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Novel Bayesian probability method in predictions of nuclear masses
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Machine learning methods have recently gained interest in the complexity of nuclear mass prediction. Accord-
ing to previous studies, we propose a continuous Bayesian probability (CBP) classifier combined with Bayesian
model averaging (BMA) to refine the descriptions of sophisticated nuclear mass models. In the CBP method,
the nuclear masses are considered continuous variables to generate prior and conditional probability density
functions (PDFs), and the posterior PDFs are determined by the Bayesian formula. The global optimizations
and the extrapolating analyses exhibit impressive improvements. Additionally, we employ the BMA method to
consider the predictions of different models by assigning weights based on their predictive effectiveness for seven
benchmark nuclei. By presenting predictions of the neutron drip line, we assess the reliability of the refinements
of the BMA method. The methods proposed in this paper provide an effective way of predicting the nuclear mass
in unknown regions and can be applied to other model-based extrapolations of nuclear properties.
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I. INTRODUCTION

The accurate calculation of nuclear masses is important
for nuclear physics and other fields. Researches on nuclear
masses can not only guide theoretical studies for nuclear
structure [1–4], but also help in understanding nuclear decays
[5–9], nuclear synthesis [10,11], and nuclear astrophysics
[12,13]. There are mainly two types of experimental meth-
ods for measuring nuclear masses. The first employs nuclear
mass spectrometry, which relies on determining the time-of-
flight or cyclotron frequency of nuclei [14–17]. The second is
through analyzing the Q values of nuclear reactions or decays
to extract nuclear masses [18,19].

Measurements of nuclear masses have achieved great
progress in recent years. However, out of the approxi-
mately 7000 nuclei, only roughly 3500 have experimental
mass values [20–22]. Therefore, several theoretical mod-
els have been proposed to provide the missing information.
Nuclear mass models can be generally divided into two cat-
egories. One is the microscopic nuclear structure models
with parameter sets, such as the Hartree-Fock-Bogoliubov
(HFB) models [23–28] (e.g., Skyrme-Pairing (SkP) [29],
Skryme-Lyon 4 (SLy4) [30]) and the relativistic mean-
filed (RMF) models [31–38] (e.g., Indian University–Florida
State University (IU-FSU) [39], Non-Linear 3* (NL3*)
[40], Non-Linear Sigma-Hyperon (NLSH) [41], and Typle-
Miller 1 (TM1) [42]). The other is semiempirical formulas
(e.g., Weizsäcker-Skyrme (WS*) [43,44], Duflo-Zuker (DZ)
[45,46], and the finite-range droplet model (FRDM) [47,48]).
Although the theoretical mass models are successful in de-
scribing the changing rule of nuclear masses, many researches
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still require higher precision, such as the synthesis of super-
heavy nuclei [10,11].

It is difficult to increase the accuracy of predictions for
nuclear masses based on theoretical models due to the large
amount of computation and the complexity of the interac-
tion. Therefore, machine learning has been introduced as a
vital tool in the field of nuclear mass systematics [49–56].
Based on the machine learning method, the predictions of
nuclear masses and neutron drip lines have exhibited im-
pressive improvements [57,58]. The machine learning models
can be broadly divided into two major classifications: gener-
ative models and discriminative models. Generative models
generate new examples by modeling the joint probability
distribution of data using, e.g., the Gaussian process (GP)
[59–61] or the naive Bayesian probability (NBP) classifier
[62,63]. Discriminative models classify data into different
categories by directly modeling the conditional probability
distribution using, e.g., a decision tree (DT) [64], a sup-
port vector machine (SVM) [65], or a neural network (NN)
[66,67]. The choice of algorithm depends on the properties
of the dataset. For few training data, generative models can
be more suitable because they attempt to model the full dis-
tribution of the data, potentially capturing more information
[68,69]. For example, the NBP method, as a generative model,
has been proposed to improve the predictions of nuclear
masses and radii from theoretical models [62,63].

Based on the naive Bayesian probability (NBP) classi-
fier, a continuous Bayesian probability (CBP) classifier is
put forward to improve the description of the nuclear mass.
In the framework of CBP, the deviations of mass between
experimental data and theoretical results, namely the mass
residuals δ, are considered continuous variables to guaran-
tee the contributions of all experimental data. By applying
the Bayesian formula, we calculate the posterior probability
density function (PDF) of residuals to obtain the estimated
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residual. To further improve the accuracy of predictions by the
CBP method, we employ the Bayesian model average (BMA)
method to consider the results of different models comprehen-
sively. The BMA method is a way to estimate the predictive
performance of various theoretical models and averages the
results according to the effectiveness of individual model [70],
and has been adopted to provide quantified predictions in
nuclear studies [59–61].

In this paper, we utilize the CBP method on three classes
of theoretical nuclear models, which include the HFB model,
the RMF model, and the semiempirical formulas. The proper-
ties of the CBP method are systematically analyzed through
global optimization and extrapolation. For the global opti-
mizations, the entire data set consists of 3471 experimental
masses of nuclei with Z � 8 in the Atomic Mass Evaluation
of 2020 (AME2020) [71]. For the extrapolations, the learning
set consists of 3007 nuclei that occurred in the AME2003
[72], while the validation set includes 464 nuclei newly added
in the AME2020. After the refinement of the CBP method,
the BMA method is applied to assign weights to different
theoretical models. The weights are determined according to
the predictive results of seven benchmark nuclei: 19Mg, 54Sc,
67Kr, 80Zr, 112Mo, 127La, and 153Pm, as published in Refs. [4,
73–78]. In addition, we display the extrapolations of the neu-
tron drip line for Ca isotopes outside of the AME compilation
by a graphic depiction. Our results illustrate that the CBP
method combined with the BMA method can effectively im-
prove the description of nuclear mass, and can be applied to
predict nuclei in unknown regions of the nuclear chart.

This paper is structured as follows: In Sec. II, we provide
detailed discussions of the theoretical frameworks of the CBP
and BMA methods. In Sec. III, we discuss the numerical
outcomes and provide corresponding discussions. Finally, a
brief conclusion is provided in Sec. IV.

II. FRAMEWORK

This section presents the CBP framework and BMA theory.
In the CBP framework, mass residuals are considered contin-
uous variables, and the Bayesian formula is used to calculate
the posterior PDFs of residuals for the predicted nucleus. The
estimated residual can be obtained from these PDFs. In the
BMA framework, the method of assigning different model
weights is introduced under the Bayesian theorem, and these
weights can be used to propose the formula for the average
mass result. Furthermore, the precision and uncertainty as-
sessment standards are presented in this paper.

A. The continuous Bayesian probability method

The Bayesian theorem is an effective approach to describ-
ing the posterior probability of a numeric target value Y based
on a sample set X . For continuous random variables X , the
multivariate Bayesian theorem for calculating the posterior
PDF can be expressed as

p(Y | X ) = p(X1|Y )p(X2|Y ) · · · p(Xm|Y )p(Y )∫
p(X1|Y )p(X2|Y ) · · · p(Xm|Y )p(Y )dY

, (1)

where p(Xi|Y ) is the conditional PDF, which represents the
probability of events Xi happening under the assumption of
events Y . p(Y ) is the prior PDF, which denotes the occurrence
frequencies of certain Y .

Given that the nuclear mass residuals are continuous vari-
ables, Eq. (1) is utilized in refining the description of nuclear
mass from the theoretical models. The event Y refers to the
mass residual δ, which is a continuous random variable. The
events Xi refer to the proton number Zt and neutron number
Nt . Assuming that Zt and Nt are independent of others, the
posterior PDF p(δ| Zt , Nt ) can be given by

p(δ| Zt , Nt ) = p(Zt | δ)p(Nt | δ)p(δ)∫
p(Zt | δ)p(Nt | δ)p(δ)dδ

. (2)

The conditional PDFs p(Zt | δ) and p(Nt | δ) in Eq. (2) are
estimated using the univariate Bayesian theorem,

p(Zt | δ) = p(δ| Zt )p(Zt )

p(δ)
, (3)

p(Nt | δ) = p(δ| Nt )p(Nt )

p(δ)
. (4)

In Eqs. (3) and (4), the prior probability p(Zt (Nt )) represents
the frequency of Zt or Nt occurring in the training set. The
likelihood PDF p(δ|Zt ) and p(δ|Nt ) can be evaluated by the
kernel density estimator (KDE),

p(δ| Zt ) = 1

nZ hZ

nZ∑
i=1

K

(
δ − δi

hZ

)
, (5)

p(δ| Nt ) = 1

nN hN

nN∑
i=1

K

(
δ − δi

hN

)
, (6)

where K (t ) = (2π )−1/2e−t2/2. The kernel width hZ (hN ) is a
pending parameter. nZ (nN ) represents the number of nuclei
with Zt (Nt ). Similarly, the prior PDF p(δ) in Eqs. (2)–(4) can
also be calculated using KDE with the kernel width hδ ,

p(δ) = 1

nhδ

n∑
i=1

K

(
δ − δi

hδ

)
, (7)

where n is the number of all the nuclei in the training set. In
Eqs. (5)–(7), the individual mass residual is δi = E exp

i − E th
i ,

and the pending parameters hδ , hZ , and hN are related to the
range of the continuous mass residual δ.

In order to incorporate the local relationship between the
adjacent nuclei, a weight function is introduced in calculating
the likelihood PDF and the prior PDF:

w(Z, N ; Zt , Nt ) = exp

[
− (Z − Zt )2 + (N − Nt )2

ρ

]
+ ε,

(8)

with two parameters ρ and ε. ρ closely influences the accuracy
of prediction and the distance of extrapolation about nuclei,
which is set to ρ = 2 in this paper. ε affects the posterior PDF
stability, and we use ε = 10−10 to ensure a Gaussian distri-
bution p(δ| Zt , Nt ) with independent variable δ in this paper.
Then the prior PDF p(δ) and the likelihood PDF p(δ| Zt (Nt ))
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are transformed into pwt(δ) and pwt(δ| Zt (Nt )):

pwt(δ) = 1

nhδ

n∑
i=1

K

(
δ − δi

hδ

)
w(Zi, Ni; Zt , Nt ), (9)

pwt(δ| Zt ) = 1

nZhZ

nZ∑
i=1

K

(
δ − δi

hZ

)
w(Zi, Ni; Zt , Nt ), (10)

pwt(δ| Nt ) = 1

nN hN

nN∑
i=1

K

(
δ − δi

hN

)
w(Zi, Ni; Zt , Nt ). (11)

By combining Eqs. (2)–(11), the posterior PDF p(δ| Zt , Nt )
can be calculated and the final refined residual of the target
nucleus can be obtained by computing the expectation value

δem(Z, N ) =
∫

δp(δ| Z, N )dδ. (12)

Finally, the refined residual is added to the theoretical mass
value E th(Z, N ) to get the final corrected mass prediction
E corr (Z, N ),

E corr (Z, N ) = E th(Z, N ) + δem(Z, N ). (13)

B. Bayesian model averaging

In order to combine the advantages of different theoretical
models and comprehensively consider the predictive perfor-
mance of each theoretical model, we introduced the BMA
method on the basis of the CBP method. The BMA method is
an optimized algorithm for selecting the appropriate descrip-
tion from a set of candidates. In this paper, nine theoretical
models are employed to obtain the residuals, including the
nonrelativistic HFB models, the relativistic RMF models, and
the semiempirical formulas. The inclusion of multiple models
can lead to variations in predicted results. To determine the ap-
propriate weights for each model, we utilize the BMA method
based on the predictive performance of the target nuclear.
Given a set of K candidate models M1, . . . , MK , the Bayesian
theorem can be used to determine the weight assigned to each
model,

P(Mk| D) = P(D| Mk )P(Mk )∑K
i=1 P(D| Mi )P(Mi )

. (14)

In this study, the data set D contains seven benchmark nu-
clei, 19Mg, 54Sc, 67Kr, 80Zr, 112Mo, 127La, and 153Pm, as
established in Refs. [4,73–78], which are utilized to evaluate
the accuracy of models based on the entire nuclide chart.
The prior probability P(Mk ) = 1

K is related to the number of
candidate models, while the conditional probability P(D| Mk )
is determined by the predictive outcomes of each theoretical
model Mk ,

P(D| Mk ) =
∏

j

1√
2π

exp

⎡
⎣−

(
δcorr

j

)2

2

⎤
⎦, (15)

where δcorr
j = E exp

j − E corr
j are the refined residuals of bench-

mark nuclei of the corresponding theoretical model Mk .

Finally, the average mass result Ē (Zt , Nt ) by BMA for
nucleus (Zt , Nt ) can be obtained by

Ē (Zt , Nt ) =
K∑

i=1

E corr
i P(Mi| D). (16)

C. Assessment standards and uncertainties

The assessment standards for the predicted results and
the corresponding uncertainties are presented as follows.
Numerous methodologies are available for evaluating the per-
formance of a predictive model. In this paper, we utilize the
standard deviation σrms to measure the biases between the
corrected theoretical results and experimental data for a given
model, which is defined as

σ 2
rms = 1

n

n∑
i=1

(
E corr

i − E exp
i

)2
. (17)

Selecting distinct evaluation methods will result in dis-
crepant deviation data. Different from Eq. (17), the maximum-
likelihood method is applied to obtain the intrinsic model error
in Ref. [47], which provides an error of 0.56 MeV for the
FRDM model.

In the CBP method, the uncertainties of predictions are
derived from the posterior PDF. The one-sigma uncertainty
σ em(Z, N ) of each mass model for the specific nucleus (Z, N )
is defined as

σ em(Z, N ) =
√∫

[δ − δem(Z, N )]2 p(δ| Z, N )dδ, (18)

and the uncertainty of BMA is given by

σ
BMA

(Z, N ) =
K∑

i=1

σ em
i P(Mi| D). (19)

III. RESULTS

In this section, the CBP and BMA methods are utilized to
refine the theoretical nuclear masses. The raw results are cal-
culated using the nonrelativistic HFB models, the relativistic
RMF models, and semiempirical formulas. Then we analyze
the global optimizations of the CBP method and assess its
extrapolating capabilities. Subsequently, the nuclear masses
of different models based on benchmark nuclei are refined
through the BMA method.

A. Global optimizations of the CBP method

The global optimizations of the CBP method are first an-
alyzed. The entire set consists of 3471 nuclei with Z � 8, as
reported in AME2020. We calculate the theoretical binding
energies for each nucleus with nine mass models, including
HFB models with SkP and SLy4 parameter sets, the RMF
models with IU-FSU, NL3*, NLSH, and TM1 parameter sets,
as well as the semiempirical formulas with WS*, DZ10, and
FRDM parameter sets. For deformed HFB models the code
and detailed formulas can be found in Ref. [79], while for
deformed RMF models they can be found in Ref. [80]. During
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TABLE I. The standard deviation σpre (MeV) from the theoretical models and σpost (MeV) after the CBP and NBP refinements. 3471 nuclei
in AME2020 with Z � 8 are chosen as the entire set.

HFB RMF Semiempirical

Methods Models SkP SLy4 IU-FSU NL3* NLSH TM1 WS* DZ10 FRDM

σpre 4.16 6.01 6.07 2.89 4.15 4.68 0.60 1.25 0.99
CBP σpost 0.49 0.50 1.17 0.96 0.98 1.00 0.24 0.27 0.27

�σ/σpre 88% 92% 81% 67% 77% 79% 59% 78% 72%
σpost 0.70 0.68 1.62 1.23 1.21 1.26 0.32 0.40 0.35

NBP �σ/σpre 83% 89% 73% 57% 71% 73% 47% 68% 64%

RMF calculations, the pairing correlations are incorporated
through the BCS method. By comparing the theoretical re-
sults with experimental data, the corresponding raw residual
δpre = E exp − E th for each nucleus is calculated for each mass
model.

After calculating the raw mass residuals δpre, the CBP
method is applied to refine the descriptions of each mass
model. The sample set for each target nucleus comprises
3470 nuclei in AME2020, excluding the target nucleus it-
self. The corresponding prior PDF pwt(δ), pwt(Zt (Nt )), and
the conditional PDF pwt(Zt (Nt )| δ) can be calculated with
Eqs. (9)–(11). Then, the Bayesian formula (2) gives the pos-
terior PDF pwt(δ| Zt , Nt ). Finally, Eqs. (12) and (13) are used
to obtain the refined mass of each target nucleus. The pend-
ing parameters hδ , hZ , and hN in Eqs. (9)–(11) reflect the
distribution range of raw mass residuals δpre. In the entire
set, most of the δpre are between 0 and 20 MeV. Selecting
the value of hδ within this range can optimize the predic-
tive performance. Similarly, the differences between δpre of
isotopes and isotones are largely within the range of 0 and
5 MeV. We ultimately chose parameters hδ = 7.00 MeV−1,
hZ = 2.00 MeV−1, and hN = 3.00 MeV−1 for all nine the-
oretical models. Adjusting the three parameters within their
corresponding range of δpre makes a small difference in the
predictive results.

Table I presents the performance of the global optimiza-
tion of the CBP method. The raw deviation σpre denotes the
standard deviation of the theoretical results from various mass
models for a total of 3471 nuclei, while the posterior deviation
σpost is the standard deviation of the corrected results from
the CBP method. �σ/σpre = (σpre − σpost )/σpre evaluates the
effectiveness of the global optimization of the CBP method.
For the HFB model with SkP and SLy4 parameter sets, the
standard derivations σpost become about 0.5 MeV after refine-
ments, and the accuracy of the descriptions of the nuclear
mass improves by about 90%. For the RMF model with
IU-FSU, NL3*, NLSH, and TM1 parameter sets, the σpost are
improved to around 1 MeV after the CBP method refinements,
which show a 70%–80% reduction. For the semiempirical
formulas, the CBP method reduces all the σpost to around
0.2 MeV and exhibits over 60% improvements.

To establish the superiority of the CBP method, we display
the outcomes of the NBP method in Table I for compar-
ison. The NBP method is a discrete Bayesian probability
approach that employs the k-means algorithm to determine
cluster centers. Table I shows the posterior deviation σpost

and the �σ/σpre calculated by the NBP method. For the

three models, there is a 5%–10% enhancement in predictive
accuracy concerning nuclear masses in the CBP classifier
compared to the NBP classifier. This can be attributed to
the continuous PDF employed in the CBP method instead of
the discrete probability used in the NBP method. To under-
score the enhanced effects of continuous PDF, we conduct
an in-depth comparative analysis between the CBP and NBP
methods. Fig. 1 exhibits the posterior PDF of 29Si calculated
by CBP and NBP methods. Through k-means clustering, the
NBP method provides a finite number of mass residuals δi.
The residual with the highest posterior probability is selected
as the estimated residual δem. In contrast, the CBP method
considers residuals as continuous variables, and the final re-
fined residual δem is obtained by integrating over the entire
residual distribution space. In comparison with the limited
data in the NBP method, the CBP method takes into account
the contribution of all possible residuals, hence leading to a
higher degree of improvement.

In Table I, one can observe that different types of nu-
clear mass models show dissimilar σpost, and the σpost tend
to be consistent for models of the same class regardless of

FIG. 1. Posterior probability density for the CBP and NBP meth-
ods. The red curve depicts the continuous PDF p(δ|Zt , Nt ) generated
by the CBP method. The blue dotted line represents the discrete PDF
p(δi|Zt , Nt ) obtained by the NBP method, and the grey section de-
notes the interval of classification.
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FIG. 2. The distribution of δpre (red dots) and δcorr (purple dots) for 3471 nuclei in AME2020 from the HFB model with SLy4 parameter
set and the RMF model with IU-FSU parameter set. (a) The δpre of SLy4 parameter set. (b) The δpre of IU-FSU parameter set. (c) The δcorr of
SLy4 parameter set. (d) The δcorr of IU-FSU parameter set.

the values of the σpre. Distinct theoretical models exhibit
unique characteristics in the δpre distribution, consequently
influencing performance in the calibration of machine learn-
ing algorithms. To further elucidate this phenomenon, Fig. 2
displays the raw residuals δpre and the corrected residuals δcorr

from SLy4 and IU-FSU parameter sets. The 95% confidence
ellipsoids are presented in the shaded regions. The σpre for
both the SLy4 and IU-FSU models are approximately 6 MeV,
but σpost exhibit significant disparities. This can be attributed
to the distributing characteristic of the δpre. In Fig. 2(a), the
δpre of the SLy4 model exhibit pronounced shell effects, which
display a discernible pattern of regular distribution. However,
the distribution of the δpre for the IU-FSU model exhibits
higher levels of randomness and irregularity in Fig. 2(b).
The multivariate Bayesian formula (2) relies significantly on

the regularity of the δpre distribution. The regular distribu-
tion of data in the SLy4 model facilitates the acquisition of
information by the CBP classifier, but the relatively random
distribution of data in the IU-FSU model hinders the capture
of physical characteristics in the CBP classifier. Therefore, the
SLy4 and IU-FSU parameter sets with the similar σpre yield
dissimilar σpost after the CBP method refinements.

In addition, the distributing characteristics of the δpre of
the NL3*, NLSH, and TM1 parameter sets are consistent with
those of the IU-FSU parameter set in Fig. 2, hence leading
to the similar σpost after the CBP method refinements. The
same situation also occurs for SkP and SLy4 parameter sets
in the HFB models. It should also be noted that in Fig. 2 the
IU-FSU parameter set shows evidently deviated data points in
the region between Z � 110 and N � 165, resulting in higher
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FIG. 3. Left panels: Raw residuals δpre of the theoretical nuclear masses for the DZ10 model, the RMF model with NLSH parameter set,
and the HFB model with SkP parameter set, which includes 3471 nuclei in AME2020. Right panels: The corresponding corrected residuals
δcorr by the CBP method. The values of the standard deviations before and after the CBP refinements on the entire set are also presented in the
figure.

σpre. If these deviated data points can be corrected, the raw
standard deviation σpre will get more reasonable results. Re-
cently, some successful RMF mass tables are proposed, such
as the theory with PC-PK1 density functional for even-even
nuclei in Refs. [81,82].

To visually demonstrate the efficacy of the CBP method in
refining the prediction of mass, we show the comparison of
the σpre and the σpost of 3471 nuclei in Fig. 3. The left panels
depict the σpre, and the right panels illustrate the correspond-
ing σpost from the CBP method. It is clearly seen that the CBP
method has made satisfactory improvements in the accuracy
of nuclear mass predictions, especially in the regions of heavy
nuclei and the nuclei near the drip line.

B. Extrapolating capabilities of the CBP method

In this section, we explore the extrapolating capabilities of
the CBP method. The entire set of 3471 nuclei with Z � 8
is partitioned into the learning set and the validation set.
The learning set comprises 3007 nuclei in the AME2003,

and the validation set consists of 464 newly added nuclei
in the AME2020. We apply the CBP method to predict the
nuclei in the validation set using the prior and conditional
probabilities obtained from the data in the learning set. The
kernel widths hδ , hZ , and hN utilized in the operations of
extrapolation correspond to the values previously computed in
the section on global optimizations. Table II displays the σpre

of the theoretical models, the corresponding σpost after CBP
refinements, and the respective �σ/σpre.

The CBP method produces significant refinements in stan-
dard deviations for both the learning and validation sets. First,
we assess the extrapolating capability of the CBP method
based on the semiempirical formulas. Regarding the DZ10
model, the standard deviations σpre in the learning set and
the validation set are 1.08 and 2.03 MeV, which indicates the
robust extrapolating capability of the DZ10 model. Then we
employ the CBP method on the validation set to make pre-
dictions. For the DZ10 model, the accuracy of the predictions
for the validation sets improves by about 70%. For the WS*
model, we obtain a 50% reduction in the standard deviation.
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TABLE II. The raw standard deviation σpre (MeV) from the theoretical models and the standard deviation σpost after the CBP method
refinements. The learning set includes 3007 nuclei with Z � 8 in the AME2003 compilation, and the validation set includes the 464 newly
added nuclei in the AME2020 compilation.

HFB RMF Semiempirical

Methods SkP SLy4 IU-FSU NL3* NLSH TM1 WS* DZ10 FRDM

σpre 4.08 5.81 5.97 2.67 4.05 4.47 0.52 1.08 0.87
Learning σpost 0.42 0.45 1.02 0.92 0.95 1.01 0.30 0.26 0.26
set �σ/σpre 90% 92% 83% 65% 77% 77% 42% 76% 70%

σpre 4.65 7.19 6.64 4.06 4.76 5.83 0.96 2.03 1.55
Validation σpost 1.06 1.23 2.71 1.61 1.58 1.70 0.48 0.58 0.51
set �σ/σpre 77% 83% 59% 60% 67% 71% 50% 72% 67%

For the FRDM model, the standard deviations of validation
sets are improved by about 70%. Overall, compared to the
improvement in the learning set, the CBP method exhibits
reliable extrapolating capabilities.

Besides the semiempirical formulas, the extrapolating ca-
pabilities of the CBP method are also discussed based on
the HFB models and the RMF models. Regarding the HFB
model with SkP parameter set, for the learning set the raw
standard deviation σpre = 4.08 MeV, and for the validation set
σpre = 4.65 MeV, which illustrates the extrapolating capabil-
ity of HFB models. With the CBP refinements, the standard
deviations of the validation set have improved by 77%. For
the RMF models with the IU-FSU parameter set, the deviation
σpre in the learning set is 5.97 MeV, and the deviation σpre is
6.64 MeV for the validation set. This indicates that the RMF
model has the extrapolating ability. After applying the CBP
method to the RMF models, the accuracy of the predictions
for the validation sets improves by about 60%. It can be seen
from Table II that the σpost for the validation set is greater
than that of the learning set. This is attributed to the nuclei
in the validation set being mostly at the edge of the nuclide
chart. The nuclei in the validation set are unable to find a large
number of identical Z and N in the learning set, reducing the
precision of the δcorr. The accuracy of the CBP method will
improve as the masses of more exotic nuclei are accurately
measured.

The results in Table II illustrate that the CBP method
exhibits strong extrapolating ability. The reason has mainly
two aspects. On the one hand, theoretical mass models based
on nuclear interactions can clearly capture the primary phys-
ical essence. This helps to describe the general trend of
the changes in nuclear mass. On the other hand, the CBP
method can detect finer structures and unknown physical ef-
fects within nuclei. The grasp of details allows CBP to fine
tune the results of the theoretical mass models. From Tables I
and II, both global and extrapolated results show satisfactory
improvements in the description of the nuclear mass. Thus,

we can use the CBP method to make reliable predictions for
regions lacking experimental data.

C. Further refinement employing the BMA method

The mass models after the CBP refinements exhibit fa-
vorable predictive performance on the nucleus near the
β-stability line. In the vicinity of the drip line, each category
of theoretical models shows optimal predictive performance
within specific regions. Therefore, it is necessary to compre-
hensively consider the strengths of various models through the
BMA method. By assigning weights through benchmark nu-
clei, the BMA method balances the anticipated discrepancies
between several theoretical models based on the entire nuclide
chart. To assess the reliability of the BMA method, we predict
the neutron drip line using Ca isotopes as an example.

First, we predict the masses of seven benchmark nuclei:
19Mg [73], 54Sc [74], 67Kr [75], 80Zr [4], 112Mo [76], 127La
[77], and 153Pm [78], using different theoretical models based
on the 3007 nuclear data from the learning set. The masses
of these seven benchmark nuclei have been recently measured
[71], covering the entire range from the light to heavy nuclei
regions and from the neutron-rich to proton-rich regions of
the nuclide chart. Then we obtain the corrected mass residuals
δcorr = E exp − E corr of these benchmark nuclei. The predictive
ability P(D| Mk ) of each model is assessed by constructing
the Gaussian distribution according to Eq. (15). By utilizing
the P(D| Mk ) as the evaluation criterion, the weight P(Mk| D)
is given for each model by the Bayesian formula Eq. (14).
Selecting benchmark nuclei from different regions impacts the
allocation of weights in the BMA method. The weights of all
candidate models are displayed in Table III.

In Table III, we can see that the BMA method assigns
different weights to various models. It can be explained by
Fig. 4, which shows the δcorr of all the seven target nuclei. The
error bars for the nine mass models are calculated using the
one-sigma uncertainty σ em(Z, N ) from Eq. (18), and the error

TABLE III. The weights of nine mass models by BMA are based on the refined residuals of seven target nuclei in all regions: 19Mg, 54Sc,
67Kr, 80Zr, 112Mo, 127La, and 153Pm.

Models SkP SLy4 IU-FSU NL3* NLSH TM1 WS* DZ10 FRDM
Weight 0.03 0.13 0.05 0.02 0.08 0.03 0.36 0.19 0.10
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FIG. 4. The corrected residuals δcorr along with error bars for seven target nuclei: 19Mg, 54Sc, 67Kr, 80Zr, 112Mo, 127La, and 153Pm. The
results of nine theoretical models refined by the CBP method and the results of the BMA are listed.

bars for the model averaging results BMA are determined
using the uncertainty of BMA σ

BMA
(Z, N ) from Eq. (19). The

WS* and DZ10 models are assigned higher weights because
they provide smaller deviations from experimental data. The
SLy4, NLSH, and FRDM models contribute relatively small
weights of around 10% due to their unfavorable predictive
performance for 54Sc and 80Zr, as seen in Fig. 4. The SkP,
IU-FSU, NL3*, and TM1 have weights not exceeding 5%
because their predictions for 19Mg, 54Sc, 67Kr, 80Zr, and
112Mo show apparent deviations from the experimental data.
Comparable arguments also be discussed in Ref. [61].

Then we can obtain the combined predictive result of the
nucleus (Zt , Nt ) by Eq. (16). The combined deviation σBMA for
464 nuclei in the validation set is 0.430 MeV, which is smaller
than the standard deviations σpost of all nine theoretical models
in Table II. This shows that the BMA method can effectively
extract the advantages of different nuclear models and obtain
more accurate results of prediction.

As a followup to the previous discussions, we utilize the
BMA method to predict the neutron drip line of the Ca
isotopes. In Fig. 5, we present the extrapolated one-neutron

FIG. 5. The extrapolations with the BMA method for one-
neutron separation energy S1n of the odd-N Ca isotopes and
two-neutron separation energy S2n of the even-N Ca isotopes. The
solid lines denote the average prediction by the BMA method, while
the shaded bands represent the associated uncertainty σ

BMA
(Z, N ).

The inset shows the probability of the existence for the Ca chain. The
limit of zero separation energy and the Pex = 0.5 limit are indicated
by dotted lines.

separation energies S1n of the odd-N isotopes and two-neutron
separation energies S2n of even-N isotopes. The solid lines
show the average prediction by BMA, while the shaded bands
represent the associated one-sigma uncertainty σ

BMA
(Z, N ) in

Eq. (19). Due to the pairing effects of nucleons, it can be
observed in Fig. 5 that the one-neutron drip line reaches zero
earlier than the two-neutron drip line. Since nuclei with nega-
tive separation energies are particle unstable, the extrapolated
separation energy can be used to determine the existence
probability of nuclei. We define the posterior probability of
existence as Pex(Z, N ) = P(S∗

1n/2n(Z, N ) > 0| S1n/2n), which
denotes the proportions of the positive separation energies
relative to the total range of errors. The results are presented
in the inset. For the heaviest discovered Ca isotope 60Ca,
the predicted probability of existence is Pex(20, 40) = 1.0,
which indicates the definite existence of this nucleus. The
probability of the existence of 60Ca by the BMA method
is in agreement with the experimental measurements in
Ref. [71].

Furthermore, the posterior predicted results of the BMA
method place the 1n drip line for Ca around 71Ca and the
2n drip line around 72Ca. In this study, seven benchmark
nuclei from diverse regions are adopted, and the probabilities
of existence are Pex(20, 51) = 0.03 and Pex(20, 52) = 0.10.
The region of benchmark nuclei influences the predictive out-
comes of the BMA method, resulting in slight variations in
the predictions for the drip line. In the recent research [59],
they selected three neutron-rich nuclei, 49S, 52Cl, and 53Ar, as
benchmark nuclei to predict the neutron drip line of the Ca
isotopes. Fig. 5 presents predictions consistent with those in
Ref. [59].

IV. SUMMARY

In this paper, we refined the nine theoretical nuclear
mass models by combining the continuous Bayesian proba-
bility (CBP) method and the Bayesian model average (BMA)
method. There are two main innovations. On the one hand,
the CBP method introduces continuous probability density
functions to enable a thorough exploration of the local mass
relations of the nuclei with the same Z and N . On the other
hand, the BMA method comprehensively considers the pre-
dictive performance of different theoretical models for nuclei
in the entire nuclide chart, which leads to a more accurate
prediction for nuclear masses.

The effectiveness of the CBP method is demonstrated
in global optimizations and extrapolation analyses. For the
global optimizations, the CBP method exhibits an improve-
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ment of around 90% for the HFB models, 80% for the RMF
models, and over 60% for the semi-empirical formulas. For
the extrapolating capabilities, the accuracy of the predictions
in the validation sets improves by about 80% for the HFB
models, 70% for the RMF models, and 50% for the semiem-
pirical formulas. In addition, we employ the BMA method to
assign weight to the predictive performance of each model,
which is indicated by the corrected mass residuals of seven
benchmark nuclei. Distinct theoretical models exhibit differ-
ent predictive performances within certain regions. The region
of benchmark nuclei impacts the predictive results of the
BMA method. In order to assess the reliability of BMA, we
predict the neutron drip line of the Ca isotopic by presenting
the extrapolation for one-neutron (two-neutron) separation
energy S1n (S2n), which is consistent with the experimental
data.

Generally, with the application of the CBP and BMA
methods, the description of the nuclear masses is significantly

improved. Theoretical nuclear models convincingly describe
the principal changing trends of nuclear masses, and CBP
combined with the BMA method provides reliable refine-
ments. Our analysis indicates that the CBP and BMA methods
can provide support for predicting masses of exotic nuclei
near the drip line, and can be used in other nuclear studies
such as nuclear charge radii, nuclear reactions, and nuclear
decay.
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