46] to the states of the nuclei A and B
which are supposed to contain the minimum numbers of the
oscillator quanta compatible with Pauli principle. The last
factor in the r.h.s. of Eq. (11) is the cluster coefficient, i.e., the
overlap integral of the shell model state of b p-wave nucleons
with total angular momentum £ and the product of the WF
Y (Ry ) and the WF of the TISM |bNx [ fx 1(Ax pux )Lx Sx Tx ).
It is assumed that the last two WFs are vector-coupled and
have total angular momentum L.

(

The expressions (7) and (11) can be easily applied to cal-
culate spectroscopic amplitudes using the two-particle FPCs
of the conventional HO shell model given in the tables
of Refs. [30,47]. However, before to do this, we need to
specify the nuclear states (we use the notation ?7+DS+D[,
below).

We will apply the shell model with intermediate coupling
of Ref. [32] where the TISM basis states have been used to di-
agonalize the realistic nuclear Hamiltonian that includes—in
addition to the HO one-body potential—the Wigner (central),
Majorana ( P.), Bartlett (x P,) and Heisenberg (o< P.B)

3Since, in Eq. (8), the WF of the n_ucleus B is the internal one it depends on (A — 3) Jacobi coordinates which can be defined as X| =r; —r,,
Xo=r+r)/2—r,...X;,= (22:1 r)/i —rig1se.Xa3 = (Zf;f ri)/(A —3) —rs_,. In a similar way, the internal WF of the correlation

X depends only the relative coordinate ry_; — r4.
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two-body interactions, and the spin-orbit one-body potential.
Contributions of various TISM states to the energy eigenstates
of light nuclei obtained in Ref. [32] correspond to the qual-
itative assessments of Ref. [20]. The intermediate coupling
model of Ref. [32] was also used by other authors to calculate
the quasielastic knock-out of « particles by protons [48] and
electrons [49].

The '2C ground state has quantum numbers J =T =0
and mainly consists of the ''S state with maximum sym-
metry corresponding to the Young scheme [44]. We neglect

J

A

small contributions of the [431] 1*P and other states. In ac-
cordance with Ref. [23] we will also require that the internal
WF of the NN SRC does not contain oscillator quanta,
i.e., Ny =0 and Ly = 0, which corresponds to the choice
of the most compact NN configurations. This choice deter-
mines the Young scheme [fx] = [2] and the Elliott symbol
(Axux) = (20). Furthermore, for the minimum oscillator
quantum number N3 = 6 we have n = 2 and therefore A =
0, 2. All this allows us to simplify Eq. (7) to the following
form:

12
sy = <2> (ANALf1(A)000](A — 2)Nl fal(Apup)LpSpTp; nA, 2Nx [ fx 1(Ax pux )0Sx Tx {A})

8 815785y By sy ST Ty Oy, — My,
VQ@2Ls+ DS+ D2Tp + 1)

Thus, the allowed values are Ly = A = 0, 2. The relevant
FPCs are collected in Table I (for a more expanded set of
FPCs, see Table 1 of Ref. [43]), and details of their calculation
are given in the Appendix. Note that the two-particle orbital
FPCs allow coupling of the [44] state of '>C to only [42] or
[33] states of the residual nucleus. However, the [33] state of
the residual nucleus is coupled with the Young scheme [11] of
the NN pair and, thus, can be discarded.

The outgoing nuclei '°B and '°Be can be in excited states.
In the present exploratory study, as explained in Sec. I, we will
consider only a few low-lying excitations consisting of differ-
ent TISM states with minimum number of oscillator quanta.
The '°B and '“Be states included in our calculations, as well
as the partial amplitudes of the contributing TISM states for
A = 10, are collected in Tables II and III, respectively. The
listed levels are confirmed by the compilation of experimental
data in Ref. [50]. All of the listed excited states are long-lived
and can decay only due to the emission of y. (The only excep-
tion is the 9B 7' = 1, J = 2 state with E* = 5.17 MeV that
has a photon decay branching ratio of 83% with remaining
17% in the o decay.) The total amplitude for the process
12C(p, 2pN;)B with the outgoing nucleus B in a certain energy

TABLE 1. The FPCs of the TISM = (ANITi“[f]()L/L)LSTl(A —
b)Ngﬂn[fB]()}BﬂB)LBSBTB;nAs bNx [ fx1(Ax x )Lx Sx Tx {L}) . for
A=12, NN =38, [fl(An) =[44]1(04), L=S =T =0, Ny =6,
[fel(Apus) = [42]1(22), b=2, Nx =0, [fxl(Axpx)=1[2](20),
LX = O, SX = SB, TX = TB.

(2Tg+1)(2SB+l)LB nA FPC

Bs 20 —/8/275
3lg 20 V87275
Bp, 22 —/3/550
3py 22 /37550
Bp, 22 —+/7/110
Dy 22 7/110

(= 1)/~ MstT5=Mry ( AMJx My |Jg, —Mp). (12)

(

eigenstate is given by a coherent sum
1A 1A
Mg = Mo, (13)
i

where M!* is the amplitude (2) for the outgoing nucleus B in
the TISM eigenstate i, and «; is the amplitude of the state i in
the energy eigenstate, taken from Tables II and III.

IST and FSI effects can be taken into account by replacing
the incoming and outgoing plane waves with distorted waves.
In the eikonal approximation, the plane waves of the incoming
proton (i = 1) and outgoing nucleons (i = 3, 4, 5) should be
multiplied by absorption factors (c.f. Refs. [51,52])

Fi(r) = exp (—onn (p)Ti(r)), (14)

where oyy (p;) is the total NN cross section depending on the
momentum of the particle in the r.f. of the nucleus B;

0 ~ .
o dnpr+pm) fori=1
Ty = | e 1P T Bin (15)

Jdn pr+ pm)  fori=3,4,5

TABLE II. Experimental and theoretical (in parentheses) energy
levels of '°B with the partial amplitudes of the TISM states with
Young scheme [42]. Taken from Ref. [32].

E*, MeV TJ TISM state %
0 03 Bp, —0.418
BDy 0.679
0.717 (0.68) 01 13g —0.351
Bp, 0.682
BDy 0.541
2.15 (2.08) 01 13g 0.885
Bp, 0.307
BDy 0.224
3.58 (3.5) 02 Bp, 0.401
BDy 0.778
1.74 (1.51) 10 Mg 0.772
5.17 (5.10) 12 3p, 0.728
'py 0.209
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TABLE III. Same as in Table II but for '°Be.

E*, MeV TJ TISM state o

0 10 g 0.772

3.368 (3.59) 12 3p, 0.728
Dy 0.209

5.96 (5.96) 12 3p, —0.226
Dy 0.892

are the thickness functions with p(r) being the nucleon num-
ber density of the nucleus B in the position r, and p = p/p.
The absorption-corrected matrix element is obtained by sub-
stitution in Eq. (3):

Q)P (=py)
- / d’re” Py (=) F (R Fy () Fa(r)Fs (1),

r :RX —RB. (16)

To summarize, we can write the following expression for
the matrix element, which includes the summation over the
magnetic quantum numbers of the intermediate states:

2E5mx 1/2
Mot =Y Myaa(p3. pa. p1) 0

Ao 2

x 2y *V2 Z ¥x (Pz)]
r.f.ofX

My

2Egma\?
X BITtA
XZ%ZS‘”( 7! )

i My X

/ dr e Py (—r)Fops (1), (17)

where Fys(r) = Fi(r)Fs(r)Fy(r)Fs(r). In Eq. (17), the factor in
square brackets is evaluated in the r.f. of NN correlation, and
all other factors—in the r.f. of the nucleus A. For simplicity,
we will further assume a spin-independent hard amplitude.
Note that in the nonrelativistic limit Eq. (17) corresponds to
the simplified form of the eikonal approximation [53] used in
Ref. [36] for the reaction '>C(p, pd) '°B (except for four ab-
sorption factors F;(r) in Eq. (17) instead of three in Ref. [36]).

Now we can calculate the modulus squared of the matrix
element (17):

|Mtot|2 =

> Ml

A,A3,h4,A5,Mp

N =

2Esm —_—
= [Miua(P3. P4, P1)|2<Tx>(2ﬂ)32|1//x(172)|2
2

2E
DD IMPICEAC o)
i.j

My i ,\Myp j Mp,Mx

x / dr f dPr/ ey i

X< YN (=1 Vs (1) Fas (1), (18)

where we neglected the interference of amplitudes with
different magnetic quantum numbers My of the NN pair
and eliminated the spin correlations between ¥x(p,) and
Mhad(P3, P4, p1) by successive replacements

1
3 Z |Mhara (3, P4, p1)I*

A1,A3,04

— [Mhara(p3, pa, P1)I?

1
== > |Muw(ps, ps p1I%, (19)
A,A2,A3,A4
> Wx Py
)\.2.)\.5
— Wx(p)P = 57 HM; Wx ()P, (20)

By using Eq. (12) and the property of the Clebsch-Gordan
coefficients

Z (AMp iJxMx |Jp, —Mp)(A My, jJxMx|Jp, —Mp)
Mp,Myx
2Jp +1

= M M s 21
DA, 1 1A MM (21
we can simplify Eq. (18) as
_ 2Esm
|Miot|* = (2Jp + 1)|Mhard(P3,P4,P1)|2< ;0 X)
2

x (270)*2|Yrx (py) 2

2EBmA
y Zw,aA N Sj{‘,’sjf‘),( - )

/d’; /d3 / —le(r ry__ - 1
2A +1

x Zw,,A< —I)YN (=1 Vs (N Fis (), (22)

where we introduced the reduced spectroscopic amplitude

172 FPC;
SXO-E<A> ! 23
4i=\2) QL+ D@85 + DRI + D) @3

and also used the fact that the value of n; is fixed for the
selected set of FPCs.

It is convenient to perform the double space integration
in Eq. (22) in the variables R = (r +r')/2, E =r —r'. In the
spirit of the shadowed multiple scattering in Glauber theory
[54], the double space integral in Eq. (22) can be then approx-
imately expressed as

/d3R/d3ge*’Px52A — lem —R —§/2)

X Yua “(—R + §/2)F (R, (24)

where we replaced r,r — R in the arguments of the absorp-
tion factors Fyps. This approximation is valid because Fyps(r)
varies with r on a relatively large length scale 2/pponyy =~ 3
fm, where py >~ 0.16 fm~3 is the nuclear saturation density,
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and oyy >~ 40 mb is the NN cross section.* In contrast, the
WEF of the relative X — B motion varies on a shorter length
scale of the HO parameter ro >~ 1.6 fm (c.f. Ref. [55]) and,
moreover, may contain nodes and/or nonmonotonic behavior
as a function of R. Thus, we keep the exact arguments in the
WFs of Eq. (24), allowing it to be rewritten as

/ d’Rfun,(—R, —py)F (R), (25)
where

—ipy 1 A
Fun (=R, —py) = f v MZA%,(—R— £/2)

X Yy (—R + £/2) (26)

is a Wigner function which has a meaning of the probability
density in the phase space (R, py ), where R = Rx — Rp is the
relative position and py = —py is the canonically conjugated
momentum. The Wigner function satisfies the relations

d’R _
mfn,»A,(—R» =Px) = [Yua,(=px)I%,
d’px
@2n)?

where the overline means averaging over M.

As a result, we arrive at the following formula for the
modulus squared of the matrix element:

Juini (=R, —=px) = [Yua, (=B, 27)

—_— 2E5mx
Mot |*> = (2J + 1)|Mhard(P3,P4,P1)|2( 5 )

2
x (270)*2]yrx (py) 2

2Egm

X0 X0 BITA

X Z(xiajaA“A/SAyiSAu( po )
ij X

x / AR fon, (=R, —px)Fp (R, (28)
where the square of the absorption factor is
Fp (R) = expl—onn (p)Ti(R) — onn (p3)T3(R)
— onN(p)Tu(R) — onn(ps)T5(R)]. (29)

Thus, the way the absorption enters into Eq. (28) has a simple
and clear meaning: the partial reaction rate in the IA for the
c.m. of the NN correlation located in the space element d>R
relative to the center of the residual nucleus B is multiplied by
the probability that the incoming proton will reach the point R
without being absorbed,i.e., does not participate in any elastic
or inelastic scattering processes, and the outgoing nucleons
will reach free space from the point R without being absorbed.
We have checked that for the cross sections integrated over
momentum of the residual nucleus the approximate formula
of Eq. (28) agrees with Eq. (18) with accuracy of ~20%. This

“Due to absorption factors, the integral in Eq. (22) is dominated by
a peripheral nuclear region where the nucleon density is smaller than
po- Thus, the actual length scale may even be larger.

is acceptable for our purposes in this work given the fact that
the cross section is reduced by absorption effects by an order
of magnitude.

The formula (28) can be simply modified to estimate the
contribution of charge exchange (CEX) processes. Since the
probability of collision with pp correlation is small, we will
take into account only two dominant contributions: (i) when
the incoming proton (1) interacts with the proton of pn corre-
lation, and the slow recoil neutron (5) then experiences CEX
on a proton from the nucleus B, and (ii) when the incoming
proton interacts with the neutron of the pn correlation, and the
fast knocked-out neutron (4) then experiences CEX.> In the
semiclassical approximation, the corresponding CEX proba-
bilities are determined by the following expressions:

Py ps = Fip (R)ocex (ps)T5(R)/2, (30)
P p, = Ep (R)ocex(pa)Ti(R)/2, 31

where 1/2 factors are included to obtain proton thickness
functions. The total CEX probability is

Possps + Poys py = Fip (R)[ocEx (ps)T5(R)
+ ocex (p)Ta(R)1/2. (32)

Similar expressions for CEX probabilities are used in GCF
calculations, see Ref. [56]. To obtain the total reaction rate
with outgoing slow proton we sum up the reaction rate of
Eq. (28) for the pp correlation and the reaction rate of Eq. (28)
for the pn correlation with CEX,i.e., with F3, (R) replaced by
Pu—ps + Py, p,. The back reactions p — n and the double
CEX processes are neglected.

A. Wave functions

So far we have assumed that all WFs of our model are the
TISM WFs. However, phenomenology favors the deuteron-
like WFs of isoscalar SRCs. Thus, for isoscalar pn pairs we
use the deuteron WF of the CD-Bonn model, Ref. [57], which
gives

1 u*(p2) + wi(p2)
2 47 ’

Here, u(p,) and w(p,) are, respectively, the S- and D-wave
components satisfying the normalization condition

|1/fX,T=0(P2)|2 = (33)

/ dp p*lu*(p) + w(p)] = 1. (34)

The factor 1/2 in Eq. (33) comes from the square of the
isospin WF. For the free 'Sy pp (T, = 1) and pn (T, = 0) pairs
with T = 1, the bound state is absent but there is a virtual
level (the pole of the S matrix) in the nonphysical region of
the relative energy E at E ~ —0.45MeV. Thus, for isovector
NN pairs we rely on the following formula:

[Yx.r=1(p)2 = (1 + T)[¥(p2) . (35)

>In the second case, we assume that |[Mjq|? is isospin-independent
and both the third and fourth nucleons can be neutrons with proba-
bility 1/2, but the probability of CEX is the same for each of them.
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Here, ¥,(p) is the zero-energy solution of NN ('$y) scattering
problem, Ref. [43],

f(p.0;0)

— 36
052+p2 (36)

1//5 (P ) =K
where o = 0.104 fm~! corresponds to a virtual level “bind-
ing energy” —E = az/m = 0.45MeV, Ref. [58]. f(p, k; k) is
the half-off-shell NN scattering amplitude in the 'S, channel
parametrized in Ref. [59]. The factor « is chosen from the
normalization condition

4 / dpp*lys(p))* = 1. (37

The squared WFs of the relative motion NN-B for the
oscillator quantum number n = 2 are given by standard ex-
pressions from TISM

2
, 3 2( R\’ )
V2R = W[1_5(E> } exp[—(R/Ro)’]. (38)
S 4 R\*
Y2 ®I? = W(R_o) exp[—(R/Ro)’]. (39)
0

where Ry = ro+/A/2(A — 2) is the HO parameter of the NN-B
relative motion, and ry = 1.736 fm is the conventional HO
model parameter fit to describe the momentum distributions
of the p-shell and s-shell nucleons in the '2C(e, ¢'p) ''B re-
action [60].° We have also performed calculations using the
phenomenological TISM WF of the lowest HO state n = 0,
A =0

Voo (R)I* = ﬁ exp[—(R/Ro)’]. (40)
where Ry = /®cm. = 1 fm [61]. This corresponds to the stan-
dard deviation of the relative NN-B momentum distribution
Oem. = 1/4/20cm. = 139.5MeV/c, which is consistent with
Ocm. = (156 £ 27) MeV /c obtained from analysis of BM@N
data [19].

According to the oscillator rule, Eq. (1), WFs with n = 2
correspond to transitions into s*p® configurations, and n =
0—into s?p® configurations of the residual nucleus. Since
the latter configurations, most likely, are not included into
the BM@N data in question, taking n = 0 is not allowed by
the oscillator rule. However, we consider here this option too
for comparison with other SRC models where this option is
often used.

The normalization of the NN-B WFs is such that

471/dRR2 [Yua (R)Z = 1. 41)

The transition to the WFs in momentum space is simply
reached by replacing R — py and Ry — 1/R, in Egs. (38),
(39) and (40).

5The conventional shell model fit to the differential cross section of
elastic p '2C scattering at 1 GeV gives ro = 1.581 fm [55] which does
not lead to significant changes in our numerical results.

For the calculations with absorption, we need to specify
the Wigner functions, Eq. (26). After somewhat lengthy but
straightforward calculations we arrive at the following formu-
las:

_ 2 iy 2| 2
Fro(—R, —py) = 8 e~ ®+ARD/RS [_(R“ + pARY)

3R;
4 2 2 4 2 2 pd
- gR py +1— 3—R(2)(R + PxR;)
8 2
+ g(RPx) ) (42)

15R}

16 4
+—R°py + 1 — — (R* + pxR;)

15 3R}
8 2
~ 15 ®Rpx)|. 43)
foo(—R, —py) = 8 e E+PxR/ES, (44)

B. Elementary cross sections

Experimental data on pp elastic large-angle differential
cross section do /d2.,. at pa, = 4 GeV/c are reported in
Ref. [62] as a function of the c.m. polar scattering angle O ..
To get the square of the hard scattering amplitude, we used a
simple relation

|Mhara (3, pa, p1)|? = 64n%sdo /dQm (45)

where ®¢.m. = arccos[1 + max(z, u)/2(s/4 — m?)],
s=(p3+pa).t=(p1—p3)t u=(p1— pa)

The experimental total pp and pn cross sections at
the beam momentum p < 5GeV/c are well described
by the parametrization of Ref. [63] which we use in calcula-
tion of the absorption factor (29) with appropriate weighting
according to the proton and neutron numbers so that the pN
and nN cross sections are

OpN = [GppZB + Opn (AB - ZB)]/ABa (46)
OuN = [GanB + O'pp(AB - ZB)]/ABs (47)

where Zp and A are, respectively, the charge and mass num-
bers of the residual nucleus B.

The CEX cross section np — pn is defined as the in-
tegrated elastic np differential cross section at large O, ,
typically at ®.n. > 90°. Experimental data of Ref. [64]
at E =800MeV give ocgx(800) =4.25 mb for O., =
135°-180°. The CEX cross section at other energies can
be determined from the scaling relation valid for ppp <
100 GeV/c, established in Ref. [65]:

800
ocex(E) = UCEX(SOO)%’ (48)

where s(E) = 2m(E + 2m).
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C. Observables
The full differential cross section of the reaction
A(p, 2pNy)B is given by the standard formula (see Fig. 1 for
particle notation)
Q2w )4|Mt0t|2
41

where I = [(p1pa)* — m®>m3]"/? is the flux factor and

ddy, (49)

doia-34s8 =

d®y =8V (py + pa — p3 — pa — ps — ps)

d*p3 d*ps d*ps d*ps
X
(27 )°2E; (271 V3 2E, (27 )25 (270 ' 2Ep

is the four-body invariant phase space. In order to perform
comparison with the BM@N data [19], we have to integrate
Eq. (49) over full four-body phase space applying experi-
mental cuts. It is convenient to perform this in the following
way. First, we separate the two-body phase space d ®, of the
outgoing fast protons:

(50)

d’ps d’ps
(27 )32E3 (27)32E, ’

where P = p; 4+ pa — ps — pp. Integrating Eq. (51) over
d?p4 and d p3 gives the following result:
_ P3d2

(27 )°4|E3 + E4 — E3Py /ps|’
where d€23 is the solid angle of the third proton and x =
Pp;/Pps. All quantities in Eq. (52) are defined in the labora-
tory frame, i.e., in the r.f. of the first proton. The momentum

of the third proton is found by solving the equation E53 + E4 =
PO, which gives two solutions:

d®y = 8Y(P — p3 — pa) (51

(52)

0)

_ M2Py £ POVMH — dm2[(POR — P*x2]
- 2A(PO? — P25’

with M = V/P? being the invariant mass of the third and
fourth protons. [In the case where both values of p; pass the
BM@N acceptance, the r.h.s. of Eq. (52) is summed over these
two values.]

The integrations of Eq. (50) over three-momenta of the fifth
nucleon and residual nucleus should be performed in the r.f. of
12 since the internal WF of the NN correlation and the WF of
relative NN-B motion favor small momenta in that frame. Re-
placing integration over d° ps by integration over d° p, (which
is more convenient since the BM@N acceptance restricts |p,|)
we come to the following formula for the integrated cross
section:

1
N =————— [ d a4’
iz 64(2n>8pbeamm/ 3/ b2

% / dSPB |Mlot|2p3
EsEp |Es + Es — EsPx/psl’

where the energies E5 and Ep are defined in the r.f. of 12 and
Pbeam 1S the momentum of '2C in the laboratory frame. The
single differential cross sections do /dx where x is any kine-
matic observable are obtained by multiplying the integrand of
Eq. (54) by 8(x — x(£23, p,, pp))-

ps ©3)

(54)

Let us now summarize the BM@N acceptance cuts which
are included when taking the integrals in Eq. (54):

(i) Velocities of fast protons in the laboratory frame:
0.8 < ,33,4 < 0.96.

(i1) Polar angles of fast protons in the laboratory frame:
24° < B34 < 37°.

(iii) Azimuthal angles of fast protons in the laboratory
frame: —14° < ¢3 < 14°, —180° < ¢4 < —166°,
and 166° < ¢4 < 180°.

(iv) In-plane opening angle: ®3 + ©4 > 63°.

(v) Missing momentum in the r.f. of '2C:
0.350GeV/c < p» < 1.2GeV/c.

(vi) Missing energy Emiss =m — p) in the r.f. of 2C:
—0.110GeV < Eniss < 0.240GeV.

The calculation of the integrated cross section, Eq. (54), in-
cludes the eight-dimensional integral over phase space. In this
case, if absorption is included in the modulus squared of the
matrix element, the integral becomes 11-dimensional’ which
makes the direct numerical calculation impossible. In order
to overcome this problem, we have tabulated the absorption
integral, Eq. (25), as a function of the momentum of slow
nucleon, ps. The py dependence has been factorized out by
using explicit forms, Eqs. (42)—(44), of Wigner functions. The
momenta of fast protons have been fixed by the condition of
free pp scattering at ®. ,, = 90° which approximately corre-
sponds to the middle of the experimental acceptance region.
By selecting different kinematics within detector acceptance
we have checked that this approximation works very well.

III. RESULTS

In this section we present the results of our calculations of
various single differential cross sections of the reaction chan-
nel '>C(p, 2pn,) '°B compared to BM@N data from Ref. [19].
Data points are scaled by conveniently chosen factors to
facilitate comparison of measured distribution shapes with
calculated ones.

Figure 2 shows the distributions of the invariants t = (p; —
p3)? and u = (p; — p4)*. The distributions are governed by
hard pp — pp scattering and are sensitive neither to the rel-
ative WFs of the NN-B motion nor to the absorption. [Note
that the insensitivity to the absorption might be partly related
to the fixed kinematics of fast protons in the calculation of the
absorption integral, Eq. (25), as discussed in the end of Sec. II.
More precise calculation may change this result but is beyond
the scope of our present exploratory study.] The calculation
predicts maxima at |¢| = |u| >~ 1.5 GeV?, which are not in the
data. This discrepancy might be, however, attributed to large
experimental bins and statistical errors.®

"The thickness functions, Eq. (15), have been calculated analyti-
cally by using the HO density profile of the residual nucleus p(r) =
L+ A (5 )1e

8The calculated |¢| and |u| distributions are identical within nu-
merical integration errors (*10%) which is expected due to the
reflection symmetry of experimental setup with respect to the yz
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8 ‘ data (érb. units) o
@) with abs.
6 b with abs. ag ;=1 fm? (x20) = = - - |
without abs. (x0.1) =-=----

without abs. o , =1 fm? (x0.1) — - —

do/d|t| (nb/GeV?)
N

“EsL
2 g enn + '='|; ]
0 | | |
1 2 3 4
It| (GeV?)
8 T T i T
data (arb. units) —e—
(b) with abs.
el with abs. ag ;=1 fm? (x20) = = - - |
N> without abs. (x0.1) =-=----
8 without abs. a ,, =1 fm? (x0.1) — - —
€ab .
= et
o B Sed
S 2f ¢ e U 1
0 | | |
1 2 3 4

lu] (GeV?)

FIG. 2. Distributions of (a) [¢f| and (b) |u| in the process
12C(p, 2pn,) '°B. Calculations using the TISM WF of relative NN-B
motion Eqgs. (38), (39) with and without absorption are shown by the
solid (black) and dotted (brown) lines, respectively. Calculations us-
ing the lowest HO state WF Eq. (40) with and without absorption are
shown by the dashed (blue) and dot-dashed (red) lines, respectively.
The calculated results are scaled by factors shown in parentheses.
Experimental data are from Ref. [19].

The distribution of the cosine of angle between p,;, =
p, and p, = ps in the r.f. of the target nucleus is shown
in Fig. 3(a). Without absorption, the phenomenological WF
gives a narrower relative NN-B momentum distribution and,
therefore, results in a sharper back-to-back correlation be-
tween missing momentum and neutron momentum. Including
absorption leads to a somewhat more sharp back-to-back
correlation. Similar effect of FSIs was also obtained in the
calculations of Ref. [23] for the opening angle distribution of
the initial-state protons in the A(e, ¢'pp) reactions.

Figure 3(b) displays the distribution of the cosine of the
angle between the momentum of the outgoing nucleus and the
relative momentum of nucleons in the NN pair. The calcula-
tions without absorption produce dropping cross sections with

plane. However, the measured |¢| and |u| distributions differ from
each other.

F-1 ‘ data (arb.‘units) To
"
30 ' (@) with abs.

with abs. ag , =1 fm? (x20) = - - -
without abs. (x0.1) =====-+ E
£ .| without abs. a =1 fm? (x0.1) — - —

dcr/dcos(@pmiss,pn) (nb)

-06 -04 -02 0 02

-1 -0.8
Cos(epmissvpn)
15 data (arb. uniis) —o—
®) with abs.
with abs. o, =1 fm? (x20) = - - -
without abs. (x0.1) ===+
10 £ without abs. dg =1 fm? (x0.1) —-—]

dc/dcos(G)me,prel) (nb)

-1 -0.5 0 0.5 1
COS(Gpr!prel)

FIG. 3. Distributions of cosine of angle between missing mo-
mentum and neutron momentum (a) and between '°B momentum and
relative momentum p,,; = (p, — ps)/2 (b). Notations are the same as
in Fig. 2.

decreasing angle and are only weakly sensitive to the WFs of
relative NN-B motion. Including absorption strongly reduces
the yield at 180° due to enhanced absorption of low-energy
neutrons. The phenomenological WF places the NN pair, on
average, closer to the center of the residual nucleus that leads
to stronger absorption as compared to the TISM WFs. As a
result, the angle distributions calculated with absorption are
sensitive to the WFs. Note that our calculation with phe-
nomenological WF with absorption gives a weak maximum
at 90°, in-line with the GCF result (see Fig. 4(e) in Ref. [19]).
The BM@N data points seem to indicate no angle depen-
dence.

As is well known, nucleons with high momentum bound
in stable nuclei are strongly off mass shell. This is seen from
the distribution of missing energy shown in Fig. 4. Indeed, ac-
cording to the two-nucleon correlation model [66], neglecting
c.m. motion of the NN pair, the energy of the struck proton
can be estimated as

Py =2m— B+ Bs_s — /3 +m?, (55)

where B4 and B4, are the binding energies of the initial 20
and final ('°B) nuclei, respectively. This gives the missing
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data (arb. hnits) —— 1
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Q  go | without abs. o =1 fm? (x0.1) —-—
5 ------
3 60 F
£
5
B 40
ke)
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-0.2
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FIG. 4. Distribution of missing energy. Notations are the same as
in Fig. 2.

energy

Emiss =m —pS =By —Bay —m+/p2 +m2. (56)

Substituting values By = 7.68 x 12MeV, By_, = 6.48 x
10MeV [67], and |p,| = 350-500MeV/c one gets from
Eq. (56) Eniss = 90-152 MeV in qualitative agreement with
the experimental Ey;ss distribution. Our numerical results cor-
rectly reproduce the centroid position of the measured Ey;ss
distribution, but underestimate the width. Note that our cal-
culations give a better agreement with experimental FEp;ss
distributions when absorption is included. This can be again
explained by stronger absorption of slow recoil neutron which
corresponds to smaller Ey;ss values.

Figures 5(a), 5(b), and 5(c) show, respectively, the dis-
tributions over the x,y, and z components of the missing
momentum. Our calculations describe the data quite well ir-
respective of the presence of absorption and the choice of the
WFs.” The same is true for the Pmiss distribution shown in
Fig. 5(d).

Figures 5(e), 5(f), and 5(g) show, respectively, the distribu-
tions over the x, y, and z components of the momentum of the
outgoing 'B. It is expected that these distributions should be
most sensitive to the WF of relative NN-B motion. Indeed, for
calculations without absorption, the TISM WFs give broader
distributions as compared to those of the phenomenological
WE. Including absorption does not change this conclusion.

Figure 5(h) shows the momentum distribution of '°B. Ab-
sorption noticeably influences the spectra at large values of

9The calculated pps.. distributions are shifted towards positive
Dmiss,; values. However, in calculations we applied the pp — pp
differential cross section parametrization at fixed /s (see Sec. 11 B).
This does not allow us to explain the shift by the s~!° scaling of
the pp hard elastic cross section at fixed ©.,, [68,69]. The shift
is rather caused by the specific angular acceptance of the two-arm
spectrometer [19] configured for pp scattering at ©., = 90° for
P = 4 GeV/c. Larger py,, corresponding to negative py;ss.. would
decrease the polar scattering angle in the laboratory frame beyond
the detector acceptance.
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FIG. 5. Distributions of missing momentum (a), (b), (c), and
(d) and of the residual nucleus momentum (e), (f), (g), and (h).
Notations are the same as in Fig. 2.

pwog. This is explained by the ppiss > 350 MeV/c cut. As
a consequence of momentum conservation in the '>C rest
frame (p;s + P, + Pog = 0), at small puwg, this cut selects
kinematics with neutrons of larger momenta which experience
less absorption, while at large pig, kinematics with neutrons
of smaller momenta, which are suppressed by a stronger ab-
sorption, is accepted too.

Since the TISM calculation directly includes transitions to
different internal states of the residual nucleus, it is instructive
to examine partial contributions of various transitions. Fig-
ure 6 shows the excitation energy spectrum of '°B. The partial
contributions of the T = 0 states are also shown. (T" = 1 states
are included in the total spectrum but not shown since their
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FIG. 6. Distribution of the residual nucleus '°B excitation en-
ergy (solid line) obtained by summing the partial cross sections for
different energy eigenstates folded for illustration purpose with the
Gaussian distributions of the typical experimental resolution FWHM
= 1.5 MeV (dashed lines).

contribution is very small.) The spectrum is dominated by the
2.15 MeV 17 state that has 95% contribution of the S wave.
The 0.717 MeV 17 state has 38% contribution of the S wave.
The 3" ground state and the 3.58 MeV 2% state are pure D-
wave ones. Thus, selecting different windows of the excitation
energy it is possible to restrict the partial waves in the relative
NN-B WFE. Note that the dominant production of the residual
nucleus in the excited (and not ground) state was also found
in the calculations of the '>C(p, pd) '°B process in Ref. [31].
As we see from Table I, the orbital angular momentum of
the residual nucleus dictates the angular momentum of the
relative NN-B WF and, thus, the residual nucleus momentum
distribution and the absorptive effect of ISI/FSI. In Fig. 7,
we examine the momentum distributions of the residual '°B
nuclei in the S- and D-wave states. The D-wave component
has a harder momentum spectrum and seems to agree with
data better. Thus, the present BM@N data may indicate an

o5 [ data (a‘rb. units) ‘+7
full
% o0 | S (x1.5) ===~ ]
5] D (x1.5) ==reeee
R T
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£
C)m —
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FIG. 7. Distribution of the residual nucleus '°B momentum.
Solid (black) line—full calculation with TISM WFs including ab-
sorption. Dashed and dotted lines show, respectively, the partial
contributions of transitions to the S and D states of '°B scaled by
a factor of 1.5. Experimental data are from Ref. [19].

TABLE IV. Integrated cross sections (in nb) in the kinematics
of the BM@N experiment [19]. Lower line gives the ratio R =
a[2C(p, 2pps) *Bel/o["2C(p, 2pny) '*B] (in %). Results obtained
with phenomenological relative NN-B WFs [see Eq. (40)] are given
in parentheses.

1A Abs Abs+CEX
2¢(p, 2pny)°B 63.7(57.1)  5.1(0.31) 5.0 (0.29)
2C(p, 2pp;)'°Be 42 (3.3) 0.13 (0.0058)  0.23 (0.030)
R 6.6 (5.8) 2.5(1.8) 4.6 (10.4)

enhanced contribution of the D wave as compared to the
amplitudes of Table II.

We will finally discuss the isospin composition of SRCs.
Table IV lists our results for the integrated cross sections of
the two-nucleon knock-out with outgoing '°B and !°Be and
their ratio R. The latter has to be compared with experi-
mental value R = 2/23 = (8.7 £ 6)%. (The total numbers of
detected events with 1°Be and !B are 2 and 23, respectively,
as reported in Ref. [19]. The included statistical error is our
estimation.)

In the IA, the results are not much sensitive to the different
WFs of relative NN-B motion. Including absorption reduces
cross section by an order of magnitude in the case of the
TISM WFs and by more than two orders—in the case of
phenomenological WFs. Especially strong absorption effect is
visible for the channel with '°Be for phenomenological WFs.
This is because, on one hand, the n = 0, A = 0 WF is peaked
at pp = 0, but in this case the yield is very strongly suppressed
by the IS, NN relative WF at Pmiss > 350MeV/c. On other
hand, at finite pp, the yield is suppressed by strong absorption
of low-momentum neutrons.

Including CEX increases the cross section of the '"Be
channel by about 50% for TISM WFs and five times for phe-
nomenological WFs. Thus, in the latter case, almost all 10Be
yield is due to the CEX processes. The stronger absorption and
CEX for phenomenological WFs arise from smaller average
relative NN-B distances, which force participating nucleons
to travel through a region of higher density of the residual
nucleus. Phenomenological WFs provide the best agreement
with experiment for the ratio R.

IV. SUMMARY

We applied the TISM to the hard proton knock-out reac-
tions 12C(p, 2pny) 108 and IZC(p, 2pps) 10Be for the carbon
beam momentum of 48 GeV/c with an outgoing nucleus in
the ground or excited state with excitation energy up to about
6 MeV. The TISM allowed us to calculate the spectroscopic
amplitude for a given quantum states of the NN pair and
residual nucleus including the WF of their relative motion.
The absorptive- and single-CEX ISI and FSI were taken into
account in the eikonal approximation.

We found that absorption reduces the integrated cross sec-
tion by more than an order of magnitude, while the CEX
processes strongly increase the yield ratio '°Be / 1°B. Absorp-
tion and CEX are very sensitive to the WF of the relative
NN-B motion.
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However, the effect of absorption on the shape of the
studied distributions is very moderate, which was also found
in Ref. [70], where the ISI and FSI effects were estimated
within the framework of a diagrammatic approach for the
same reactions. The strong effect of absorption was observed
only for the angular distribution between the momentum of
the outgoing nucleus '°B and the relative momentum of the
pn pair shown in Fig. 3(b).

The distributions of relative angles, missing momentum,
and '°B momentum measured by the BM@N Collaboration
[19] are described quite well by the TISM irrespective of
the choice of the WF of the relative NN-B motion when
absorption is taken into account.

The present study is only the first attempt of a detailed
comparison of the TISM with SRC data. In the future, the
calculations can certainly be improved, in particular by in-
cluding the [431] * P configuration of '2C and a more accurate

J

description of the IST and FSI processes. Availability of more
accurate data on SRCs in light nuclei (specific states of the
residual nucleus, bigger statistics, differential cross sections)
would be useful to further validate the TISM-based spectro-
scopic approach.

SRCs may also manifest themselves in a hard knock-out
of nuclear clusters. A new theoretical analysis of the data
[34,35] on the quasielastic knock-out of fast deuterons, using
a similar method of taking into account the effects of ISI and
FSI, would be useful. Of particular interest is the influence of
SRCs on cumulative processes [71], where our model can also
be applied.
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APPENDIX: CALCULATION OF THE FRACTIONAL PARENTAGE COEFFICIENTS OF THE TISM

The FPC of the TISM was calculated using Eq. (11). This equation contains the FPC of the conventional HO model and the
cluster coefficient. In the case of b = 2, the latter is equal to the Talmi coefficient:

(PLfx ) ) LSx T In A, 2Nx [ fx 1(x x ) Lx Sx Tx) = (11, 11 : L|11|nA, NxLy : L),

(AT)

where the notation of Ref. [30] is used in the r.h.s. The Talmi coefficients are tabulated in Ref. [30]. The same tabulation can
also be found in Ref. [72].!° The FPCs for transition to the 'S and '3D; states (see Table I) are calculated as

22 12
FPC(13s) = (=1)? x (%) x <§> x (

(p®[441(04)000| p°[421(22)010; p*[21(20)010) x (11,11 : 0]11]20, 00 : 0)

-2 9 16 1 1
X — X | =/ =) X /= | X4/ =
14 54 2 2

wmlan X

7 % 8\'/? 11 x 12
X X
2 2
N E
o 275°

12\ "2
2

(A2)
2/2 1/2 -1/2
FPC(*D)) = (—1)? x <%> x <§> x (122)

x (pS[441(04)000| p°[42](22)2,10; p*[21(20)210) x (11, 11 :2|11]22, 00 : 2)

6 <7x8>1/2 (11x12>1/2 [ 9 < 3) \/T} \/T
= — X X X — X — = X — X —

5 2 2 14 54 2 2
__ /3 (A3)
B 550°

where the FPC of the conventional HO model is given by the product of three factors in the square brackets corresponding to the
weight factor, orbital coefficient, and charge-spin coefficient tabulated in Ref. [47]. The FPC for transition to the B, state is

obtained by replacing the orbital coefficient —v % — — % in Eq. (A3). The FPCs for transitions to the 3lg 3p, and 3Dy,

states are obtained by replacing the charge-spin coefficient «/g — —«/g in the FPCs for transition to the '3S, ¥p;, and *Dy;
states, respectively.

10Note that in Ref. [72] the main oscillator quantum number 7 is defined so that the number of oscillator quanta is 2n + [, which differs from
the definition of Ref. [30] used in our present work.
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