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K-isomeric states in the isotopic and isotonic chains of 178Hf
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We study the evolution of Kπ = 6+ and 8− two-quasiparticle (q.p.) configurations in the isotopic and isotonic
chains of even-even deformed nuclei around 178Hf and their ability to describe series of observed K-isomer
excitations within the framework of a Skyrme Hartree-Fock-BCS (SHFBCS) approach using SIII interaction
and seniority pairing strengths with self-consistent blocking. We apply the approach along the prescription of
Minkov et al. [Phys. Rev. C 105, 044329 (2022)] used to describe K isomers in the actinide and transfermium
mass regions. The calculations allow us to identify the regions where proton or neutron configurations or their
mixture may be responsible for the K-isomer formation. The obtained results provide a detailed test for the
Skyrme SIII interaction used and outline the limits of applicability of the overall SHFBCS approach in the
regions of well deformed nuclei. The study suggests that similar systematic analysis can be implemented in the
heavier mass regions whenever enough data are available.
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I. INTRODUCTION

More than a century after their discovery, nuclear iso-
mers [1,2] remain one of the most exciting subjects in the
nuclear structure study [3]. In particular, the K isomers, for
which a continuous stream of data comes from the nowa-
days advanced experimental facilities, provide new detailed
information about the intrinsic shell-structure configurations
which govern the appearance of nuclear metastable states,
offering at the same time a stringent test for the effective
interactions used in the many-body theories of the nucleus.
In the last decade the wealth of data has firmly expanded from
the regions of moderate masses, such as the rare-earth and
translanthanide (72 � Z � 82) nuclei [4] (for recent works
see [5–7]), to the region of very heavy and superheavy nu-
clei [8–16] (for recent comprehensive review on transuranium
nuclei see [17]). Up to date collections of data on nuclear
isomers are available in [18] and [19].

These experimental developments have been mirrored by
a number of model descriptions within diverse theoretical
approaches ranging from Nilsson-Strutinsky or Woods-Saxon

*Contact author: nminkov@inrne.bas.bg
†Contact author: bonneau@lp2ib.in2p3.fr

mean fields [20] (see references therein) to many-body
self-consistent theories [21]. In the former direction an
advance in the K-isomer study was made through the so-
called configuration-constrained energy surfaces in which the
Nilsson quantum numbers of given single-particle (s.p.) con-
figuration responsible for the isomer formation are traced
through level crossings over the deformation surface (e.g., see
[22–24] for applications to transactinides and superheavy nu-
clei). Further development in this direction was made by using
the configuration-constrained rotation approach [25,26] and
the projected shell model (e.g., see [27–29] for applications in
rare-earth and heavier nuclei) allowing for the study of rota-
tion spectra built on K-isomeric states. More recent progress
in the K-isomer study was made in the framework of the
cranked Nilsson shell model with high-multipolarity defor-
mations and particle-number conservation achieved through
diagonalization of the Hamiltonian in an appropriately trun-
cated cranked many-particle configuration space (see [30–32]
for applications to neutron-rich rare-earth nuclei and 254No).
Regarding the Woods-Saxon potential, it was applied in a
deformed shell model with pairing interaction to study the
influence of octupole deformation on the two-q.p. energy
and magnetic moments in the K-isomeric states in the range
from rare-earth to actinide and transfermium nuclei including
270Ds [33]. An advanced use of the Woods-Saxon mean field

2469-9985/2024/109(6)/064315(10) 064315-1 ©2024 American Physical Society

https://orcid.org/0000-0002-4416-6497
https://ror.org/0276rjc88
https://orcid.org/0000-0003-1470-0764
https://orcid.org/0000-0002-1885-8238
https://ror.org/034a4bk84
https://ror.org/01g3mb532
https://ror.org/026w31v75
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.064315&domain=pdf&date_stamp=2024-06-13
https://doi.org/10.1103/PhysRevC.105.044329
https://doi.org/10.1103/PhysRevC.109.064315


N. MINKOV et al. PHYSICAL REVIEW C 109, 064315 (2024)

was made in a macroscopic-microscopic model framework
allowing for the prediction of a large amount of multi-
q.p. configurations candidates for high-K isomeric states in
very heavy and superheavy nuclei [34–36]. A macroscopic-
microscopic approach based on a two-center shell model has
been also applied for the prediction of variety of K-isomeric
states in superheavy nuclei [37] as well as for the study of
the Coriolis mixing effect on the isomer lifetimes in heavy
nuclei [38].

In the latter direction—many-body self-consistent
theories—it has been shown that the energy-density-
functional (EDF) theory, in its nonrelativistic Skyrme and
Gogny as well as relativistic (covariant density functional)
realizations, is capable of reproducing q.p. spectra in heavy
nuclei [39] (see references therein). A deformed Hartree-Fock
(HF) approach with surface delta residual interaction and
angular momentum projection was applied to describe known
K-isomers—and predict possible unobserved ones—in the
rare-earth mass region (Gd and Dy isotopes) [40]. In a recent
work of the present authors a Skyrme Hartree-Fock-BCS
(SHFBCS) approach with SIII interaction and self-consistent
blocking was applied to describe two-q.p. energies and
predict magnetic dipole moments in K-isomeric states of
actinide and transfermium nuclei [41]. Also in a recent
work, a Hartree-Fock-Bogoliubov (HFB) approach with
density-dependent Gogny force used with both blocking
and equal filling approximations was successfully applied
to two- and four-q.p. K-isomeric states in 254No, 178Hf
and several nuclei of the tungsten isotopic chain [42]. An
advanced application of the covariant density functional
theory (CDFT) was made in works [43,44], where relativistic
Hartree-Bogoliubov (RHB) calculations with blocking
and time-reversal symmetry breaking were performed for
two-q.p. K-isomer configurations in transactinide nuclei
around N = 162 [43] and nuclei in the region from Er
to Pb [44].

We remark that while in the transactinide and superheavy
nuclei the collection of data on K-isomers still needs to
expand, in the rare-earth and translanthanide nuclei the avail-
able data already encompass rather long continuous chains
of isotopes and isotones [4]. The latter allow one not only
to follow the evolution of the particular proton or neutron
configurations in the K-isomer structure, but also to examine
the capability of the effective interactions to reproduce it as
well as to explore the limits of applicability of the model
approximations used. Such a study was made in the above
mentioned Ref. [44] (in the CDFT framework), where the
RHB calculations performed for the Kπ =6+ and 8− isomeric
energies in the hafnium isotopic and N = 104, 106 isotonic
chains provided a detailed test of the used density-dependent
meson-exchange DD-ME2 and point-coupling DD-PC1 func-
tionals. On the other hand, so far similar investigations within
the non-relativistic EDF approach, especially using Skyrme
effective interaction, have not been done in this mass re-
gion. Moreover, except for the recent SHFBCS study in the
transactinide region [41], to our knowledge no other specific
application of the Skyrme EDF was made to investigate K-
isomeric states. A number of works such as Ref. [39] (and
works quoted therein) describe a variety of q.p. excitations

in nuclei of different mass regions, but without particular
focus on K-isomer properties (see also [45–47]). In this aspect
testing the Skyrme effective interaction on the long isotopic
and isotonic series of K-isomeric states in the rare-earth nuclei
would be important not only for assessing the force itself but
also for achieving a new specific explanation of the observed
and predicted systematic behavior of the s.p. excitations and
nuclear shell structure in this mass region.

Motivated by the above, the purpose of the present work
is to explore the series of K-isomeric states in the isotopic
and isotonic chains to which 178Hf belongs with the use of
the Skyrme EDF. Based on the success of our recent work on
transactinide nuclei [41] we now assess for the first time the
capability of the Skyrme effective interaction to reproduce the
systematic behavior of K-isomer energies and magnetic dipole
moments in the long series of nuclei in the rare-earth and
translanthanide region. We thoroughly examine the relevance
of different proton and neutron two-q.p. configurations and
their potential mixing to explain the formation mechanism and
properties of the K-isomer excitations in dependence on the
underlying nuclear shell structure.

We consider the series of Kπ =6+ and 8− two-
quasiparticle (q.p.) excitations in the isotopic chains of
168–184Hf and 170–186Hf, respectively, and the Kπ =8− se-
ries in the N =106 isotonic chain from 170Gd to 182Os. As
usual K and π denote respectively the projection of the to-
tal nuclear angular momentum on the symmetry axis in the
body-fixed frame and the intrinsic parity. We apply a selfcon-
sistent Skyrme-Hartree-Fock plus Bardeen-Cooper-Schrieffer
(SHFBCS) approach with the SIII parametrization [48] to
calculate the Kπ =6+ and 8− excitation energies using the
same numerical algorithm as for the description of K isomers
in the regions of heavy actinide and transfermium nuclei [41].
The configurations to be blocked are determined as follows:

(i) For the Kπ =6+ isomeric state we consider the
two-neutron ( 5

2
−

[512], 7
2

−
[514])n and the two-proton

( 5
2

+
[402], 7

2
+

[404])p blocked configurations, which
are the lowest two in the 178Hf nucleus, and fol-
low them in even-A Hf isotopes between A=168 and
A=186.

(ii) For the Kπ =8− states, we take the two-
neutron ( 7

2
−

[514], 9
2

+
[624])n and the two-proton

( 7
2

+
[404], 9

2
−

[514])p blocked configurations, which
are the lowest two in the 178Hf nucleus, and follow
them in Hf isotopes between A=168 and A=186,
and in N =106 even-A isotones between A=170 and
A=182.

When relevant, we also consider energetically favorable
alternate configurations (see Sec. III).

As will be shown below, the obtained series of theoretical
energy levels and attendant magnetic moments compared to
experimental data allow us to identify the configurations most
probably contributing to the formation of the considered K-
isomer excitations along the corresponding chains of nuclei.
Also, the comparison with other theoretical approaches, such
as the CDFT applied in the same mass region [44], allows us to
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assess on the same footing the applicability of the SIII Skyrme
parametrization in the study of nuclear K-isomer excitations.

In Sec. II we briefly present the SHFBCS approach used
together with some details on the pairing and basis parameters
choice and the computational algorithm. Numerical results are
presented and discussed in Sec. III, before presenting some
concluding remarks in Sec. IV.

II. THEORETICAL FRAMEWORK

The theoretical approach used here includes a Skyrme
HFBCS energy-density functional with cylindrical symmetry
(axial deformation) in the intrinsic frame and self-consistent
blocking of the single-particle orbitals entering the excited
two-quasiparticle configuration [41]. We employ the SIII
Skyrme parametrization [48] within a “minimal” scheme in-
cluding the spin and current vector time-odd fields only, as
explained in Ref. [49]. The latter cause a time-reversal sym-
metry breaking at the one-body level in the excited states
leading via the self-consistent blocking to a removal of the
Kramers degeneracy in the single-particle energy spectrum.

The HF Hamiltonian is diagonalized and the single-particle
spectrum is obtained as an expansion in the axially deformed
harmonic-oscillator basis [50] truncated at the N0 + 1 = 15
major oscillator shell. The matrix elements are calculated
through quadratures using 30 Gauss-Hermite mesh points in
the z direction and 15 Gauss-Laguerre mesh points in the per-
pendicular direction. The basis parameters b and q (defined in
Ref. [50]) are optimized for the considered nuclei. Because the
resulting parameters vary only marginally over the considered
chains of isotopes and isotones, with a very small effect on
excitation energies of less than a couple of tens of keV (barely
visible in the figures below) and on magnetic moments of a
few thousands of the nuclear magneton μN , we retain the same
values b = 0.480 and q = 1.185 for all nuclei. Moreover this
allows us to make comparisons between different nuclei with
the same single-particle basis.

The pairing correlations are taken into account through
the expectation values of a seniority residual interaction in
the BCS states with a subsequent blocking at each iteration
of the single-particle states entering the excited state configu-
ration. The nucleon-number dependence of the corresponding
matrix elements is parameterized as in Ref. [49]. The BCS
equations are solved for all single-particle states with a smear-
ing factor f (ei ) = [1 + exp ((ei − X − λτ )/μ)]

−1
where ei is

the energy of the single-particle state |i〉, X =6 MeV is a
truncation parameter, λτ is the chemical potential for τ = n, p
(neutrons and protons), and μ=0.2 MeV is a diffuseness pa-
rameter. The neutron and proton pairing-strength constants are
taken for all considered nuclei as Gn = 16 MeV and Gp = 15
MeV based on earlier proposed concept of overall adjustment
with respect to experimental estimations for the moment of
inertia [51] (see also Sec. IV in Ref. [41]).

The theoretical two-quasiparticle excitation energy is de-
termined as

E∗
th(Kπ ) = E2qp

tot (Kπ ) − EGS
tot , (1)

where E2qp
tot (Kπ ) is the total HFBCS energy of the nucleus,

obtained in the solution with blocked isomer configuration

orbitals and EGS
tot is the total energy in the ground-state solu-

tion. We emphasize that here the K-isomer excitation energy
is not simply the sum of the quasiparticle energies of two neu-
trons/protons that would be calculated from the GS solution.
As a difference between the total energies obtained in the
solutions for the blocked 2q.p. configuration and the ground
state, E∗

th(Kπ ) incorporates the relevant nuclear bulk proper-
ties determined in the self-consistent calculations. Also, we
note that although the HFBCS is not a configuration-mixing
approach it takes into account the quasiparticle interaction
through the one-body reduction of the two-nucleon potential.
The same is valid for the CDFT approach used in [43,44].
As mentioned in Sec. I the relevance of the Skyrme EDF
for the description of q.p. excited bandheads was pointed out
in a number of earlier works (e.g., see Refs. [39,45–47]),
while the particular use of the Skyrme SIII parametrization
for description of K-isomer excitations in transactinide nuclei
was demonstrated in our recent work [41]. Moreover, the latter
was proved to be capable of describing K-isomeric states in
the presence of octupole deformation [52].

The magnetic dipole moments in the two-quasiparticle
configurations are calculated by taking into account core-
polarization effects as explained in Ref. [49]. In the same
reference, the particular choice made to estimate the collective
gyromagnetic ratio [as calculated in Eq. (13) of Ref. [49]]
is detailed: (i) the BCS pairs are built from s.p. canonical
basis states which are almost time conjugated, (ii) the blocked
pairs are removed from the summations, and (iii) the same
quasiparticle energy is used for both members of a BCS pair.

III. NUMERICAL RESULTS AND DISCUSSION

We performed numerical SHFBCS calculations for the
Kπ = 6+ and 8− lowest-energy neutron and proton two-
quasiparticle configurations in the isotopic and isotonic chains
of well-deformed nuclei around 178Hf, as explained above.
The results are given in Tables I and II, where the deforma-
tion characteristics of the considered isotopes/isotones are
expressed by the experimental R42 = E (4+

1 )/E (2+
1 ) ratio of

the energies of the first two members of the ground-state rota-
tional band. For a good rotator the R42 value should be larger
than or of the order of 3.2. For each nucleus we compare the
obtained neutron and proton two-quasiparticle excitation en-
ergy E∗τ

th (Kπ ) (τ = n, p) with the experimental value for the
corresponding K-isomeric state [4,18]. In a few cases, where
no data are available, we still give the theoretical predictions
for better understanding of the evolution of isomeric energies
along the considered isotopic and isotonic chains. In the tables
we also give theoretical magnetic dipole moments calculated
for each two-quasiparticle configuration and compare them
with experimental data where available.

It should be noted that the considered Hf isotopes are
part of the region of collective rotation with an experimental
R42 ratio varying in the range 3.11–3.19 in 168–170Hf and a
value of 3.31 in 180Hf [53] (see Table I). The correspond-
ing quadrupole deformation parameter β takes values β ≈
0.27–0.28 in 168Hf and 180Hf and β ≈ 0.30–0.31 in 170–176Hf
[54]. In the considered N = 106 even isotones, the good-rotor
character is experimentally confirmed only from 176Yb to
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TABLE I. Theoretical (HFBCS) excitation energies E∗n
th and E∗p

th (in MeV) and magnetic dipole moments μn
th and μ

p
th (in nuclear magneton

units) for the lowest-energy neutron and lowest-energy proton Kπ = 6+ and Kπ = 8− configurations in even Hf (Z = 72) isotopes from
A = 168 to A = 186, compared with the experimental Kπ = 6+ [4] and Kπ = 8− [18] isomeric energies (except for the 8− isomeric energy in
170Hf taken from Ref. [19]) Magnetic dipole moments are taken from Refs. [56,57] (with the published references). Experimental R42 ratios
[53] are also given (third column). Blank entries correspond to missing data.

A N R42 Kπ Neutron configuration E∗n
th Proton configuration E∗p

th E∗
exp μn

th μ
p
th μexp

168 96 3.110 6+ (5/2+[642], 7/2+[633]) 2.626 (5/2+[402], 7/2+[404]) 2.236 −1.249 5.740

8− (7/2−[514], 9/2+[624]) 5.277 (7/2+[404], 9/2−[514]) 2.348 0.251 7.399

170 98 3.194 6+ (5/2+[642], 7/2+[633]) 1.821 (5/2+[402], 7/2+[404]) 2.301 1.773 −1.357 5.652

8− (7/2−[514], 9/2+[624]) 4.663 (7/2+[404], 9/2−[514]) 2.265 2.183 0.148 7.348

172 100 3.248 6+ (5/2+[642], 7/2+[633]) 2.283 (5/2+[402], 7/2+[404]) 2.339 1.685 −1.284 5.670 +5.6(6)[58]

8− (7/2−[514], 9/2+[624]) 3.722 (7/2+[404], 9/2−[514]) 2.129 2.006 0.062 7.338 +7.93(6)[58]

174 102 3.268 6+ (5/2−[512], 7/2−[514]) 2.069 (5/2+[402], 7/2+[404]) 2.279 1.549 0.073 5.676 +5.40(5)[58]

8− (7/2−[514], 9/2+[624]) 2.774 (7/2+[404], 9/2−[514]) 1.910 1.798 0.150 7.335

176 104 3.284 6+ (5/2−[512], 7/2−[514]) 1.061 (5/2+[402], 7/2+[404]) 2.159 1.333 −0.029 5.697

8− (7/2−[514], 9/2+[624]) 1.737 (7/2+[404], 9/2−[514]) 1.598 1.559 0.267 7.342 7.93

178 106 3.291 6+ (5/2−[512], 7/2−[514]) 1.913 (5/2+[402], 7/2+[404]) 2.143 1.554 0.106 5.703 +5.81(5)[58]

8− (7/2−[514], 9/2+[624]) 1.136 (7/2+[404], 9/2−[514]) 1.349 1.147 0.312 7.349 +3.09(1)[59]

180 108 3.307 6+ (5/2−[512], 7/2−[514]) 3.748 (5/2+[402], 7/2+[404]) 2.194 1.703 0.168 5.695

8− (7/2−[503], 9/2+[624]) 3.009 (7/2+[404], 9/2−[514]) 1.179 1.142 −1.922 7.342 +8.7(10)[60]

182 110 3.295 6+ (5/2−[512], 7/2−[503]) 4.010 (5/2+[402], 7/2+[404]) 2.223 −2.050 5.755

8− (7/2−[503], 9/2+[624]) 3.204 (7/2+[404], 9/2−[514]) 1.081 1.173 −1.879 7.378

184 112 3.264 6+ (5/2−[512], 7/2−[503]) 4.052 (5/2+[402], 7/2+[404]) 2.264 −2.042 5.822

8− (7/2−[503], 9/2+[624]) 3.228 (7/2+[404], 9/2−[514]) 1.024 1.272 −1.929 7.414

186 114 6+ (5/2−[512], 7/2−[503]) 4.091 (5/2+[402], 7/2+[404]) 2.290 −2.021 5.895

8− (7/2−[503], 9/2+[624]) 3.209 (7/2+[404], 9/2−[514]) 1.057 −2.032 7.455

180W (R42 ≈ 3.3), whereas the R42 value is somewhat lower
in 182Os (about 3.15) and experimental data for 170Gd up to
174Er are unavailable in Ref. [53].

A. Isomeric energies

The energy levels obtained in our calculations for Kπ = 6+
excitations in the 168–186Hf isotopic chain are plotted in Fig. 1
as function of the neutron number. One finds that the en-

TABLE II. Theoretical (HFBCS) excitation energies E∗n
th and

E∗p
th (in MeV) and magnetic dipole moments μn

th and μ
p
th (in

nuclear magneton units) for the lowest-energy Kπ = 8− neutron
( 7

2

−
[514], 9

2

+
[624]) and proton ( 7

2

+
[404], 9

2

−
[514]) configurations,

in even N = 106 isotones from A = 170 to A = 182, compared with
the experimental Kπ = 8− isomeric energies [4] and magnetic dipole
moments given by Refs. [56,57] (with the published references).
Experimental R42 ratios [53] are also given. Blank entries correspond
to missing data.

Nucleus R42 E∗n
th E∗p

th E∗
exp μn

th μ
p
th μexp

170
64 Gd 1.118 6.746 0.331 7.491

172
66 Dy 1.060 5.629 1.278 0.356 7.520

174
68 Er 1.018 4.328 1.112 0.334 7.571

176
70 Yb 3.31 1.028 3.012 1.050 0.334 7.422 −0.151(15)[59]

178
72 Hf 3.291 1.136 1.349 1.147 0.312 7.349 +3.09(1)[59]

180
74 W 3.26 1.276 2.465 1.529 0.256 7.354

182
76 Os 3.154 1.365 3.314 1.831 0.253 7.391

ergies corresponding to the two-proton ( 5
2

+
[402], 7

2
+

[404])p

blocked configuration (red bars) follow the overall behavior
of experimental data, overestimating them by between 0.5 and
0.8 MeV (see also Table I). On the other hand the energy levels

FIG. 1. Theoretical Kπ = 6+ excitation energies of low-lying
two-neutron and two-proton blocked configurations obtained in even
Hf isotopes from A = 168 to A = 186 compared with experimental
data (in black) [4].
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obtained with the two-neutron ( 5
2

−
[512], 7

2
−

[514]) blocked
configuration (blue bars) approach the experimental levels
more closely in 174–178Hf isotopes, but yield much too high ex-
citation energies for lighter and heavier Hf isotopes. In 176Hf
the theoretical value of E∗n

th (6+) = 1.061 MeV underestimates
the experimental value of 1.333 MeV by 272 keV while in
174Hf and 178Hf the calculations overestimate the experimen-
tal value by 520 and 359 keV, respectively (see Table I).
One may thus consider that in 176Hf the structure of the 6+

isomer is dominated by the two-neutron ( 5
2

−
[512], 7

2
−

[514])
configuration while for 174Hf and 178Hf some admixture with
the two-proton ( 5

2
+

[402], 7
2

+
[404]) configuration is likely to

occur. The latter was actually found experimentally a long
time ago from two-nucleon transfer reactions in 178Hf with
a dominance (69%) of the ( 5

2
+
, 7

2
+

) proton configuration with
the Nilsson quantum numbers [402] and [404] (see Table I
of Ref. [55]). Further away from these three Hf isotopes, the
two-neutron ( 5

2
−

[512], 7
2

−
[514]) configuration is definitely

off, while the two-proton configuration still follows the ex-
periment from above.

One notices that in the above considered Kπ =6+ excita-
tions the leading components of the calculated single-particle
wave functions in the axially deformed harmonic-oscillator
expansion, namely ( 5

2
−

[512], 7
2

−
[514]) for the two-neutron

configuration and ( 5
2

+
[402], 7

2
+

[404]) for the two-proton con-
figuration, agree with the Nilsson quantum numbers proposed
earlier in the literature (see, e.g., [53] for references). How-
ever, we find an alternative configuration to account for the
Kπ = 6+ isomer in the 170,172Hf isotopes, namely the neutron
( 5

2
+

[642], 7
2

+
[633]) two-quasiparticle configuration, as can be

seen in Fig. 2 in the single-particle spectra of 170Hf. In partic-
ular, a remarkable agreement with experiment is obtained for
this configuration in 170Hf.

Here it is interesting to make a comparison with the analo-
gous result obtained in Ref. [44] through RHB calculations
with DD-ME2 and DD-PC1 functionals. First, comparing
our Fig. 1 with Fig. 6 in [44] (RHB with DD-ME2) we
notice a similarity in the shapes of the energy curves for
the two-neutron ( 5

2
+

[642], 7
2

+
[633]), ( 5

2
−

[512], 7
2

−
[514]) and

two-proton ( 5
2

+
[402], 7

2
+

[404]) configurations as functions
of the neutron number N . However, in the RHB calculation
the “neutron” curves show much shallower minimum with N
while the “proton” curve appears higher in energy compared
to our SHFBCS calculation. Then, comparing the energies
of the lowest configurations obtained for the different iso-
topes in each calculation, our Table I and Table II in [44]
(also compare our Fig. 1 with Fig. 7 in [44]), we see that
for 170Hf and 176Hf the 6+ energies obtained in the two
approaches are rather similar. For 172Hf and 174Hf the RHB
calculations provide better agreement with the experiment
while for 178Hf and 180Hf better agreement is obtained in our
SHFBCS calculation. The overall quality of the two model
descriptions of the Kπ =6+ excitations in Hafnium isotopes
looks similar, which points to the similar spectroscopic char-
acteristics of the interactions used in the two approaches.
Further detailed comparison of the Skyrme SIII HFBCS

approach and the RHB approach with DD-ME2 and DD-PC1
on the basis of K-isomer description might be valuable but is
beyond the scope of this work.

Next, we investigate the Kπ = 8− state with
the two-neutron ( 7

2
−

[514], 9
2

+
[624]) and two-proton

( 7
2

+
[404], 9

2
−

[514]) blocked configurations. The obtained
energy levels are plotted in Fig. 3 as functions of N . Similarly
to the 6+ isomer, we observe that the energy of the two-proton
configuration closely follows the experimental energies, with
an especially good agreement in 176Hf and 180Hf, with an
overestimation of the experimental isomeric energies of
only about 40 keV, as can be seen in Table I. At the same
time the two-neutron configuration compares favorably
with experiment only in the 176Hf and 178Hf isotopes,
with an overestimation of about 180 keV in 176Hf and an
underestimation of only about 10 keV in 178Hf. In the other
isotopes the theoretical two-neutron blocked configuration
energy is obtained high above the experimental energy and
anyway at excitation energies where a description of excited
states as being of a pure two-q.p. nature is most doubtful.
Moreover one may note that for A � 180 the two-neutron
( 7

2
−

[503], 9
2

+
[624]) configuration turns out to be energetically

more favorable than the ( 7
2

−
[514], 9

2
+

[624]) configuration.
For N = 106 the Fermi level lies in between the two

7
2

−
and 9

2
+

neutron s.p. levels relevant to form an 8− two-
q.p. configuration. The corresponding excitation energy lies
slightly below the proton ( 7

2
+
, 9

2
−

) configuration describing
adequately the experimental 8− isomeric states below N =
104 and above N = 106. As already pointed out long ago
(see [55] and references quoted therein) the neutron-proton
residual interaction yields a mixing of these two 8− states in
178Hf resulting in two states, the isomeric one at 1147 keV
and another 338 keV above. As pointed out in Ref. [55] (see
their Table I) the isomeric 8− state is considered from two
nucleons transfer data to be mostly of a neutron nature (64%).
The fact that our neutron unperturbed state energy is lower
than its proton counterpart points rightly in this direction.

Moving away from N = 106, apart from N = 104, the
location of the Fermi level in the neutron s.p. spectra raises
considerably the excitation energy of this two-q.p. neutron
8− configuration, disqualifying it to describe the 8− isomer.
In 176Hf the quasidegeneracy of the neutron 7

2
+

and 1
2

−
s.p.

levels does not lower much the Fermi level below its N = 106
position, allowing for a mixing of the two neutron and pro-
ton configurations in the 8− isomeric state where its proton
component should probably be dominant in view of its lower
unperturbed energy as compared to the neutron one.

The best reproduction of the 8− isomeric energy is
thus achieved in 176,178,180Hf, which also represent the best
rotators in the isotopic chain with R42 = 3.28–3.31 (see Ta-
ble I). For all above considered Kπ = 8− excitations the
two-neutron configuration was obtained with the two-neutron
( 7

2
−

[514], 9
2

+
[624]) configuration, while for the two-proton

configuration we have ( 7
2

+
[404], 9

2
−

[514]), again corroborat-
ing earlier proposed Nilsson quantum numbers in the structure
of these configurations (see [53] and references therein). The
above results outline an overall region of the most rele-
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FIG. 2. Neutron and proton single-particle spectra in the ground-state solution of 170Hf. Upward and downward arrows denote spin
projections on the symmetry axis equal to +1/2 and −1/2, respectively, and the percentages given to their right are the weights of
the corresponding Nilsson quantum numbers in the single-particle wave function. The boldface neutron levels in blue correspond to the
lowest-energy ( 5

2

−
[512], 7

2

−
[514]) neutron configuration of the Kπ = 6+ state in 178Hf and neighboring even Hf isotopes, whereas the brown

levels correspond to the lowest-energy neutron configuration in the 170,172Hf isotopes. The boldface red proton levels identify the lowest-energy
Kπ = 8− proton configuration along the considered chain of even Hf isotopes.

vant applicability in the Hf isotopic chain of the SHFBCS
approximation with SIII interaction. Here comparing again
with Ref. [44] we notice a rather clear similarity in the
shapes of the curves obtained for the energy of the two-proton
configuration ( 7

2
+

[404], 9
2

−
[514]) as a function of N in our

calculation (Fig. 3) and in the RHB calculations with DD-
ME2 and DD-PC1 functionals (Fig. 11 in [44]). Also, we
notice the overall similarity in the quality of the two model
descriptions (compare our Table I and Table IV in [44]).

In Fig. 4 the excitation energies corresponding to the
Kπ = 8− isomer in the N = 106 isotones are given as func-
tion of the proton number Z . One notices that the theoretical
E∗n

th (8−) energy of the two-neutron ( 7
2

−
, 9

2
+

)n configuration

is closer to the experimental isomer energies as compared
to the two-proton configuration ( 7

2
+
, 9

2
−

)p which approaches
the experiment only in 178Hf (overestimating it by 202 keV),
while jumping to irrelevantly high values otherwise (see Ta-
ble II and discussion above). The two-neutron configuration,
on the contrary, provides a rather good agreement with the
data for 176Yb and for the above mentioned case of 178Hf
with an underestimation of respectively 22 and 11 keV. Aside
from these two nuclei the disagreement between theory and
experiment varies between a 90 and 470 keV underestimation
along the isotonic chain from 172Dy to 182Os (see Table II).
We remark that from 176Yb to 182Os the R42 ratio takes val-
ues between 3.31 and 3.15, which indicates their presence
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FIG. 3. Theoretical Kπ = 8− excitation energies of low-lying
two-neutron and two-proton blocked configurations obtained in even
Hf isotopes from A = 168 to A = 186 compared with experimental
data (in black) [18].

in the rotation part of the rare-earth region. No experimental
information on R42 is available in [53] for 170Gd, 172Dy, and
174Er, but one may guess that it should be close to the rotation
values. In all considered N = 106 isotones we obtain the same
Nilsson quantum numbers structure of the Kπ = 8− two-
neutron and two-proton configurations as in the case of the
Hf isotopic chain discussed above. We may thus conclude that
the present calculations provide reasonably motivated model
predictions for the Kπ = 8− isomer from 170Gd to 180W,
which identifies the corresponding region of applicability of
the present SHFBCS approach with the SIII parametrization.

FIG. 4. Theoretical Kπ = 8− two-quasiparticle excitation en-
ergies obtained from neutron (blue bars) and proton (red bars)
two-quasiparticle configurations for the N = 106 isotonic chain
between 170Gd and 182Os compared with experimental data (in
black) [18].

Here the comparison with the RHB calculations of Ref. [44]
shows the better quality of the present SIII HFBCS description
(compare our Table II and Table V in Ref. [44]). Finding the
source of discrepancy between the two approaches in the case
would be an interesting subject of a separate study.

B. Magnetic dipole moment

Regarding the magnetic dipole moments, given in Tables I
and II for the lowest-energy neutron and proton Kπ =6+ and
Kπ =8− configurations, we observe a rather stable behavior
of the values calculated for the two-proton configurations.
Indeed, along the Z = 72 isotopic chain, μ

p
th ranges for the

Kπ = 6+ states roughly from 5.7 µN to 5.9 µN , and for the
Kπ = 8− states roughly from 7.3 µN to 7.4 µN . Similarly,
along the N = 106 isotonic chain, μp

th ranges for the Kπ = 8−
states from about 7.3 µN to about 7.6 µN . This stability results
from the fact that, for each set of Kπ quantum numbers,
the same proton blocked states are involved in all consid-
ered nuclei. A stable behavior is also observed in the values
calculated for the Kπ = 8− two-neutron configuration along
the N = 106 isotonic chain, again because the same neutron
blocked states are involved in the corresponding nuclei.

In contrast, along the Hf isotopic chain, the calculated
magnetic dipole moments of the lowest-energy two-neutron
Kπ =6+ and Kπ =8− states exhibit some jumps which
are due to changes in the blocked configurations. A siz-
able negative value μn

th ≈−1.3µN is more precisely found

for the Kπ = 6+ two-neutron ( 5
2

+
[642], 7

2
+

[633]) configura-
tion in the 168–172Hf isotopes, whereas an almost vanishing
value of μn

th is obtained for the Kπ = 6+ two-neutron

( 5
2

−
[512], 7

2
−

[514]) configuration from 174Hf up to 178Hf, and
finally a rather large negative value μn

th ≈ −2 µN is found

for the Kπ = 6+ two-neutron ( 5
2

−
[512], 7

2
−

[503]) configura-
tion in the 182–186Hf isotopes. Similarly, μn

th takes a rather
small value (in μN units) between about 0.06 and 0.3 for
the Kπ = 8− two-neutron ( 7

2
−

[514], 9
2

+
[624]) configuration

in 168−178Hf isotopes, whereas it is large and negative, around
−2 µN , for the Kπ = 8− two-neutron ( 7

2
−

[503], 9
2

+
[624])

configuration in the 182–186Hf isotopes.
The almost vanishing values of μn

th found for the Kπ = 6+

two-neutron ( 5
2

−
[512], 7

2
−

[514]) configuration in 174–178Hf
can be ascribed to a cancellation mechanism explained in
detail in Ref. [41]. On the one hand, the two blocked neu-
tron orbitals have approximately opposite spin projections
on the symmetry axis, so that the spin contribution to the
intrinsic part μintr of μn

th almost vanishes. This opposite spin
content in the two-neutron blocked configuration is visible
in the dominant Nilsson quantum numbers 5

2
−

[512] (spin

up) and 7
2

−
[514]) (spin down) for the Kπ = 6+ states for

example. Note also that, for neutrons, the orbital-momentum
contribution to μintr is zero. On the other hand, the collective
contribution μcoll to μn

th is positive and of the order of a few
tenths of μN . One thus concludes that the net spin contribu-
tion from the intrinsic part of the magnetic dipole moment
is slightly negative and has approximately the same absolute
value as μcoll. This cancellation mechanism is less pronounced
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in the Kπ = 8− two-neutron states of 168–178Hf and in the
considered N = 106 isotones (see Table II) with μn

th between
about 0.06 and 0.35 (in μN units).

On the other hand, sizable (or even large) negative values
of μn

th testify to a spin-aligned two-neutron blocked con-
figuration, as can readily be seen in the dominant Nilsson
quantum numbers in the ( 5

2
+

[642], 7
2

+
[633]) (spins up) con-

figuration for the Kπ = 6+ isomeric state in the lighter Hf
isotopes, in the ( 5

2
−

[512], 7
2

−
[503]) (spins down) configura-

tion for the Kπ = 6+ state in the heavier Hf isotopes and in
( 7

2
−

[503], 9
2

+
[624]) (spins up) for the Kπ = 8− state in the

182–186Hf isotopes.
Overall we can say that the calculated value for the

magnetic dipole moment in a considered two-quasiparticle
configuration can strongly constrain the choice of the corre-
sponding neutron or proton blocked states whenever relevant
experimental information is available. In this context, the
comparison with μexp of μn

th and μ
p
th can help confirm the

configuration of an isomeric state. This is, e.g., the case
of the Kπ = 6+ isomer in 172,174,178Hf isotopes, which all
have a measured magnetic moment of about 5.6 µN that
is very well reproduced by the two-proton configuration
( 5

2
+

[402], 7
2

+
[404]). Moreover these isotopes have an excita-

tion energy of about 1.6 MeV, overestimated by about 600 keV
in our calculations. Although the lowest-lying two-neutron
configurations provide a significantly better agreement with
E∗

exp in 172,174,178Hf isotopes, they have a magnetic dipole
moment, in strong disagreement with the experiment. There-
fore the 6+ isomeric state of 172,174,178Hf isotopes is most
likely of pure proton two-quasiparticle character. In the same
spirit, the comparison of μn

th and μ
p
th with μexp for the 8−

isomeric state in 176Yb favors the interpretation of a neu-
tron two-quasiparticle configuration for this state. Indeed,
although μn

th has the wrong sign, it differs much less from
μexp than μ

p
th does. Moreover the calculated excitation en-

ergy of the neutron configuration agrees very well with
experiment.

The case of the Kπ = 8− isomeric state in 178Hf is par-
ticularly interesting for two reasons. On the one hand, the
measured magnetic dipole moment μexp = 3.09 µN consider-
ably differs from the one measured in the neighboring even
Hf isotopes, namely μexp = 7.93 µN in 176Hf and μexp =
8.7 µN in 180Hf. On the other hand, μn

th and μ
p
th calcu-

lated respectively for the lowest-energy neutron and proton
Kπ = 8− configurations in 178Hf strongly deviate from the
measured magnetic dipole moment. At the same time the
calculated excitation energies E∗n

th and E∗p
th are both in fair

agreement with experiment. Since the experimental value
μexp is kind of sandwiched between our theoretical estimates
μn

th and μ
p
th, one could guess that the 8− isomeric state in

178Hf is a mixture of the two-neutron (7/2−[514], 9/2+[624])
configuration and the two-proton (7/2+[404], 9/2−[514])
configuration.

We could even attempt to estimate the weight of each
configuration by the following simple model. Let us assume
that the 8− isomeric state |�〉 can be written as a superposi-
tion |�〉 = α |�n〉 + β |�p〉, where |�n〉 denotes the SHFBCS
solution corresponding to the two-neutron configuration and

|�p〉 the one corresponding to the two-proton configuration,
both normalized to unity.

The coefficients α and β are assumed to be real and to
satisfy α2 + β2 = 1. Since the intrinsic magnetic dipole mo-
ment operator μ̂z commutes with the third component of the
isospin operator and because it is a one-body operator, it
cannot couple |�n〉 and |�p〉, so we have

〈�|μ̂z|�〉 = α2 〈�n|μ̂z|�n〉 + (1 − α2) 〈�p|μ̂z|�p〉. (2)

One then can estimate the total magnetic dipole moment as

μth(α2) = α2μn
th + (1 − α2)μp

th (3)

and, equating it with μexp, one can deduce α2 to find

α2 = μ
p
th − μexp

μn
th + μ

p
th

≈ 0.56 (4)

and β2 = 0.44. The neutron and proton configurations are
therefore estimated to account for respectively 56% and 44%
to the 8− isomeric state corroborating the assessment in Ref.
[55] and references quoted therein.

IV. SUMMARY AND CONCLUDING REMARKS

We explored series of Kπ = 6+ and Kπ = 8− isomeric
states in the isotopic and isotonic chains of even-even nuclei
around 178Hf within the Skyrme (SIII) Hartree-Fock-BCS
approach. The calculations made for the corresponding neu-
tron and proton two-quasiparticle configurations outline the
systematic behavior of the theoretical 6+ and 8− excitation
energies in the Hf isotopes and 8− energies in the N =
106 isotones. The comparison with available experimental
data provides a test of the SIII Skyrme-Hartree-Fock-BCS
approach, as well as of the considered neutron and proton
configurations.

We can outline the following findings with the relevant
comments:

(i) In the hafnium isotopic chain the overall system-
atic behavior of the calculated Kπ = 6+ and Kπ = 8−
two-quasiparticle excitation energies and magnetic dipole mo-
ments compared to the available experimental data for the
corresponding K-isomeric states suggests the dominance of
the proton over the neutron configurations. At the same time
the model suggests the presence of a mixing between the
proton and neutron configurations in the 6+ excitations in
174,178Hf and the 8− excitations in 174,178Hf. Also, a possible
exception with a dominance of the neutron 6+ configuration in
176Hf could be expected as it appears with the lowest energy
while the corresponding magnetic moment is experimentally
unknown.

(ii) In the N = 106 isotonic chain the overall systematic
behavior of the calculated Kπ = 8− two-quasiparticle exci-
tation energies suggests the dominance of the neutron over
the proton configurations with an exception in 178Hf where
possible mixing between the two configurations is identified.
The latter is supported by the intermediate value of the cor-
responding experimental magnetic moment while the former
(neutron configuration dominance) is supported by the mag-
netic moment of the Kπ = 8− isomer in 176Yb.
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(iii) Regarding the comparison between the theory and
experiment, we note that while some discrepancies between
the theoretical and experimental energy up to about 300 keV
outline the possible limits in the accuracy of the model inter-
pretation (as in, e.g., the 6+ isomer of 176Hf above), the overall
systematic behavior of the Kπ = 6+ and Kπ = 8− isomer
energies in the Hf isotopes and N = 106 isotones is rather
well reproduced. At the same time, complementing the model
analysis by good reproduction of available magnetic moments
data allows for a rather clear identification of the neutron or
proton character of the excitation and thus provides a plausible
overall pattern for the evolution of the two-quasiparticle K
isomers in the hafnium and translanthanide mass region.

(iv) The comparison to results of RHB calculations with
DD-ME2 and DD-PC1 functionals in Ref. [44] shows a
similarity in the structure and energy behavior of the cor-
responding two-quasiparticle configurations, as well as in
the quality of the model descriptions for the Kπ = 6+ and
Kπ = 8− excitations in hafnium isotopes. More considerable
discrepancy between the two approaches is observed for the
Kπ = 8− excitations in the N = 106 isotones, which calls
for further detailed comparison. We note that in [44] no the-
oretical values for the magnetic moments in the considered
configurations are given, which would be very useful for the
better comparison of the two approaches. Also, we remark
that a comparison to the HFB approach with Gogny effective
interaction as applied in, e.g., [42] would be very interest-
ing whenever results of corresponding systematic study are
available.

(v) The present systematic SHFBCS description of K iso-
mers in the rare-earth and translanthanide nuclei, together
with the recent model application to heavy and superheavy
nuclei [41], provide a comprehensive test of both the pairing
strengths and the SIII Skyrme parametrization used. There-
fore, the overall result opens the way to at least two possible
developments: (1) readjustment of the pairing strengths taking
into account wide range of isomer energies; (2) adding the
K-isomer description to a new Skyrme adjustment procedure.

Finally, we conclude that, despite some limited imperfec-
tions in the relative energies between the s.p. states, globally
our approach to well deformed rare-earth and translanthanide
nuclei provides a rather good description of their occurrence
around the Fermi energies on two counts: the good repro-
duction of the general trend of the isomeric energies for the
proton configurations under study on one hand, and on the
other hand the occurrence of a mixing of neutron and proton
configurations at the right place (at least clearly in the 8−
case). Moreover, the good reproduction of magnetic dipole
moments indicates that their spin structure is rather well de-
scribed. This is encouraging for further exploration of other
well-documented high-K structures in the same mass region
of heavy rare-earth nuclei and nearby.
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