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Ab initio calculations with a new local chiral N3LO nucleon-nucleon force
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Ab initio calculations have achieved remarkable success in nuclear structure studies. Numerous works
highlight the pivotal role of three-body forces in nuclear ab initio calculations. Concurrently, efforts have been
made to replicate these calculations using only realistic nucleon-nucleon (NN) interactions. A novel local chiral
next-to-next-to-next-to-leading order (N3LO) NN interaction, distinct due to its weaker tensor force, has recently
been established. This paper applies this local NN interaction in ab initio frameworks to calculate the low-lying
spectra of p-shell light nuclei, particularly 10B, ground-state energies and shell evolution in oxygen isotopes.
Results are compared with calculations utilizing nonlocal chiral N3LO NN and chiral NN + 3N interactions.
The ab initio calculations with the local NN potential accurately describe the spectra of p-shell nuclei, notably
the 10B. Additionally, the neutron drip line for oxygen isotopes, with 24O as the drip line nucleus, is accurately
reproduced in ab initio calculations with the local NN interaction. Calculations with the local NN interaction
also reproduce the subshell closure at N = 14 and 16, albeit with a stronger shell gap compared to experimental
data. However, the calculated charge radii based on the local NN interaction are underestimated compared with
experimental data, which is similar to results from the nonlocal NN interaction. Consequently, the present
ab initio calculations further indicate significant spin-orbit splitting effects with the new local NN potential,
suggesting that 3N forces remain an important consideration.
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I. INTRODUCTION

Elucidating the spectra, structure, and reactions of nuclei
through a microscopic approach is the ultimate objective
of nuclear theory, with internucleon interactions playing
a pivotal role. Recent advancements in ab initio methods
have enabled the resolution of many-body Schrödinger equa-
tions up to the medium-mass nuclei using supercomputers
[1–11], and significant progress has been achieved concerning
nuclear structures and reactions [12,13]. Among these, the
no-core shell model (NCSM) stands out as a particularly im-
portant method. NCSM treats each nucleon within the nucleus
equally, without an inert core [14–17]. This characteristic
enables the NCSM to calculate the spectroscopic properties
of nuclei lacking a well-defined shell structure [18]. However,
due to the substantial computational demands, which increase
with the number of nucleons A, NCSM applications are gen-
erally limited to nuclei with A � 16. Several approximate yet
systematically improvable methods, such as coupled cluster
[7,19], self-consistent Green’s functions [3,20], many-body
perturbation theory [21–23], and the in-medium similarity
renormalization group (IMSRG) [8,9,24–26], have expanded
the scope of ab initio theory into the medium-mass region,
exploring the complex domain of open-shell and exotic nu-
clei. The IMSRG, in particular, with its favorable polynomial
scaling with system size and the ability to target ground and
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excited states of both closed- and open-shell systems, offers
a robust ab initio framework for calculating medium-mass
nuclei from first principles.

Nuclear interaction serves as the foundation for ab initio
calculation. For the nuclear interaction, the nucleon-nucleon
(NN) interactions are the dominant term. However, relying
solely on NN interactions often fails to replicate many ex-
otic spectroscopic properties. Numerous ab initio calculations
have proved that the 3N interaction plays a pivotal role in
nuclear structure calculations [9,19,24,27–35]. The low-lying
spectra of light p-shell nuclei, particularly the ground state
of 10B, are well described in correct ordering when taking
the 3N interaction into account [27–30]. In the case of oxy-
gen isotopes, the inclusion of the 3N interaction successfully
reproduces the double-magic nature of 22O [36] and the neu-
tron drip line at 24O, which is also a doubly magic nucleus
[9,19,24,32,33,37]. Additionally, 3N interaction has also been
proven as an important role in producing 48Ca as a doubly
magic nucleus [34,35].

In recent years, some works have explored another way
to use NN interactions to reproduce the exotic properties
of nuclear systems, such as INOY (inside nonlocal outside
Yukawa) [38], JISP (J-matrix inverse scattering potential)
[39], JISP16 [40], and Daejeon16 [41] interactions. INOY
and JISP interactions are fitted not only to the nucleon-
nucleon phase-shift data but also to binding energies of A =
3 and heavier nuclei. Daejeon16 fit to the many-body nu-
clear data. Good agreements are obtained within the NCSM
calculations for light nuclei, especially 10B, based on those
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NN interactions [38,40,41]. Moreover, an optimized nucleon-
nucleon interaction from chiral effective field theory (EFT)
at next-to-next-to-leading order, named NNLOopt, have also
been constructed, in which the contributions of three-nucleon
forces are smaller than for previous parametrizations of chi-
ral interactions [42]. Recently, a local chiral NN potential
through chiral EFT in next-to-next-to-next-to-leading order
(N3LO) has been developed, in which the low-energy con-
stants are contrasted only via the NN data. The local chiral
N3LO NN interaction provides a weaker tensor force as re-
flected in relatively low D-state probabilities of the deuteron,
which differs from existing NN potentials [43]. Moreover, the
triton binding energy is predicted to be above 8.00 MeV with
NN alone [43]. In the present work, we perform ab initio
calculations using the local chiral N3LO NN potential for
light- and intermediate-mass nuclei.

This paper is structured as follows. Section II briefly intro-
duces the ab initio many-body approaches utilized, including
the NCSM and valence space IMSRG (VS-IMSRG), along
with the nuclear potentials applied in the calculations. Subse-
quently, results obtained using the new local chiral N3LO NN
potential are presented, with comparisons to those derived
from the nonlocal chiral N3LO NN potential and the NN +
3N interaction. The paper concludes with a summary of our
results.

II. METHOD

For the A-body nuclear system, the initial Hamiltonian is
as follows:

H =
A∑

i=1

(
1 − 1

A

)
p2

i

2m
+

A∑
i< j

(
vNN

i j − pi · p j

mA

)
+

A∑
i< j<k

v3N
i jk ,

(1)

where pi denotes the momentum of the nucleon within the
laboratory, while m refers to the mass of the nucleon. vNN and
v3N correspond to the NN and 3N interactions, respectively.
In the NCSM, the many-body Hamiltonian from Eq. (1) is
expressed within the Hilbert space defined by the harmonic
oscillator (HO) basis. Practically, the dimension of this space
is limited due to computational constraints, necessitating a
finite number of the HO basis. Thus, the NCSM results depend
on two values: the frequency of the HO basis h̄ω and the
truncation of the model space Nmax [14]. To obtain converged
energies in the complete space, extrapolation methods are
applied (Refs. [44–48]).

In this study, light p-shell nuclei are calculated using the
NCSM. Parallel NCSM code from Ref. [49] is adopted. For
the nuclei investigated, we first calculate the energies of
the ground state across various h̄w and Nmax values. Each
energy-h̄w curve for a fixed Nmax exhibits a minimum, and
energy dependency on h̄w reduces as Nmax increases. Subse-
quently, an optimal HO frequency h̄w is determined from the
minimum ground-state energy at the largest computationally
feasible Nmax. Thereafter, low-lying states are systematically
calculated with the optimal h̄w HO basis in truncated spaces
up to the maximum Nmax. The final step involves extrapolating
the energy in the complete model space, based on results

from finite spaces. In this work, the extrapolation follows
an exponential form as described in Ref. [44]: E (Nmax) =
a exp (−cNmax) + E (Nmax → ∞), where E (Nmax → ∞) rep-
resents the extrapolated energy in the infinite HO basis space,
and a and c are fitting parameters. In real calculations, nu-
clei with A < 10, the largest basis space truncation is set to
Nmax = 10, except for 6He, which employs Nmax = 12. The
largest truncated model space with Nmax = 8 is employed for
A � 10 nuclei.

For the oxygen isotopes, the VS-IMSRG approach is ap-
plied. In this method, we rewrite the Hamiltonian of Eq. (1) to
the normal-ordering form with respect to the reference state
|�〉 [9], given by

H = E +
∑

i j

fi j : a†
i a j : +1

4

∑
i jkl

�i jkl : a†
i a†

j alak : + · · · ,

(2)

where the strings of creation and annihilation operators obey
〈�| : a†

i . . . a j : |�〉 = 0. In the VS-IMSRG approach, the
single-particle Hilbert space is divided into core, valence, and
outside spaces. The main idea of VS-IMSRG is to construct
an effective Hamiltonian of the valence space, which is decou-
pled from the core and outside single-particle orbitals. The
decoupling can be achieved by solving the following flow
equation:

dH (s)

ds
= [η(s), H (s)], (3)

with the anti-Hermitian generator

η(s) ≡ dU (s)

ds
U †(s) = −η†(s), (4)

where U (s) is the unitary transformation operator. In this
paper, the chiral N3LO NN local potential of Ref. [43]
is applied in the ab initio calculations, without includ-
ing the three-nucleon (3N) interaction. The potential with
cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm is used. For
our VS-IMSRG calculations, we employ h̄w = 24 MeV.
All the Hamiltonians are projected to the sd valence space
above an 16O core. This approach is refined using the en-
semble normal-ordering technique, which provides a more
nuanced and accurate handling of the Hamiltonians, detailed
in Refs. [9,50], whereby the VS-IMSRG code of Ref. [50] is
utilized for that matter. At the end of this procedure, the final
Hamiltonian diagonalization is performed using the KSHELL

shell-model code [51].
In actual calculations, the regulator value of R is set as

1.0 fm with low-momentum interaction Vlow−k = 2.4 fm−1

for the local chiral N3LO NN potential. We also employ the
nonlocal chiral N3LO potential, which is softened by the simi-
larity renormalization group evolution with λSRG = 2.4 fm−1,
for comparison. Moreover, the renormalization process gives
rise to induced three-body forces that predominantly affect
the absolute energy for nuclear systems [24]. However, the
induced three-body forces exert a small influence on the low-
lying spectral properties and the position of the nuclear drip
lines [24,52]. Hard renormalization parameters are currently
chosen to mitigate the impact of induced three-body forces.
This strategy enables us to reduce the effect of the induced
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FIG. 1. Experimental and theoretical positive-parity excitation spectra of 10B. Results obtained in Nmax = 2–8 model spaces and extrapo-
lations are compared. The left magenta box shows the results calculated by using the chiral N3LO NN local potential, and the right cyan box
shows the results calculated by using the chiral N3LO NN nonlocal potential.

three-body force in our calculations, thereby ensuring reason-
able representations of the fundamental two-body interactions
that are critical to nuclear properties.

III. RESULTS

A. Ab initio NCSM calculations for light p-shell nuclei

We first focus on calculating the low-lying states of 10B,
where prior studies have emphasized the significance of 3N
interactions for reproducing the correct state order for the
low-lying states. Systematic NCSM calculations for 10B have
been conducted, employing the local chiral N3LO NN po-
tential with an Nmax = 8 model space. The optimized HO
basis frequency is fixed at h̄w = 26 MeV based on the calcu-
lated energy-h̄w curve with minimum energy. With this fixed
h̄w, we compute the low-lying states of 10B across different
truncated model spaces up to Nmax = 8. The results are pre-
sented in Fig. 1, along with available experimental data. For
comparison, similar calculations are done with the nonlocal
chiral N3LO NN potential at h̄w = 24 MeV, these results
are likewise displayed in Fig. 1. Additionally, we conduct
extrapolations for the NCSM calculations, as introduced in
the section on method. The extrapolated results for the NCSM
calculations with both local and nonlocal chiral N3LO NN
potentials are presented. These calculations demonstrate that
the results gradually converge as the model space increases,
validating the extrapolated results. Notably, the low-lying
states of 10B, especially the ordering of 3+

1 and 1+
1 states,

are accurately reproduced using the local chiral N3LO NN
potential. In contrast, calculations with the nonlocal chiral
N3LO NN interaction have incorrect ordering for these states,
similar to previous NCSM results from only NN interactions
(see Refs. [27,53]).

To further compare the local chiral N3LO NN interac-
tion with the nonlocal chiral N3LO NN interaction and the
NN + 3N interaction, we perform the calculations for the
low-lying states of 11B and 12C. The extrapolated results
from these NCSM calculations are presented in Fig. 2. Addi-
tionally, results from NCSM calculations with the NN + 3N

interaction, taken from Ref. [27], are included for compari-
son. In the case of 10B, we observe that the results from the
local chiral N3LO NN interaction closely align with those
from the NN + 3N interaction and experimental data, indi-
cating that the ordering of the 3+

1 and 1+
1 states of 10B can

be accurately reproduced using only the local NN interac-
tion, without incorporating the 3N interaction. However, for
an adequate description of light nuclei, the nonlocal chiral
N3LO NN interaction requires combination with the 3N in-
teraction. For the spectra of 11B, calculations using both the
local and the nonlocal chiral N3LO NN interaction, as well
as the NN + 3N interaction, all successfully reproduce the
correct order. Nevertheless, the spectra calculated from the
nonlocal chiral N3LO NN interaction are notably more sup-
pressed compared to experimental data, a discrepancy that is
resolved when the 3N interaction is included. Remarkably,
results from the local chiral N3LO NN interaction are similar
to those from the NN + 3N interaction and experimental data.
When comparing the results of 12C from the nonlocal chiral
N3LO NN interaction to those of the NN + 3N interaction,
we observe that the 1+

1 and 4+
1 states are interchanged when

3NF is included. The results are also obtained in other NCSM
calculations [30]. This inversion is not replicated with the
local chiral N3LO NN interaction; however, the discrepancy
in the splitting of the 1+

1 and 4+
1 states is less pronounced

compared to the nonlocal chiral N3LO NN interaction. Addi-
tionally, the first excited 0+ state of 12C, known as the Hoyle
state and formed by the α-cluster structure [54–56], cannot be
reproduced in our NCSM calculations due to computational
limitations and the necessity of a larger model space [27].

Subsequently, we conducted NCSM calculations for other
light p-shell nuclei using the new local chiral N3LO NN
interaction. The calculated low-lying spectra for nuclei with
A = 6–10 are presented in Fig. 3. For comparison, calcula-
tions using the nonlocal chiral N3LO NN interaction were
also performed. For the local N3LO NN interaction, h̄w = 22
MeV is selected for A = 6–9 nuclei with the exception of
9Li. For 9Li and 10Be, h̄w = 24 MeV is used. In contrast,
the optimized h̄w for NCSM calculation with the nonlocal
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FIG. 2. Low-lying spectra of 10B, 11B, and 12C calculated via NCSM based on local and nonlocal chiral N3LO NN interactions, along with
experimental data and results of NN + 3N interaction. The results of the NN + 3N potential are taken from Ref. [27], and the experimental
data are taken from Ref. [57].

N3LO NN interaction is set as h̄w = 22 MeV for A = 6–10
nuclei, except for 6Li and 8He, which are calculated at h̄w
values of 24 and 20 MeV, respectively. The 10Be are calculated
with h̄w = 24 MeV.

Calculations using the local chiral N3LO NN potential
successfully reproduce the correct ordering for nuclear states,
such as 6Li, 7Li, and 9Be. In contrast, calculations with the
nonlocal chiral N3LO NN interaction predict incorrect order-
ing or degenerate doublets for some excited states. However,
the local chiral N3LO NN interaction tends to yield exci-
tation energies for higher states that are greater than those
obtained from the nonlocal chiral N3LO NN interaction and
experimental data, with a large 0p3/2-0p1/2 spin-orbit split-
ting. This discrepancy suggests that the spin-orbit interaction

component in the local chiral N3LO NN interaction is stronger
than in its nonlocal counterpart. Consequently, incorporating
an additional 3N interaction into the local chiral N3LO NN in-
teraction is necessary to accurately describe the properties of
p-shell nuclei. In the case of 10Be, the 0+

2 and 2+
3 states display

a cluster structure [58,59]. Notably, the excitation energies
obtained from NCSM calculations, employing both local and
nonlocal chiral N3LO NN interaction, are significantly higher
than experimental data.

The ground-state energies and the charge radii of light
p-shell nuclei have been calculated utilizing the NCSM with
both local and nonlocal chiral N3LO NN interaction. These
results are illustrated in Fig. 4. For both observables, we per-
formed extrapolations from NCSM calculations within fixed

FIG. 3. The calculated low-lying spectra of p-shell nuclei with NCSM based on local and nonlocal chiral N3LO NN interaction, along
with experimental data [57].
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FIG. 4. Similar to Fig. 3, but for (a) the ground-state energies and (b) the charge radius for the light p-shell nuclei. The experimental data
of the ground-state energies are taken from Ref. [57], whereas the experimental data of the charge radii are taken from Ref. [60].

model spaces to infinite model space; the associated error bars
reflect the uncertainty inherent in this extrapolation process.
The extrapolation method employed for the ground-state ener-
gies remains consistent with previously described approaches.
For the charge radius, the extrapolation technique described
in Ref. [46] is adopted. Interestingly, the nonlocal chiral
N3LO NN interaction gives an overbinding in the ground state
energies, in contrast to the local chiral N3LO NN interaction,
which more accurately mirrors experimental data for the en-
ergies of light p-shell nuclei. For comparison, experimental
charge radii data are sourced from Ref. [60], except 8Be, for
which no experimental measurements exist as it is unbound.
Due to the challenging nature of charge-radius convergence
within NCSM calculations, the error margins associated with
these extrapolations are notably large. Notably, our results
show that charge radii predicted by both the local and the non-
local chiral N3LO NN interactions fall below the experimental
data. Despite this, charge radius trends obtained from the
local chiral N3LO NN interaction show a more pronounced
agreement with the experimentally observed data than those
obtained from the nonlocal interaction.

B. Ab initio VS-IMSRG calculations for neutron-rich
oxygen isotopes

The proton-magic oxygen chain has been at the forefront of
deepening our understanding of nuclear structure at extreme
isospins. Experiments have established the neutron drip line
of oxygen isotopes is 24O [61]. Recent experiments [62] have
discerned that the oxygen isotopes 27,28O are unbound, and the
data agree well with Gamow shell-model calculations [31,63].
Additionally, 16O is a double-magic nucleus, while its isotopes
14,22,24O also exhibit doubly magic behaviors [64,65].

The ground-state energies and the excitation energies of
the first 2+ states for neutron-rich oxygen isotopes have
been calculated using ab initio VS-IMSRG with the local
chiral N3LO NN interaction. For comparison, calculations
using both the nonlocal chiral N3LO NN interaction and the

chiral NN + 3N EM1.8/2.0 interaction were performed. The
results of the ground-state energies of the neutron-rich oxy-
gen isotopes are illustrated in Fig. 5, along with available
experimental data, which reveal that the lowest ground-state
energy at isotope A = 24, indicating the drip line at 24O. Con-
trarily, the nonlocal chiral N3LO NN interaction predictions
deviate from experimental observations, erroneously extend-
ing the drip line beyond 28O due to consistently decreasing
energies. However, ab initio VS-IMSRG calculations utilizing
the EM1.8/2.0 NN + 3N interaction closely align the ex-
perimental data, accurately pinpointing the neutron drip line
of oxygen isotopes at 24O. The results from the local chi-
ral N3LO NN interaction, while overestimating ground-state

FIG. 5. Ground-state energies of oxygen isotopes A = 17–28.
Black stars show the experimental results, red dots (blue squares)
denote the calculated results using the chiral N3LO local (nonlocal)
potential with only NN interaction, and orange triangles present the
calculated results using the EM1.8/2.0 NN + 3N potential.
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FIG. 6. Similar to Fig. 5, but for the energies of the first 2+

excited state for even-even oxygen isotopes with A = 18–26.

energies, also correctly suggest the drip line at 24O. Remark-
ably, while previous studies highlighted the essential role of
the 3N interaction in accurately delineating the drip line in the
oxygen isotopic chain, our present results indicate that the lo-
cal NN interaction alone, without incorporating the 3NF, can
effectively predict the neutron drip line for oxygen isotopes.
This discovery provides new perspectives on the complexities
of nuclear forces and their influence on isotopic structural
properties, warranting further exploration. However, the ob-
tained ground-state energies for 25−28O with respect to the
24O ground state are significantly unbound when compared
to the results of the EM1.8/2.0 NN + 3N interaction and
experimental data.

The E (2+) of even-even nuclei is a crucial observable,
and its variation can yield insights into shell evolution

[7,25,32,36,66,67]. Figure 6 illustrates the E (2+) results
across a range of different potentials for A = 18–26. Exper-
imental data indicate that E (2+) values at A = 22 and 24 are
higher than those in neighboring oxygen isotopes, suggesting
that 22,24O are double-magic nuclei with closed subshells at
neutron numbers N = 14 and 16, respectively. The results
from the nonlocal chiral N3LO NN interaction clearly depict
the closed subshell at 24O, though the closure at 22O appears
less defined, with E (2+) values of 18−22O falling below the
experimental data. Incorporating the 3N interaction, the re-
sults from the EM1.8/2.0 NN + 3N interaction closely match
experimental data of E (2+

1 ). Conversely, the results calcu-
lated by the chiral local N3LO potential, while underscoring
the closed subshell structures at 22,24O, yield E (2+) values
significantly higher than experimental data, which indicate
that the subshell gaps for ν0d5/2-ν1s1/2 and ν1s1/2-ν0d3/2 are
larger than experimental data. Moreover, the E (2+) levels of
18,20O are also smaller than experimental data. Moreover, this
local chiral NN interaction displays a pronounced spin-orbit
splitting effect (0d5/2 − 0d3/2), especially evident in the calcu-
lated E (2+) trends in the vicinity of 22,24O and ground-state
energies of oxygen drip-line nuclei. This observation under-
scores the importance of incorporating 3NF in calculations to
more comprehensively reproduce details related to the neutron
drip line and shell evolution in oxygen isotopes.

The charge radii and the corresponding differences in the
mean-square charge radii for oxygen isotopes with A = 16–
24 have also been calculated with VS-IMSRG using local
and nonlocal chiral N3LO NN interactions, as well as the
EM1.8/2.0 NN + 3N interaction. The calculated charge radii
and differences in the mean-square charge radii for oxygen
isotopes are shown in Figs. 7(a) and 7(b), respectively, along
with available experimental data taken from Refs. [60,68].
The VS-IMSRG calculations with both local and nonlocal
chiral N3LO NN interactions yield charge radii of neutron-
rich oxygen isotopes that are significantly smaller than

FIG. 7. Similar to Fig. 5, but for (a) the charge radius of oxygen isotopes with A = 18–24 and (b) the related difference in the mean-square
charge radius.
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experimental data. This discrepancy is significantly improved
upon incorporating the 3NF, in which the VS-IMSRG cal-
culations with the NN + 3N EM1.8/2.0 interaction closely
mirror the experimental data. Moreover, it is worth noting
that all of these VS-IMSRG calculations fail to reproduce the
experimentally observed peaks of charge radii at 18O and 23O.
For the differences in the mean-square charge radii for oxygen
isotopes, the VS-IMSRG calculations with local and nonlo-
cal chiral N3LO NN interactions cannot reproduce the trend,
given that 〈r2

c 〉AO − 〈r2
c 〉16O decreases as the mass number A

increases, and demonstrate a decreasing trend without any
peaks, located below the experimental values. Similar to the
results for the charge radii, the calculations with the NN + 3N
EM1.8/2.0 interaction markedly refine the differences in the
mean-square charge radii, drawing them into closer proximity
with the experimental data. The above results underscore the
pivotal role of 3NF, which should be considered in the ab
initio calculations for the charge radii.

IV. SUMMARY

In this work, we have utilized the new local chiral
N3LO NN interaction to calculate the ground-state energies,
low-lying spectra, and charge radii of light p-shell nuclei, as
well as the ground-state energies, E (2+

1 ), and charge radii of
the neutron-rich oxygen isotopes. This local chiral N3LO NN
interaction is characterized by a weaker tensor force compared
to other chiral potentials. Furthermore, we also perform the ab
initio calculations with the nonlocal chiral N3LO NN poten-
tial interaction and the NN + 3N interaction for comparison.
This new local chiral N3LO NN potential can well reproduce

exotic properties of the nuclei that only can be correctly cal-
culated by including the 3N interaction in the nonlocal NN
interaction, such as the low-lying states of 10,11B, the charge
radii of light p-shell nuclei, and the neutron-rich drip lines of
oxygen isotopes. However, the local chiral N3LO NN inter-
action cannot reproduce the charge radii and the difference
in the mean-square charge radii of oxygen isotopes, which
suggests that the 3NF should be taken into account in the ab
initio calculations with the local chiral interaction. Moreover,
compared to the experimental data and the NN + 3N results,
we find that the component of the spin-orbit splitting effect
in this local potential is stronger than the realistic nuclear
force, and the 3N interaction must be taken into account to
accurately explore the properties of the exotic structure.
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