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Converging many-body perturbation theory for ab-initio nuclear structure:
Brillouin-Wigner perturbation series for open-shell nuclei
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Brillouin-Wigner (BW) perturbation theory is developed for both ground and excited states of open-shell
nuclei. We show that with optimal partitioning of the many-body Hamiltonian proposed earlier by the authors
[Z. Li and N. A. Smirnova, Phys. Lett. B 854, 138749 (2024)], one can redefine the BW perturbation series for a
given state of the effective Hamiltonian in a small P space to be converging under the condition that the energy
of this state is below the lowest eigenvalue of the Hamiltonian matrix block belonging to the complement of the
P space, characterized by the same good quantum numbers as the state under consideration. Specifically, the
BW perturbative calculations for the lowest Jπ states are always converging due to the variational principle. This
property does hold for both soft and hard internucleon interactions in the harmonic oscillator basis. To illustrate
this method and check the convergence behavior, we present numerical studies of low-energy spectra of 5,6,7Li
using the Daejeon16 and bare N3LO potentials.
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I. INTRODUCTION

Solving the many-body Schrödinger equation for atomic
nuclei is the key to the ab initio study of nuclear structure.
The last two decades have witnessed huge progress in the
developments of nuclear ab initio many-body methods [1],
accompanied by the success of chiral effective field the-
ory (EFT) potentials [2,3] and renormalization techniques
[4]. For few-nucleon systems and very light nuclei, Faddeev
equations [5,6], hyperspherical harmonics method [7,8], and
quantum Monte Carlo methods [9] are able to provide very ac-
curate calculations. The full configuration interaction method,
no-core shell model (NCSM) [10], gives very detailed infor-
mation on nuclear states and transitions at low energies, by di-
agonalizing the Hamiltonian matrix calculated in a sufficiently
large model space spanned by many-body states. However,
with the current computing power NCSM can only reach nu-
clei to oxygen or so at the moment, due to the rapid growth of
the model-space dimension as the nucleon number increases.
For nuclei heavier than oxygen, specific approximations need
to be applied in the calculation, which has led to a vari-
ety of many-body methods, such as many-body perturbation
theory (MBPT) [11,12], coupled cluster (CC) method [13],
in-medium similarity renormalization group (IMSRG) [14],
self-consistent Green’s function [15], etc. These methods have
achieved a lot of success in the ab initio study of intermediate-
mass nuclei [1] and even heavy nuclei like lead [16].

Initiated from the 1950s [17–20], MBPT has been ex-
tensively applied to the calculation of the nuclear ground-
state energy [12] and to the construction of the effective
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Hamiltonian used in the valence-space nuclear shell model
calculation [11,21–23]. Furthermore, MBPT has also become
a precious tool for the solution of atomic and molecular
problems [24–30]. In spite of extensive applications, MBPT
is brought into doubt by the issue of order-by-order con-
vergence in powers of interactions, especially for atomic
nuclear systems, where (strong) internucleon interactions are
used. Previously most attention has been attracted to the
Rayleigh-Schrödinger (RS) formulation of MBPT, because of
its energy-independence feature and a convenient implemen-
tation via a diagrammatic approach [20,30–32]. However, a
huge number of diagrams required at higher orders limited
the application of this diagrammatic approach up to usually
third order in nuclear structure calculations [11,12,22,33–37],
which makes it impossible for the study of order-by-order
convergence within this diagrammatic framework. The study
of the convergence properties became possible with the im-
plementation of the algebraic recursive calculation of the RS
perturbation series terms [38,39]. Extensive calculations for
molecular systems with various partitioning schemes reported
cases of converging or diverging series [40]. Similar calcula-
tions have also been performed for atomic nuclei [41–46], to
which we focus our attention in the present paper. Although
the recursive method was still restricted to relatively light
nuclei, some convergence properties were addressed in those
studies after numerical calculations. With the use of softened
chiral EFT potentials, the authors [41–43] concluded that the
perturbative calculation of nuclear ground and excited states
typically diverges in the harmonic oscillator (HO) basis, and
only converges in the Hartree-Fock (HF) basis. However,
harder potentials can still spoil the convergence in the HF
basis [43].

In our recent work [47], we chose to explore the energy-
dependent BW perturbation series for ground states of
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closed-shell nuclei. We showed that with optimal Hamilto-
nian partitioning, the convergence criterion of a perturbative
expansion for the ground-state energy can always be satisfied.
This property holds due to the variational principle and does
not depend on the choice of the (HO or HF) basis or the choice
of the (hard or soft) internucleon interaction. In the present
work, we generalize these ideas to ground and excited states
of open-shell nuclei and investigate the corresponding conver-
gence behavior. This paper is organized as follows. In Sec. II
we present the formalism of BW perturbation theory, the gen-
eral partitioning of Hamiltonian, the convergence criterion,
and the K̂ box to reach high order terms of the perturbation
series. In Sec. III we show the results of calculations for
5,6,7Li. The last section summarizes the results and formulates
perspectives.

II. FORMALISM: HAMILTONIAN PARTITIONING
AND CONVERGENCE CRITERION

In this section, we generalize the BW formulation of
MBPT given in Ref. [47] to open-shell nuclei.

A. P-space eigenvalue problem

Ideally, one searches to solve the eigenvalue problem for
an intrinsic Hamiltonian H in a large, but finite-dimensional
(denoted as d-dimensional) model space

H |�k〉 = Ek|�k〉, k = 0, 1, 2, . . . , d − 1. (1)

When the dimension d becomes prohibitive for the exact
diagonalization method, we can resort to the projection tech-
nique, i.e., to project the full-model-space eigenvalue problem
into a much smaller model space (called P space) eigenvalue
problem of an effective Hamiltonian. In this context, given a
complete set of basis states, {|�k〉} (k = 0, 1, 2, . . . , d − 1),
we introduce two projection operators P and Q. P projects the
full d-dimensional model space on a smaller dp-dimensional
P-space,

P ≡
∑
k∈P

|�k〉〈�k|, (2)

while Q projects the full model space on the dq-dimensional
complementary space (called Q space),

Q =
∑
k∈Q

|�k〉〈�k|, (3)

where dp + dq = d . These projection operators satisfy

P + Q = 1, P2 = P, Q2 = Q, PQ = QP = 0. (4)

To reduce the dimensionality of the eigenvalue problem, we
project the eigenvalue equation (1) for H into the small P
space,

Heff (Ek )
∣∣�P

k

〉 = Ek

∣∣�P
k

〉
, k = 0, 1, 2, . . . , dp − 1 (5)

for an energy-dependent effective Hamiltonian [48]

Heff (Ek ) ≡ PHP + PHQ
1

Ek − QHQ
QHP, (6)

where |�P
k 〉 ≡ P|�k〉 is the P-space component of the kth full

model space eigenstate |�k〉. The full model space eigenstates
of Eq. (1) can be restored via

|�k〉 = ∣∣�P
k

〉 + 1

Ek − QHQ
QHP

∣∣�P
k

〉
, (7)

and the corresponding Q-space component is thus

∣∣�Q
k

〉 ≡ Q|�k〉 = 1

Ek − QHQ
QHP

∣∣�P
k

〉
. (8)

We note that the effective Hamiltonian depends on the exact
eigenenergies Ek , and hence the P-space eigenvalue problem
Eq. (5) needs to be solved self-consistently.

Let us define the eigenvalue problem for Heff (E ) at an
arbitrary energy E as

Heff (E )|ψn(E )〉 = fn(E )|ψn(E )〉, n = 0, 1, . . . , dp−1. (9)

Here, energy E does not necessarily coincide with the
eigenenergy and therefore the eigenvalues fn(E ) and eigen-
vectors |ψn(E )〉 are functions of energy E . Notice that each
fn(E ) exhibits singularities because of the presence of the
resolvent operator (E − QHQ)−1 in Heff (E ), as shown in
Eq. (6). Obviously, the singularities are the eigenvalues of
QHQ characterized by the same good quantum numbers (an-
gular momentum, parity, etc.) as carried by fn(E ), due to the
presence of PHQ and QHP operators in Eq. (6). The eigen-
values Ek of Eq. (5) are the energies satisfying fn(E ) = E . In
practice these energies can be found by finding the intersec-
tions of y = E and y = fn(E ), which can be quickly located
with the Newton-Raphson method. At each intersection E =
Ek , only one of the dp eigenpairs of Eq. (9) satisfies fn(Ek ) =
Ek and |ψn(Ek )〉 = |�P

k 〉, assuming that the eigenenergies of
Eq. (5) are nondegenerate. Examples with one-dimensional P
space can be found in Ref. [47] and are also given in Fig. 1 of
this paper. The cases with multidimensional P space are given
in Figs. 4, 9, and 12.

The first derivative of fn(E ) can be easily obtained

f ′
n(E ) = −

〈ψn(E )
∣∣PHQ 1

(E−QHQ)2 QHP
∣∣ψn(E )〉

〈ψn(E )|ψn(E )〉 . (10)

We note that f ′
n(E ) � 0 for all E . At the intersections, i.e.,

fn(Ek ) = Ek , |ψn(Ek )〉 = |�P
k 〉, we have

f ′
n(Ek ) = −

〈
�P

k

∣∣PHQ 1
(Ek−QHQ)2 QHP

∣∣�P
k

〉
〈
�P

k

∣∣�P
k

〉 � 0, (11)

which is related to the occupation probability ratio of Q-space
to P-space components of the kth eigenstate of Eq. (5) via

〈�k|Q|�k〉
〈�k|P|�k〉 =

〈
�P

k

∣∣PHQ 1
(Ek−QHQ)2 QHP

∣∣�P
k

〉
〈
�P

k

∣∣�P
k

〉
= − f ′

n(Ek ) � 0. (12)

It follows that for P-space dominated eigenstates, we have
| f ′

n(Ek )| < 1, while for Q-space dominated eigenstates we
have | f ′

n(Ek )| > 1.
Because of the energy dependence of the effective Hamil-

tonian, all the eigenenergies Ek (carried by the same good
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(a)

(b)

FIG. 1. The eigenvalue functions f0(E ) (Jπ = 1/2−, 3/2−) of
Heff (E ) for 5Li calculated from the matrix inversion method using
(a) the Daejeon16 potential and (b) the bare N3LO potential with
h̄ω = 18 MeV at Nmax = 2. The blue dots and red stars are the
solutions of Eq. (5), which can be exactly reproduced by NCSM.
The red vertical lines at the bottom mark the positions of the lowest
eigenvalues of QHQ with Jπ = 1/2−, 3/2− (zero c.m. excitation),
which are the lowest singularities of f0(E ) at Jπ = 1/2−, 3/2−,
respectively.

quantum numbers as carried by the P space) of the full-
model-space eigenvalue problem Eq. (1) can be found with the
method described above. The corresponding P-space eigen-
vectors |�P

k 〉 for these eigenenergies are nonorthogonal, since
they are the eigenstates of the Hermitian effective Hamilto-
nian Heff (E ) at different energies.

Until now, we have not mentioned the way to construct the
effective Hamiltonian Heff (E ). The straightforward and exact
way to construct Heff (E ) is by taking the inverse of the (E −
QHQ) matrix in the Q space directly. This matrix inversion
method, however, cannot be applied to large model spaces,
and hence it serves mainly as a benchmark in this work. In
the following subsections, we show how to compute Heff (E )
perturbatively within the BW framework.

B. Convergence criterion of the Brillouin-Wigner perturbation
series for the effective Hamiltonian

We use in Eq. (1) the A-body intrinsic Hamiltonian

H =
A∑

i=1

(
p2

i

2m
+ ui

)
+

A∑
i< j

(
Vi j − pi · p j

mA

)

−
A∑

i=1

(
ui + p2

i

2mA

)
, (13)

where m is the nucleon mass (approximated here as the aver-
age of the neutron and proton mass), pi is the ith nucleon’s
momentum, and Vi j is the nucleon-nucleon interaction with
additional Coulomb interaction for protons. We have intro-
duced an auxiliary potential u so that the eigenvalue problem
for the first term H0 ≡ ∑A

i=1(p2
i /2m + ui ) (i.e., the unper-

turbed Hamiltonian) can be easily solved. The rest part of the
intrinsic Hamiltonian H1 ≡ H − H0 is the residual interaction.
In this work, we use the spherically symmetric HO potential
as the auxiliary potential, i.e., u = 1

2 mω2r2, where ω is the HO
angular frequency. We denote the eigenvalue equation of H0

as

H0|�k〉 = Ek|�k〉, (14)

where Ek are the sum of A single-particle HO energies, and
|�k〉 are the A-body HO Slater determinants. In this work,
the full model space is spanned by the M-scheme HO Slater
determinants (characterized by good quantum numbers: z
component of total angular momentum M, parity π , and z
component of total isospin MT ) and truncated by Nmax (the
total HO excitation quantum above the lowest configuration),
as commonly used in NCSM calculations [10]. We choose the
M-scheme basis state(s) with the lowest energy (the so-called
0h̄ω model space) as the P space. Therefore the P space is
one-dimensional for closed-shell nuclei and multidimensional
for open-shell nuclei.

Now let us consider the exact resolvent operator (E −
QHQ)−1 in Heff (E ) and introduce an additional partitioning
parameter ξ , which is an operator, diagonal in the Q space.
The resolvent operator can be expanded to a BW perturbation
series

1

E − QHQ

= 1

E − QH0Q − QH1Q

= 1

(E − QH0Q − QξQ)︸ ︷︷ ︸
X

− (QH1Q − QξQ)︸ ︷︷ ︸
Y

= 1

X
+ 1

X
Y

1

X
+ 1

X
Y

1

X
Y

1

X
+ 1

X
Y

1

X
Y

1

X
Y

1

X
+ · · ·

= lim
n→∞

n∑
k=0

Rk 1

X
, (15)

where

R ≡ 1

X
Y = 1

E − QH0Q − QξQ
(QH1Q − QξQ) (16)

is the expansion ratio depending on the energy E , and X
is diagonal in the Q space so that its inverse can be easily
calculated. In the derivation of Eq. (15), we repeatedly used
the following identity:

1

X − Y
= 1

X
+ 1

X − Y
Y

1

X
. (17)

Inserting Eq. (15) back to the effective Hamiltonian Heff (E ),
we are able to construct Heff (E ) perturbatively, providing
the BW perturbation series is converging. The BW series in
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Eq. (15) is nothing but an operator-valued geometric series,
which converges to the exact resolvent operator if and only
if the spectral radius (the maximum absolute value of eigen-
values) of R is smaller than unity, i.e., ρ(R) < 1 [49,50]. We
refer to this condition as the convergence criterion of BW
perturbation series [47]. Noticeably, the smaller the value of
ρ(R) is, the faster the speed of convergence will be. The
partitioning parameter ξ we introduced here can be used to
tune the convergence behavior of the BW series.

Note that the expansion ratio R depends on the energy E .
Let Eqhq

min and Eqhq
max be the lowest and the highest eigenvalues

of the operator QHQ in the Q space. As we have shown
in Ref. [47], for energy E < Eqhq

min the convergence criterion
ρ(R) < 1 for fn(E ) can always be satisfied with a specific
choice of the partitioning parameter ξ . We refer to this energy
interval −∞ < E < Eqhq

min as the convergence interval. This
convergence interval was also discussed in Refs. [51,52] in
the context of the convergence of a Rayleigh-Schrödinger
perturbative calculation. Recall that H0 and ξ are diagonal
operators in the Q space. We denote their diagonal entries
as {Eq

1 � Eq
2 � Eq

3 � · · · � Eq
dq

} and {ξ q
1 � ξ

q
2 � ξ

q
3 � · · · �

ξ
q
dq

}, respectively. We have shown in the supplemental ma-
terial of Ref. [47] that the convergence criterion ρ(R) < 1
for E < Eqhq

min can be always satisfied by adjusting ξ
q
k (k =

1, 2, . . . , dq) such that

Eq
k + ξ

q
k > 1

2

(
Eqhq

min + Eqhq
max

)
, k = 1, 2, . . . , dq. (18)

This means that the diagonal entries ξ
q
k should be large enough

to satisfy the above condition. Note that the above inequality
(18) is just a sufficient condition and does not necessarily
cover all the values of ξ which make the perturbation series
converge.

Inserting the BW perturbation series Eq. (15) back into
the effective Hamiltonian Heff (E ), we have to consider the
symmetries preserved by the intrinsic Hamiltonian H because
of the presence of the PHQ and QHP operators in Heff (E ),
as shown in Eq. (6). Therefore, the Q space and its projection
operator Q used in the above analysis should be replaced with
its subspace Qs and the corresponding projection operator Qs,
characterized by the same good quantum numbers [e.g., an-
gular momentum J , parity π , center-of-mass (c.m.) quantum
numbers Nc.m., Lc.m., Mc.m., etc.] as the eigenvalues fn(E ).
Therefore Eqhq

min becomes the lowest eigenvalue of the QsHQs

operator, which is exactly the lowest singularity of fn(E ).
Note that we choose the 0h̄ω model space as our P space,
whose c.m. is in the ground state, i.e., Nc.m. = Lc.m. = Mc.m. =
0. Therefore, the subspace Qs does not contain spurious c.m.
motions.

In Ref. [47] we concluded that for ground states of closed-
shell nuclei, the convergence criterion ρ(R) < 1 is always
satisfied by choosing large enough ξ due to the variational
principle. For open-shell nuclei, the 0h̄ω model space is not
one-dimensional anymore, and hence excited states can also
be calculated. The conclusion for the ground states of closed-
shell nuclei can now be generalized to the lowest Jπ states for
open-shell nuclei, i.e., the convergence criterion can always
be satisfied for each lowest Jπ state by choosing large enough

ξ (namely, large enough diagonal entries of ξ ) due to the
variational principle and the conserved quantum numbers J
and π . For excited states of each Jπ , only those states with
eigenenergies in the convergence interval Ek < Eqhq

min can get
converged. The presence of intruder states1 may reduce the
size of the convergence interval and spoil the convergence of
higher excited states of each Jπ . We will discuss this with
numerical results in Sec. III.

C. K̂-box iterative calculation of high-order terms of
Brillouin-Wigner perturbation series

Before going into the numerical calculations, we here out-
line the K̂-box iterative method introduced in Ref. [47] to
efficiently calculate the high order terms of the BW pertur-
bation series for the effective Hamiltonian Heff (E ). Applying
Eq. (17) to the exact resolvent operator in Heff (E ) we obtain

Heff (E ) = PHP + PK̂ (E )Q
1

E − QH0Q − QξQ
QHP, (19)

where we have defined a special vertex function K̂ box in PQ
space, first introduced in Ref. [47]:

K̂ (E ) ≡ PHQ + PHQ
1

E − QHQ
(QH1Q − QξQ). (20)

Applying again Eq. (17) to the resolvent operator in the
above equation, we obtain the following recursive equation for
K̂ (E ):

K̂ (E ) = PHQ + PK̂ (E )Q
1

E − (H0 + ξ )
Q(H1 − ξ )Q. (21)

The value of K̂ (E ) can be calculated iteratively via

K̂ (s)(E ) = PHQ + PK̂ (s−1)(E )Q

× 1

E − (H0 + ξ )
Q(H1 − ξ )Q, (22)

starting with K̂ (0)(E ) = 0, where s = 1, 2, 3, . . .. The (s −
1)th iterative result K̂ (s−1)(E ) corresponds to the accumulated
BW perturbation series of Heff (E ) up to the sth order, Hsth

eff (E ).
We denote the corresponding eigenvalues as f sth

n (E ). With the
above iterative calculations of K̂ box, we can easily reach high
orders of BW perturbation series of Heff (E ). In this work,
we use the M-scheme basis and therefore perform algebraic
iterative calculations. The advantage of using K̂ box is that
we only need to store a (dp × dq) matrix K̂ in the memory
during iterations. However, this kind of algebraic iterative
calculation is still limited by the size of basis and the stor-
age of the Hamiltonian matrix and therefore its capacities
are comparable to those of NCSM. This algebraic iterative
method is sufficient for the purpose of the current work, i.e.,
to study the convergence behavior of BW perturbation series
for open-shell nuclei.

1Q-space dominated states which occur in the energy region of P-
space dominated states.

064318-4



CONVERGING MANY-BODY PERTURBATION THEORY FOR … PHYSICAL REVIEW C 109, 064318 (2024)

FIG. 2. The eigenvalue functions f sth
0 (E ) (Jπ = 1/2−, 3/2−) of

Hsth
eff (E ) from BW perturbative calculations up to various orders s for

5Li using the Daejeon16 potential with ξ = 〈C|H1|C〉 = −130.227
MeV at h̄ω = 18 MeV, Nmax = 2. Inside each panel, the value of
ρ(R) with the same Jπ is depicted on the top, and the exact f0(E )
obtained from matrix inversion is plotted with black dash-dotted
lines. The blue dots mark the exact result from NCSM calculations
below the lowest singularities.

The full model space eigenvectors can be calculated from
K̂ box via

|�k〉 = ∣∣�P
k

〉 + 1

Ek − QH0Q − QξQ
K̂†(Ek )

∣∣�P
k

〉
, (23)

where we made use of another equality, namely,

1

X − Y
= 1

X
+ 1

X
Y

1

X − Y
. (24)

Therefore other physical observables apart from energies can
also be calculated with the full-model-space eigenvectors
|�k〉.

III. RESULTS

In this section we apply the above BW formulation of
MBPT to open-shell nuclei 5,6,7Li to illustrate the convergence
criterion at work. The high order terms of the BW perturbation
series of the effective Hamiltonian are calculated from the
K̂-box iterative method. We use the exact matrix inversion
method and NCSM to benchmark the results from perturbative
calculations. Two nucleon-nucleon potentials, Daejeon16 [53]
and bare N3LO [54], with additional Coulomb potential for
protons, are used in the numerical calculation. The Daejeon16
potential is based on a similarity renormalization group (SRG)
[4] evolved N3LO potential [54,55] and adjusted to selected
binding energies and spectra of light nuclei up to 16O via
phase-equivalent transformations (PETs), and hence is a soft
potential. The M-scheme HO many-body basis and Nmax trun-
cation are used, the same as the basis used in NCSM. We
take the 0h̄ω model space as the P space. In this way, the
c.m. is in the ground state for P-space basis, and therefore
the eigenvalues of Heff (E ) are also characterized by zero c.m.
excitation quanta. This is due to the fact that the intrinsic
Hamiltonian H commutes with the c.m. Hamiltonian, and the
presence of PHQ and QHP operators in Eq. (5) makes sure
that nonzero contributions from the Q space have the same
c.m. motion quantum numbers as the P space.

A. 5Li

Figure 1(a) depicts the eigenvalue functions f0(E ) (Jπ =
1/2−, 3/2−) of Heff (E ) for 5Li calculated from the exact ma-
trix inversion method using the Daejeon16 potential at h̄ω =
18 MeV, Nmax = 2. For 5Li, the P space is two-dimensional
characterized with Jπ = 1/2−, 3/2−. For each Jπ , the P
space is one-dimensional. We see that the first derivative of
the eigenvalue f0(E ) is negative, as discussed in Sec. II A.
The intersections between y = fn(E ) and y = E , marked with
blue dots and red stars in the figure, are the solutions of the
P-space eigenvalue problem Eq. (5), which should reproduce
the results from NCSM calculations. Indeed, we find that these
intersections can be exactly reproduced with NCSM calcu-
lations. The NCSM calculation shows that the states marked
by blue dots are P-space dominated, while those marked by
red stars are Q-space dominated. One can observe that the
behavior of the derivative of the eigenvalue function f0(E )
at these points is in agreement with the properties addressed
in Sec. II A, i.e., | f ′

0(Ek )| < 1 at P-space dominated states
(at blue dots) and | f ′

0(Ek )| > 1 at Q-space dominated states
(at red stars). Another feature of f0(E ) is that it exhibits
singularities, which are nothing but the eigenvalues of the
QHQ operator in the Q space. The lowest eigenvalue Eqhq

min of
QHQ for each Jπ is marked with the red vertical line (peak)
at the bottom. Recall that for energy E < Eqhq

min , we can always
make the BW perturbative calculation of Heff (E ) converge by
choosing large enough diagonal entries of ξ . As shown in the
figure, the two lowest Jπ states are both blow the correspond-
ing first singularities, which is guaranteed by the variational
principle. This means that the BW perturbative calculation of
these two states can get converged. We will see this later. A

064318-5



ZHEN LI AND NADEZDA A. SMIRNOVA PHYSICAL REVIEW C 109, 064318 (2024)

(a)

(b)

FIG. 3. The two lowest energies (Jπ = 1/2−, 3/2−) of 5Li from the BW perturbative calculation up to various orders s using (a) the
Daejeon16 potential with ξ = 〈C|H1|C〉 = −130.227 MeV and (b) the bare N3LO potential with ξ = 〈C|H1|C〉 = −103.136 MeV, at h̄ω = 18
MeV, Nmax = 2, 4, 6. Inside each panel, the energy difference in absolute value between the BW perturbative calculation and the NCSM
calculation is also plotted.

similar calculation with the bare N3LO potential is plotted in
Fig. 1(b). The properties of f0(E ) are similar to the case of
Daejeon16. Since the bare N3LO potential is not softened,
the eigenenergies of 5Li calculated with the N3LO potential
are higher than those calculated with the Daejeon16 potential.
Nevertheless, for each Jπ the lowest state is still lower than
the first singularity. As discussed before, this comes from the
variational principle, and is independent of the softness of the
potential. Therefore, we expect converging BW perturbative
calculations for these two lowest Jπ states.

Now let us go to the BW perturbative calculation. As we
expected, the BW perturbation series for the effective Hamil-
tonian Heff (E ) is converging in the energy interval E < Eqhq

min
with large enough diagonal entries of ξ . Equation (18) sug-
gests that all the diagonal entries of ξ , i.e., ξ

q
k , in the Q

space should be larger than −144.782 MeV and −149.936
MeV for Jπ = 1/2− and Jπ = 3/2−, respectively. We here
simply choose ξk = 〈C|H1|C〉 = −130.227 MeV, i.e., ξ is a
scalar, where |C〉 is the Slater determinant with the lowest
energy of the core nucleus 4He. This choice of ξ can be
seen as the Møller-Plesset partitioning [56] with a normal-
ordered Hamiltonian, which is commonly used in the RS
formalism of MBPT [12]. In Fig. 2, we show the eigenval-
ues f sth

0 (E ) (Jπ = 1/2−, 3/2−) of Hsth
eff (E ) constructed from

the BW perturbation series up to various orders s for 5Li
using the Daejeon16 potential at h̄ω = 18 MeV, Nmax = 2.
The spectral radius ρ(R) is also plotted for each Jπ . We
observe that in the energy intervals E < 10.152 MeV for
Jπ = 1/2− and E < 4.299 MeV for Jπ = 3/2−, the conver-
gence criterion ρ(R) < 1 is satisfied. The energies 10.152

MeV and 4.299 MeV are nothing but the lowest eigenvalues of
QHQ operator with Jπ = 1/2− and Jπ = 3/2−, respectively,
i.e., the lowest singularities of f0(E ). Therefore the pertur-
bative calculations inside the convergence intervals should
get converged. Indeed, we observe for each Jπ the eigen-
value f sth

0 (E ) is converging to the exact f0(E ) calculated
from the matrix inversion method in the interval E < Eqhq

min .
The lowest states (intersections) of Jπ = 1/2− and Jπ =
3/2− are both in the convergence interval, and thus can be
obtained via converging BW perturbative calculations. The
intersections residing outside the convergence interval cannot
be obtained via BW perturbative calculations. The calcula-
tion with the bare N3LO potential is similar to the case of
Daejeon16.

The above calculations are done at Nmax = 2 for illus-
trative purpose. In practice, we use the Newton-Raphson
method to quickly locate the position of the intersec-
tions between y = fn(E ) and y = E . Figure 3(a) shows
the BW perturbative calculation of the two lowest states
(Jπ = 1/2−, 3/2−) of 5Li using the Daejeon16 potential
with ξ = 〈C|H1|C〉 = −130.227 MeV, at h̄ω = 18 MeV,
Nmax = 2, 4, 6. The NCSM calculation with the same po-
tential and model space is also performed to provide
benchmarks. As discussed previously, the BW perturbative
calculation of these two lowest Jπ states is converging
with large enough ξ due to the variational principle. We
see that the choice of ξ = 〈C|H1|C〉 = −130.227 MeV
is enough to make the calculations converge to the NCSM
results. Varying the value of ξ is able to tune the convergence
speed of the BW perturbative calculation. Here we notice that
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FIG. 4. The eigenvalue functions fn(E ) (Jπ = 0+, 1+, 2+, 3+) of Heff (E ) for 6Li calculated from the exact matrix inversion method using
the Daejeon16 potential at h̄ω = 18 MeV, Nmax = 2. The blue dots (P-space dominated) and red stars (Q-space dominated) are the results
from NCSM calculations, which are also the intersections of y = fn(E ) and y = E [i.e., solutions of the P-space eigenvalue problem Eq. (5)].
The red vertical lines at the bottom mark the positions of the lowest eigenvalues of QHQ with Jπ = 0+, 1+, 2+, 3+ and zero c.m. excitation,
which are the lowest singularities of fn(E ) at Jπ = 0+, 1+, 2+, 3+, respectively. The details of the eigenvalue “crossing” marked by the gray
rectangle shadow in the panel of Jπ = 1+ is plotted in Fig. 5.

as Nmax increases, the speed of convergence becomes lower
and lower. This may be explained as follows. The size of
the Q space increases as we increase the size of the full
model space (characterized by Nmax), since we choose the
0h̄ω model space as the P space. Larger Q space gives lower
eigenvalues of QHQ, and hence pushes the lowest eigen-

FIG. 5. The details of the eigenvalue “crossing” marked by gray
rectangle shadow in the Jπ = 1+ panel of Fig. 4. The eigenvalue
functions fn(E ) avoid crossing.

value characterized by Jπ of QHQ closer to the lowest Jπ

eigenvalue of the Hamiltonian in the full model space [i.e.,
pushes the lowest singularity of fn(E ) closer to the lowest
intersection between y = E and y = fn(E ) for a given Jπ ].
Therefore the value of ρ(R) at the lowest intersection gets
larger but cannot exceed one, which slows down the speed
of convergence. If we continue to increase Nmax, ρ(R) < 1
still holds at the lowest intersection. This is assured by the
variational principle and is reflected by the feature of negative
slope of fn(E ). The calculations with the bare N3LO potential
and ξ = 〈C|H1|C〉 = −103.136 MeV are plotted in Fig. 3(b).
As we expected, even with the unsoftened N3LO potential,
the BW perturbative calculation of each lowest Jπ state can
still get converged with a proper ξ . Furthermore, the speed of
convergence is even faster than the case of Daejeon16 with
the same choice of ξ = 〈C|H1|C〉. This is more obvious in the
calculations of 6Li and 7Li, which will be given later.

B. 6Li

The case of 6Li in the p shell provides us with the first
example of P space with dp > 1 for a given Jπ . The eigen-
value functions fn(E ) of Heff (E ) for Jπ = 0+, 1+, 2+, 3+
calculated from the exact matrix inversion method using the
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FIG. 6. The eigenvalue functions f sth
n (E ) (Jπ = 0+) of Hsth

eff (E )
from the BW perturbative calculation up to various orders s for
6Li using the Daejeon16 potential with ξ = 〈C|H1|C〉 = −128.427
MeV, at h̄ω = 18 MeV, Nmax = 2. For clarity, different states of
perturbative calculations are depicted separately. Inside each panel,
the value of ρ(R) with the same Jπ is depicted on the top, and the
exact fn(E ) obtained from the matrix inversion method is shown with
black dash-dotted lines. The blue dots mark the exact result from
NCSM calculations below the lowest singularities.

Daejeon16 potential at h̄ω = 18 MeV, Nmax = 2 are plotted in
Fig. 4. The properties of these eigenvalues fn(E ) are similar
to the case of 5Li discussed above, except that now we have
multidimensional P space for Jπ = 0+, 1+, 2+. We observe
eigenvalue “crossings” for multidimensional P space in this
figure, as marked with the gray rectangle shadow, for example.
These “crossings” are actually avoided level crossings, as
shown in Fig. 5 for the marked “crossing”, for example. The
intersections between the eigenvalue functions y = fn(E ) and
y = E are the solutions of the P-space eigenvalue problem
Eq. (5). These intersections can exactly reproduce the cor-
responding NCSM calculations. The energies of P and Q
space dominated states are marked with blue dots and red
stars, respectively. Correspondingly, the slopes of fn(E ) are
small at blue dots and are large at red stars. From the discus-
sions in Sec. II B, we expect that the perturbative calculation

for these marked states below the first singularities can get
converged with large enough ξ . As an example, Fig. 6 shows
the eigenvalue functions f sth

n (E ) of Hsth
eff (E ) for Jπ = 0+ from

the BW perturbative calculation up to various orders s. The
corresponding values of ρ(R) at various energies are plotted in
the top panel. We see that the perturbative calculations in the
convergence interval E < Eqhq

min = 4.621 MeV[where ρ(R) <

1] can indeed converge to the results from the exact matrix
inversion calculation. There are two intersections residing in
the convergence interval, which correspond to the two lowest
0+ states and the BW perturbative calculation for these two
states can get converged. For the intersections (states) residing
outside the convergence interval, the BW perturbative calcu-
lation cannot get converged.

The BW perturbative calculations using the Daejeon16
potential for the states (Jπ = 0+, 1+) residing inside the con-
vergence intervals at Nmax = 2, 4, 6 are plotted in Fig. 7.
ξ = 〈C|H1|C〉 = −128.427 MeV is used in the calculation.
The corresponding NCSM calculations are also performed to
provide benchmarks. We see that the convergence behavior of
the perturbative calculations is similar to the case of 5Li. We
have now more than one state for Jπ = 0+, 1+. The BW per-
turbative calculation for the lowest state of each Jπ (including
the cases of Jπ = 2+, 3+, not shown in the figure) is converg-
ing due to the variational principle. Although the perturbative
calculations of the excited states for each Jπ are all converging
to the NCSM results in this figure, the convergence of the
excited state calculation cannot be guaranteed for higher Nmax

or other potentials, since an intruder state might occur and
spoil the converging series for these excited states. Figure 8
plots the similar calculations for 6Li with the bare (unsoft-
ened) N3LO potential and ξ = 〈C|H1|C〉 = −101.336 MeV.
We observe that all the calculations with bare N3LO converge
to the NCSM results, and the speed of convergence is even
faster than in the case of calculations with the Daejeon16
potential with the same choice of ξ = 〈C|H1|C〉. We will also
see this feature in the case of 7Li in the next subsection.

C. 7Li

Figure 9 presents the eigenvalue functions fn(E ) (Jπ =
1/2−, 3/2−, 5/2−, 7/2−) of Heff (E ) for 7Li calculated by the
exact matrix inversion method using the Daejeon16 potential
at h̄ω = 18 MeV, Nmax = 2. The result is similar to the case
of 6Li. However, for Jπ = 1/2− only five intersections be-
tween y = fn(E ) and y = E are below the lowest singularity,
whereas the P space is six-dimensional. We notice that there
is an intruder state (Q-space dominated) below the highest
P-space dominated state. The presence of this intruder state
(or the slightly lower singularity) hinders the convergence in
the BW perturbative calculation, which will be seen later. The
corresponding BW perturbative calculation for Jπ = 1/2− is
shown in Fig. 10 with ξ = 〈C|H1|C〉 = −127.141 MeV. In-
deed, we observe that the BW perturbative calculations are
converging to the NCSM results except for the highest Jπ =
1/2− state, at Nmax = 2. The difference between the result of
MBPT and NCSM changes the sign at around 60th order for
this highest Jπ = 1/2− state at Nmax = 2. At Nmax = 4, this
change of sign will be present at higher orders because of the
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FIG. 7. The energies of low-lying states of 6Li (Jπ = 0+, 1+) from the BW perturbative calculation up to various orders s using the
Daejeon16 potential with ξ = 〈C|H1|C〉 = −128.427 MeV, at h̄ω = 18 MeV, Nmax = 2, 4, 6. Inside each panel, the energy difference in
absolute value between the BW perturbative calculation and the NCSM calculation is also plotted. Similar convergence behavior holds for
Jπ = 2+, 3+.

FIG. 8. Same as Fig. 7 but with the bare N3LO potential and ξ = 〈C|H1|C〉 = −101.336 MeV.
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FIG. 9. The eigenvalue functions fn(E ) (Jπ = 1/2−, 3/2−, 5/2−, 7/2−) of Heff (E ) for 7Li calculated from the exact matrix inversion
method using the Daejeon16 potential at h̄ω = 18 MeV, Nmax = 2. The blue dots (P-space dominated) and red stars (Q-space dominated) are
the eigenenergies of the P-space eigenvalue problem Eq. (5). The red vertical lines at the bottom mark the positions of the lowest eigenvalues
of QHQ with corresponding Jπ and zero c.m. excitation, which are the lowest singularities of fn(E ).

slower speed of convergence. We also observe that for a given
Jπ , as the energy of the state increases, the convergence speed
slows down until the divergence is present, which corresponds
to the fact that the value of ρ(R) becomes larger and larger
and eventually exceeds 1. However there is an anomaly for
the Jπ

k = 1/2−
3 state, whose speed of convergence is faster

than that of Jπ
k = 1/2−

2 . This is due to the approximate isospin
symmetry, namely T 	 3/2 for the Jπ

k = 1/2−
3 state, whereas

T 	 1/2 for the other Jπ = 1/2− states. The same pertur-
bative calculation with the bare N3LO potential is shown
in Fig. 11. Surprisingly, the perturbative calculations of all
six Jπ = 1/2− states are quickly converging to the NCSM
result, compared to the case of Daejeon16. The corresponding
exact eigenvalue functions fn(E ) (Jπ = 1/2−) of Heff (E ) as a
function of E is depicted in Fig. 12. From this figure, we see
that the gap between the P-space dominated states and the
Q-space dominated states (and also the lowest singularity)
is pretty large and no intruder states are present, in contrast
to the case of Daejeon16. This may be explained as follows.
The SRG evolution and/or PETs make the intruder state occur

at low energy, even in a small model space. To illustrate this
idea, we plot in Fig. 13 seven lowest Jπ = 1/2− states of 7Li,
calculated with NCSM at Nmax = 2, using the Daejeon16 and
bare N3LO potentials (upper and lower panels, respectively).
As seen from the figure, the lowest Q-space dominated
state becomes an intruder state at h̄ω < 20 MeV using the
Daejeon16 potential (it appears at lower energies than the
highest P-space dominated state). At the same time a large
gap between P-space dominated states and the lowest Q-
space dominated state is observed using the bare N3LO
potential. The presence of intruder states at low energy slows
down the speed of, or even prevents, the order-by-order con-
vergence of the BW perturbative calculation.

IV. CONCLUSIONS AND PERSPECTIVES

In summary, we generalize the novel developments of
BW MBPT for the ground states of closed-shell nuclei
given in Ref. [47] to ground and excited states of open-
shell nuclei. The general Hamiltonian partitioning scheme, the
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FIG. 10. The energies of low-lying states of 7Li (Jπ = 1/2−) from the BW perturbative calculation up to various orders using the
Daejeon16 potential with ξ = 〈C|H1|C〉 = −127.141 MeV, at h̄ω = 18 MeV, Nmax = 2, 4. Inside each panel, the energy difference in absolute
value between the BW perturbative calculation and the NCSM calculation is also plotted.

FIG. 11. Same as Fig. 10 but with the bare N3LO potential with ξ = 〈C|H1|C〉 = −100.050 MeV.
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FIG. 12. Same as Fig. 9 for Jπ = 1/2− of 7Li but with the bare
N3LO potential.

convergence criterion, and the K̂-box iterative method for the
BW perturbative calculation are introduced in the calculation
of ground and excited states of open-shell nuclei. Analytical
derivations show that with a large enough partitioning param-
eter ξ (namely, large enough diagonal entries of ξ ) the BW
perturbation series can always be made convergent for the
states lower than the lowest eigenvalue of the Hamiltonian
matrix in the excluded Q space for a given Jπ . It follows that
it is always converging for each lowest Jπ state with large
enough ξ , due to the variational principle. This conclusion is
independent of the choice of the basis or the choice of the
internucleon interaction.

FIG. 13. NCSM calculations for seven lowest Jπ = 1/2− states
of 7Li using the Daejeon16 potential and the bare N3LO potential, at
Nmax = 2. The lowest Q-space dominated state is marked in red.

To numerically check the above conclusions, we perform
proof-of-principle calculations for the open-shell nuclei 5,6,7Li
using the (soft) Daejeon16 potential and the (hard) bare N3LO
potential in the HO basis, benchmarked with the results from
the exact matrix inversion method and NCSM. We simply
choose ξ = 〈C|H1|C〉 in these calculations. From these cal-
culations we can conclude:

(a) The BW perturbative calculation for each lowest Jπ

state is always converging with both soft and hard
potentials in the HO basis with proper ξ (e.g., ξ =
〈C|H1|C〉). This conclusion is different from the RS
perturbative calculations given in Refs. [41,42], where
the perturbation series is diverging in the HO basis
even with soft potentials.

(b) The speed of convergence of BW perturbative calcu-
lation becomes lower as the size of full model space
increases, and for excited Jπ states the convergent BW
perturbation series may become divergent due to the
presence of intruder states, especially in large model
space.

(c) The BW perturbative calculation with hard bare N3LO
potential converges faster than with soft Daejeon16
potential using the same choice of ξ = 〈C|H1|C〉 at
same Nmax.

The convergent BW perturbation series obtained in
Ref. [47] and in this work for closed- and open-shell nuclei
may suggest us to design a converged (nonperturbative)
diagrammatic iterative method, with the ability to reach
heavier nuclei. As we discussed before, with the algebraic
iterative method used in this work, we cannot exceed
the NCSM capacity. Instead of algebraic iterations,
which require matrix multiplications, we can treat K̂ as
a renormalized H1 (or H) vertex in the coupled PQ
space and perform iterative calculations with only first
and second order diagrams. We parametrize the K̂ vertex
in Fock space after normal ordering (denoted as N ) as
K̂ = ∑

ai K1b
a,iN [c†

aci] + 1
(2!)2

∑
abi j K2b

ab,i jN [c†
ac†

bc jci] +
1

(3!)2

∑
abci jk K3b

abc,i jkN [c†
ac†

bc†
cckc jci] + · · · , with single-

particle states a, b, c, . . . , i, j, k, . . . and unknown parameters
K1b

a,i, K2b
ab,i j , K3b

abc,i jk , · · · . Inserting the above formula into

the matrix elements of the K̂ vertex equation (20) and
simplifying the expressions via Wick’s theorem, we obtain a
set of equations for the unknown parameters, which can be
solved iteratively. To facilitate the calculations, we can also
represent expressions with diagrams. Only first and second
order diagrams are involved in each step of iteration, since
only first and second order terms are present in Eq. (20).
Therefore we are able to go to infinite order diagrams
via this diagrammatic iterations. In practice, we have to
truncate the K̂ vertex, since it has one-, two-, three-, and
many-body terms. For example, if we are calculating the
ground-state energy of closed-shell nuclei and truncate the
K̂ vertex with up to two-body terms, all order diagrams
that have one-particle–one-hole and two-particle–two-hole
intermediate states are included in the calculation of
ground-state energy, which can be considered to be similar
to CC with singles and doubles approximation [13] and
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IMSRG(2) [14]. For open-shell nuclei, we can also use this
method to derive valence-space Hamiltonians for shell-model
calculations. This diagrammatic iterative method would be
a new nonperturbative many-body method with the ability
to reach intermediate-mass and even heavy nuclei. Apart
from energies, other observables can also be easily calculated,
since once we have the K̂ vertex, we are able to restore the full
model space wave function via Eq. (23). Three-body effects
can also be included by introducing the normal-ordered
three-body forces with up to two-body level. These

developments are under way and the results will be published
separately.
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