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Emulating ab initio computations of infinite nucleonic matter
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We construct efficient emulators for the ab initio computation of the infinite nuclear matter equation of
state. These emulators are based on the subspace-projected coupled-cluster method for which we here develop
a new algorithm called small-batch voting to eliminate spurious states that might appear when emulating
quantum many-body methods based on a non-Hermitian Hamiltonian. The efficiency and accuracy of these
emulators facilitate a rigorous statistical analysis within which we explore nuclear matter predictions for >106

different parametrizations of a chiral interaction model with explicit �-isobars at next-to-next-to leading order.
Constrained by nucleon-nucleon scattering phase shifts and bound-state observables of light nuclei up to 4He, we
use history matching to identify nonimplausible domains for the low-energy coupling constants of the chiral in-
teraction. Within these domains we perform a Bayesian analysis using sampling and importance resampling with
different likelihood calibrations and study correlations between interaction parameters, calibration observables
in light nuclei, and nuclear matter saturation properties.
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I. INTRODUCTION

Infinite nuclear matter is an idealized system of strongly
interacting nucleons that holds translational invariance with-
out Coulomb and surface effects. Studies of its equation of
state (EOS) at nuclear densities allow us to explore properties
of the microscopic interactions between constituent nucleons
and to understand bulk properties of finite nuclei. It also pro-
vides an important anchor point for extrapolations to higher
densities which is needed for the description of neutron stars
and their mergers [1–7]. While previous theoretical studies are
mostly based on fixed parametrizations of certain interaction
models [8–23] a rigorous statistical analysis will require the
incorporation of all relevant sources of uncertainty including
the parametric one. In this work we introduce several key
developments that are needed to perform such an analysis
and we study in particular the multidimensional parameter
domain of �-full chiral effective field theory (χEFT) at next-
to-next-to-leading order (NNLO). The sensitivity of nuclear
matter predictions to the calibration observables is explored
in a companion paper [24].

In recent years, the studies of nuclear matter have proved
to be informative in various fields. For instance, the equation-
of-state (EOS) of pure neutron matter (PNM) is critical to the
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astrophysics of supernova explosion [25,26] and neutron-star
properties [1,2,5,6,19,27–30] while the incompressibility of
symmetric nuclear matter (SNM) is connected with the giant
monopole resonance [31–33]. Furthermore, saturation prop-
erties (symmetry energy and saturation density) have been
shown to be correlated with selected observables in finite
nuclei [18,34–39] and may help constrain nucleon-nucleon
(NN) plus three-nucleon forces (3NFs) [11,40–43]. Recently,
it was found that the symmetry energy and its slope correlates
with the neutron skin and dipole polarizability of the heavy
nucleus 208Pb starting from chiral interactions at NNLO with
explicit delta isobars (�) [44].

The computational modeling of nuclear matter systems
involve several challenges such as finite-size effects, shell
oscillations, slow convergence, and high computational cost.
Different many-body methods have been developed to address
these problems. Theoretical approaches based on Brueckner-
Bethe-Goldstone theory [45] have long been used to calculate
the EOS [8,13,19]. More recently, there has been rapid de-
velopment of density-functional theory (DFT) [18,46] and
relativistic mean-field approaches [36,47] as well as many-
body methods such as many-body perturbation theory [1,5],
self-consistent Green’s functions [12–14], quantum Monte
Carlo [9,10,17], and coupled-cluster (CC) methods [15,16].
Meanwhile, there has also been great progress in constructing
realistic nuclear Hamiltonians based on χEFT with improved
saturation properties [11,43,48–51].

Recent calculations have shown that an accurate descrip-
tion of bulk properties of finite nuclei and nuclear matter
involves fine-tuning of the underlying nuclear Hamiltonian
[11,20,21,50,52,53]. The fact that these nuclear Hamiltonians
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give similar results for scattering phase shifts and few-body
observables, but differ for many-body systems indicates the
challenge we face when constructing nuclear forces. In prin-
ciple, microscopic approaches based on nucleonic degrees of
freedom and chiral interactions should be able to describe
both the two- and few-body sectors, as well as infinite nu-
clear matter. It is not clear whether going to higher orders
in the effective field theory (EFT) expansion will resolve
the fine-tuning, or whether the free parameters of the chiral
Hamiltonian, i.e., the low-energy constants (LECs), are not
sufficiently constrained by standard fitting observables in the
few-nucleon sector. Therefore, the construction of nuclear
forces to meet the required precision and accuracy is still an
ongoing and complex task. Systematic studies, such as the
present work, are needed to better understand how details of
the interaction influence properties of nucleonic matter, how
predictions for different observables may be correlated, and
also to rigorously quantify uncertainties.

Although significant progress has been made towards
quantifying uncertainties of ab initio nuclear matter predic-
tions and identifying possible correlations with observables
in finite nuclei [11,21–23,44,54–59], a full exploration of the
sensitivity to variations of the LECs has been considered too
difficult due to the immense computational cost.

In this work we address this problem by developing ac-
curate emulators and adapting a robust statistical approach
known as history matching [60–62] to explore the entire
LEC parameter space. History matching is specifically de-
signed to aid the analysis and calibration of high-dimensional
computationally expensive physical models. By monitoring
predictions of scattering phase shifts and few-body observ-
ables we can iteratively identify the (nonimplausible) region
of the parameter space that gives results consistent with a set
of data. This approach then provides a finite domain in which
the probability of finding accurate interaction parametriza-
tions is higher and that makes it feasible to perform rigorous
statistical studies even with limited computational resources.

The history matching procedure and the statistical analy-
sis require a significant amount of computations. Therefore,
emulators—which mimic the outputs of the exact calculations
at a fraction of the computational cost—are required to bring
this kind of statistical approach into practical use. Recently,
model reduction methods [63] such as eigenvector continua-
tion (EC) [44,64–68] has proved to be an efficient and accurate
approach to emulate the predictions of ab initio many-body
methods. In this paper, we generalize the subspace-projected
coupled cluster (SPCC) [65] to construct emulators for the
energy per particle of PNM and SNM at different densities
that work for a wide range of LECs. We demonstrate that
these emulators provide fast and accurate approximations to
CC calculations of nuclear matter properties [15]. While the
SPCC method has been successfully applied to a global sensi-
tivity analysis of bulk properties of 16O [65], the challenge of
the present work is that the bivariational CC energy functional
[69,70], combined with the increased level density in infinite
nucleonic matter and large number of LECs, may give rise
to spurious states when diagonalizing the subspace-projected
non-Hermitian CC Hamiltonian. We therefore introduce a new
algorithm called small-batch voting to efficiently locate the

physical ground state and to identify and eliminate spurious
states. These nuclear matter emulators, along with other emu-
lators for light nuclear systems, are then applied to 1.7 × 106

different chiral interactions acquired by a history matching
procedure. This allows us to carry out a comprehensive study
of correlations between nuclear matter properties and ob-
servables in finite nuclei. A subsequent Bayesian analysis is
performed by establishing error models for EFT truncations,
method uncertainties, and using sampling importance resam-
pling [71,72] to obtain probabilistic distributions of both LEC
parameters and posterior predictions. Details of nuclear matter
posterior predictive distributions calibrated by different sets of
observables are elucidated in a companion paper [24].

II. METHOD

In this work we consider �-full χEFT at NNLO [43,73–
78]. The explicit inclusion of the �-isobar degree of free-
dom is beneficial since it increases the breakdown scale
of the χEFT and gives a better description of nuclear
matter properties [43,44,78]. We use standard nonlocal reg-
ulators: f (p) = exp[−(p/�)2n] and f (p, q) = exp{−[(p2 +
3q2/4)/�2]n} for the NN and 3NF interactions, respectively,
with n = 4 and a fixed cutoff � = 394 MeV. The chiral
Hamiltonian of �NNLO is parametrized with 17 LECs which
are here represented by the vector �α. Following Refs. [65,66]
it can be written as

H (�α) = h0 +
NLECs=17∑

i=1

αihi, (1)

with h0 = tkin + V0. Here tkin is the kinetic energy and V0

represents the constant potential term.
One of the most important conclusions of EC is that the

trajectory of the eigenvectors as a function of the smoothly
varying control parameters of the Hamiltonian (in our case the
LECs) can be well described by a finite-dimensional manifold
[64]. With this statement, the ground-state eigenvector of any
target Hamiltonian H (�α�) can be well approximated by some
linear combinations of ground-state eigenvectors of a finite set
of training Hamiltonians H (�α1), . . . , H (�αNsub ).

In practice, to create a subspace emulator we therefore need
to use a many-body solver to generate Nsub different ground-
state eigenvectors for a set of training points �αi. Any target
Hamiltonian [H (�α�)] is then projected onto this subspace,
and the approximate ground state is obtained by diagonalizing
a generalized eigenvalue problem. By choosing an optimal set
of training points, the ground-state eigenvalue and eigenvector
from this subspace rapidly converge to the full-space solution
as the number of training points is increased [67,79]. In ad-
dition, since the target Hamiltonian H (�α�) is expressed by a
finite number of terms that depend linearly on the LECs, one
can project each term hi onto the subspace such that the result-
ing matrices can be stored and used to quickly construct the
projection of any target Hamiltonian H (�α�) onto the subspace
of training vectors.

The proof of convergence of EC emulators as outlined
in Ref. [67] has not been generalized to the case of non-
Hermitian Hamiltonians as encountered in the CC method.
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However, the studies of Refs. [44,65] showed a rapid conver-
gence to the full-space solution also in this case. In this work
we employ no-core shell model (NCSM)-based EC emulators
from Hu et al. [44] for 2,3H and 4He observables. In addition,
we construct a new emulator for 6Li using JUPITERNCSM
[80,81] to perform model checking. For 16O and nuclear
matter we use the CC method [70,82–93] as the many-body
solver and employ the corresponding SPCC method [65] to
construct emulators. For 16O observables that we use in our
statistical analysis we adopt the SPCC-emulators based on
the CC method with singles-doubles and leading-order triples
excitations (CCSDT-3) as described in Ref. [44]. The novel
small-batch voting algorithm that will be presented below is
exclusively used for the nuclear matter SPCC emulators.

A. Subspace-projected coupled cluster

The essence of the CC method is its similarity transformed
Hamiltonian:

H (�α) = e−T (�α)H (�α)eT (�α), (2)

where T (�α) is the cluster operator that induces all possible
particle-hole excitations. For the nuclear matter emulators
in this work we adopt the CC method with doubles (CCD)
approximation, so that the cluster operator is truncated at two-
particle-two-hole excitations, i.e., T (�α) = T2(�α). We note that
there are no one-particle-one-hole excitations in infinite nu-
clear matter, i.e., T1(�α) = 0, due to momentum conservation.
Note that the transformation in Eq. (2) is nonunitary and
the resulting similarity-transformed Hamiltonian H (�α) is non-
Hermitian. The direct consequence is that the CC method is
nonvariational, but it follows a bivariational principle [69] by
parametrizing the left and right CC ground states as

〈�̃| = 〈�0|[1 + �(�α)]e−T (�α), |�〉 = eT (�α)|�0〉, (3)

where �(�α) = �2(�α) is a two-hole-two-particle deexcitation
operator. We note here that the parametrization of the left
state is the first-order approximation to Arponen’s extended
CC method [94] where the left state is parametrized in a
more symmetric way by writing 〈�̃| = 〈�0|e�(�α)e−T (�α). In
this work we determined �(�α) amplitudes by solving the
eigenvalue problem for the left ground state [90]. The bi-
orthonormality is assured by 〈�̃|�〉 = 1 when both left and
right ground states are acquired by the same �α. The reference
state |�0〉 is chosen to be the closed-shell configuration on a
discrete lattice in momentum space with periodic boundary
conditions. The model space for which we solve the CCD
equations has (2nmax + 1)3 momentum points and we set
nmax = 4, which is sufficiently large to obtain converged re-
sults [15]. To minimize finite-size effects we use 132 nucleons
for SNM and 66 neutrons for PNM, respectively [10,15].

To construct the subspace projected target Hamiltonian
H (�α�) we solve for the left and right CC ground states for
a set of Nsub training Hamiltonians H (�α1), . . . , H (�αNsub ), and
subsequently project H (�α�) and the identity matrix onto this
subspace giving,

〈�̃ ′|H (�α�)|�〉 = 〈�0|(1 + �′)eX H (�α�)|�0〉, (4)

〈�̃ ′|�〉 = 〈�0|(1 + �′)eX |�0〉, (5)

FIG. 1. Projections of the 64 training points in each LEC dimen-
sion (17 different LECs). Samples are shown both as a histogram
and a rug plot (vertical bars under the x axis). The minimum and
maximum value for each LEC is printed under each subplot.

where eX = e−T ′+T and we indicate quantities related to dif-
ferent training points, �α and �α′, by unprimed and primed
symbols. With Eqs. (4) and (5) one can easily acquire the
ground-state energy for the nuclear matter system by solving
a Nsub × Nsub generalized eigenvalue problem. Note that the
Nsub subspace vectors should not be linearly dependent as it
would induce numerical instability when solving the general-
ized eigenvalue problem.

Another important aspect of the SPCC method is the se-
lection of an appropriate set of training points to construct
the subspace. To ensure that the selected training points will
lead to accurate emulators in the relevant parameter domain,
we first apply history matching to restrict the LEC ranges.
Furthermore, to maximize the worth of full computations we
select the nonimplausible samples with highest likelihood in
the final Bayesian analysis as training vectors. More details
about the history matching and Bayesian analysis can be
found in Secs. II E and IV. The training points used in this
work are shown in Fig. 1 and, as can be seen, they cover a
very broad LEC range.

B. Emulators for a single low-energy constant

We first consider an illustrative example with simpler
nuclear matter emulators. For this purpose we use an in-
teraction model with a single free parameter and perform
nuclear-matter modeling with a smaller number of particles.
Specifically, we employ the �NNLOGO(394) interaction [43]
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FIG. 2. Demonstration of SPCC predictions of PNM and SNM
at ρ = 0.16 fm−3, using three or five training points (circle mark-
ers), for different values of the low-energy constant C1S0. The other
LECs are fixed at their values in �NNLOGO(394) [43]. The red
diamonds correspond to exact CCD calculations. The C1S0 value
of �NNLOGO(394) is indicated with a dashed vertical line. This
one-dimensional emulator demonstration is obtained for a model
with N = 14 (A = 28) for PNM (SNM).

and allow the single C1S0 LEC to vary and we use 14 (28)
neutrons (nucleons) for PNM and SNM, respectively. Figure 2
shows the calculated energy per neutron (E/N) and energy per
nucleon (E/A) for PNM and SNM, respectively. The SPCC
predictions using three or five subspace vectors are compared
with full space CCD results for a wide range of the low-energy
constant C1S0 (the remaining LECs are kept fixed). As we can
see, using Nsub = 5 training points chosen in a small region,
the SPCC method already accurately reproduces the full space
CCD calculations over a large range for the C1S0 LEC. As ex-
pected, if we reduce the number of training points to Nsub = 3,
the SPCC predictions of SNM start to deviate more from the
exact solutions in the case of large extrapolations. However,
the predictions for PNM remain accurate over the whole range
considered. The choice of training points in Fig. 2 is just
used for illustration. When constructing actual emulators the
training points cover a larger range of the given parameter
space to achieve better performance.

C. Small-batch voting

When building SPCC emulators for systems with 132 nu-
cleons for SNM one suffers from a persistent spurious state
problem. We find that there can be several eigenstates of
the Nsub × Nsub matrix that have lower eigenvalues than the

FIG. 3. Relative errors between SPCC predictions and exact
CCD calculations for PNM (top) and SNM (bottom). Panels (a) and
(b) show validation results without small-batch voting. For SNM
we use small-batch voting for the final emulator. The significantly
improved validation results are shown in panel (c).

corresponding full-space CCD result. The exact reason for
the appearance of these states is not yet fully understood, but
it could be a consequence of several factors: (i) the SPCC
Hamiltonian is by construction non-Hermitian and the vari-
ational theorem does not apply; (ii) for increasing number of
nucleons (132 nucleons and 66 neutrons in our case) the level
density increases which more easily leads to the occurrence
of these states, and (iii) increasing correlation energies asso-
ciated with less perturbative interactions might produce more
spurious states.

As we consider these spurious states to be unphysical we
seek a method to identify them a priori in order to remove
them from the spectrum. Recall that CC theory fulfills a bivari-
ational theorem and the physical solution is a stationary point
with respect to variations of the CC amplitudes. Whether the
bivariational property of CC theory also holds for the SPCC
remains to be shown, but it is reasonable to assume that it
holds as long as the subspace is sufficiently large. In this
section we show how we can use the bivariational property
to efficiently identify the physical solution within the SPCC
spectrum using a method we call small-batch voting.

Figures 3(a) and 3(b) illustrates the relative errors
(ESPCC − ECCD)/|ECCD| between emulator predictions and
exact CCD calculations for PNM (SNM) modeled with
66 (132) neutrons (nucleons). The emulator predictions
are chosen as the SPCC solution with the lowest (real)
energy. The validation points correspond to 50 random
parametrizations of the �NNLO(394) interaction with
the energy per particle computed for five densities: ρ ∈
{0.12, 0.14, 0.16, 0.18, 0.20} fm−3. Thus, there are 250 points
in total. In these calculations, Nsub = 64 subspace vectors are
used to construct the SPCC emulators. Note that the validation
interactions are selected randomly within a constrained pa-
rameter domain (resulting from history matching). For SNM,
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most errors are negative which indicates that the emulator
predictions correspond, in fact, to spurious states that give
lower energies than the corresponding full-space CC calcula-
tions. Based on this, it seems the occurrence of spurious states
seriously hampers the predictive power of the SPCC method
for SNM. The fact that the SPCC method works better for
PNM is probably due to the smaller correlation energies for
this system, i.e., it is more perturbative.

However, when comparing the full eigenspectrum of the
subspace problem to the full-space CC result, we find that
the physical ground-state indeed is contained therein. The
challenge then is to efficiently identify this state without ac-
tually doing any full-space CC calculations. Assuming that
the subspace is large enough to accurately describe the exact
CC ground-state solution, the eigenvector should also fulfill
the bivariational principle. This means we can write the exact
solution as

|�(�α�)〉 = eT (�α� )|�0〉 ≈
Nsub∑
i=1

c	
i eT (�αi )|�0〉, (6)

where �c	 is the SPCC eigenvector that corresponds to the
physical ground-state (denoted by 	). The physical solution
converges rapidly with increasing number of training points.
By utilizing the bivariational property, it is then reasonable
to assume that the physical state should remain stable (dis-
playing small variations in the corresponding eigenenergy)
when removing a small portion �N of the subspace, while the
spurious states and their energies should change significantly.
Here we introduce batches, Nbatch = Nsub − �N , that should
be large enough to still provide an accurate representation of
the physical ground state.

Based on this argument we develop a new algorithm called
small-batch voting to efficiently identify the physical ground
state and counter the spurious-state problem. The procedure
of small-batch voting can be summarized as follows:

(i) Solve the target Hamiltonian H (�α�) using the SPCC
method in a subspace with relatively large Nsub to en-
sure that the physical ground-state is well established
in the spectrum. The eigenvalues of H (�α�) are stored
as Ei=1,...,Nsub .

(ii) Construct k different small batches by randomly pick-
ing subsets of Nbatch(< Nsub) vectors from the original
subspace.

(iii) For each batch, solve the generalized Nbatch ×
Nbatch eigenvalue problem. Compare the eigenvalues
er=1,...,Nbatch with the eigenvalues of the original sub-
space Ei=1,...,Nsub . If the same eigenvalue occurs in
both spectra (within a specified relative tolerance
|(Ei − er )/Ei| < ε), the corresponding eigenvector of
the original Nsub × Nsub subspace gets one vote, vi =
vi + 1.

(iv) Repeat step 3 for all k small batches.
(v) The eigenvector with the highest number of votes

v∗ = max(vi ) is assumed to correspond to the physi-
cal ground state (with the lowest energy as a deciding
vote if there is a draw) and its eigenvalue E∗ is used
as the emulator prediction.

In this work, we set Nsub = 64, k = 100, Nbatch = 30, and
the relative tolerance ε = 0.02. We checked that Nbatch = 30
is sufficiently large to reproduce the full space CC solution
to within 1% when we know exactly which is the physical
ground state in the spectrum. To summarize, the essential idea
of the algorithm is that by varying the composition of the
subspace, the eigenvalues of the spurious states will be shifted
dramatically since they are not stationary solutions, while the
physical ground-state remains relatively unchanged.

Figure 3 summarizes our results with and without small-
batch voting. Figures 3(a) and 3(b) show the relative error
between the lowest SPCC energies (without small-batch vot-
ing) and the corresponding exact CCD results, while Fig. 3(c)
show the results of SNM with small-batch voting. For the
latter we apply a 1% mean shift up in energy since the vot-
ing procedure favors the lowest state that is found within
the 2% tolerance window. The comparison demonstrates that
the small-batch voting algorithm successfully removes most
of the spurious states and that the emulator predictions are
much improved. Note that for PNM the SPCC predictions
are already extremely accurate thus we do not apply small
batch voting for the PNM emulator. The standard deviation
of the relative error is σ = 0.002% (0.8%) for PNM (SNM).
We note that there are still a few spurious states that remain
after applying the small-batch voting algorithm for the more
complex nonperturbative SNM case. The total computational
cost of the SPCC emulators for SNM with small-batch voting
is six orders of magnitude smaller than the corresponding full
space CC calculations. For PNM emulators, where we do not
need small-batch voting, we have a computational speedup of
more than eight orders of magnitude.

D. Nuclear matter saturation observables

At this point we are able to construct emulators for PNM
and SNM and predict the energy per particle at a given density
using the SPCC method with small-batch voting. To study nu-
clear matter saturation properties, e.g., the saturation density
ρ0, the saturation energy E0/A, the symmetry energy S, the
symmetry energy slope parameter L, and the incompressibility
K , one needs to acquire the EOS for both pure neutron and
symmetric nuclear matter around the saturation point. Ideally
one would like to include the density ρ parameter in the
eigenvector continuation scheme and build an emulator that
works for different LECs and at arbitrary densities. However,
changing the density leads to different discretizations of the
momentum space lattice and one would therefore need to
work out matrix elements connecting different reference states
and lattices.

Fortunately, we are not completely ignorant about the prop-
erties of the EOS of nuclear matter since the energy per
particle should be represented by continuous smooth func-
tions of ρ. This smoothness implies that we do not need many
density points to obtain sufficient information about the EOS.
In this work, we construct SPCC emulators for both PNM and
SNM at five different densities: ρ = 0.12, 014, 0.16, 0.18,
0.20 fm−3. We choose to study this density region simply
because the empirical saturation density is around 0.16 fm−3

[11,95]. The nuclear matter EOS is then interpolated within
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FIG. 4. The convergence of saturation properties extracted by GP
interpolation with different density spacings. The hyperparameter of
the RBF kernel used in the GP is l = 0.25 fm−3. In this convergence
study, the energy per particle at discrete density points is obtained
with the CC method for a single interaction.

this range by using Gaussian processes (GPs) [96] as the
interpolation method. We choose the radial basis function
(RBF) as the correlation function to ensure the smoothness
of the EOS. The hyperparameter (correlation length l) of
the GP is learned from a validation dataset which contains
50 interaction samples that are generated by the same his-
tory matching process mentioned in Sec. II C. The PNM and
SNM correlation lengths optimized from the validation set are
0.297 fm−3 and 0.259 fm−3, respectively. In the end, we take
the more conservative value l = 0.25 fm−3 for both PNM and
SNM so that we do not overestimate the correlation length.

The major advantage of using GPs is that they are infinitely
differentiable under the RBF kernel and that derivative prop-
erties such as L and K can easily be obtained. For any given
interaction with its saturation point ρ0 ∈ [0.12, 0.20] fm−3

we can therefore extract all saturation properties from the
corresponding GPs and its (first and second) derivatives.

Figure 4 shows the performance of GP interpolation with
different density spacing ρgap from 0.02 to 0.0025 fm−3. It
can be seen that L and K , which correspond to first and
second derivatives of the EOS, have larger deviation when
the density spacing is increased. In principle, we expect better
accuracy with smaller density spacing. However, the values of
saturation properties at ρgap = 0.02 fm−3 differ by less than
0.1% compared with ρgap = 0.0025 fm−3. This difference is
rather small compared with other sources of uncertainty. In
practice we therefore use ρgap = 0.02 fm−3 and ignore the GP
interpolation error.

E. History matching

In this work we use an iterative history matching approach
[44,60–62] with selected experimental few-nucleon data to
study and reduce the huge parameter space of our χEFT
interaction model. For each wave of history matching we

FIG. 5. Visualization of the history matching procedure in a
trivariate (C1S0, cD, cE ) subspace. The LECs cD and cE are dimen-
sionless while C1S0 is in units of 104 GeV−4. The nonimplausible
interaction samples are shown as dark dots. These dots are projected
on different LEC surfaces and the outlines of the bounding regions
are represented by parallelograms. The purple box outlines the final
nonimplausible LEC domain.

need to establish a quantitative criterion that determines if a
parametrization �α yields acceptable (or at least not implausi-
ble) model predictions when confronted with the selected set
of observations Z . We first introduce the individual implausi-
bility measure

I2
i (�α) = |Mi(�α) − zi|2

Var(Mi(�α) − zi )
, (7)

which includes the squared difference between the model pre-
diction Mi(�α) and the observation zi for observable i from the
target set Z . The total variance in the denominator of Eq. (7) is
here constructed under the assumption of independent errors.
It is therefore a sum of variance terms that in our case include
experimental, model, method, and emulator errors. Unless
differently specified we use the maximum of the individual
measures to define the implausibility constraint

IM (�α) ≡ max
zi∈Z

Ii(�α) � cI , (8)

where the default choice is cI ≡ 3.0 inspired by Pukelheim’s
three-sigma rule [97].

History matching proceeds by reducing the parameter
space iteratively. In each wave one removes regions that are
deemed implausible by failing the constraint in Eq. (8). A
visualization of this process is shown in Fig. 5. We first
use a space-filling Latin hypercube design [98] to generate
well-spaced interaction samples in the input parameter do-
main. Then we use fast modeling or emulation to compute
the implausibility measures and apply the maximum implau-
sibility constraint. The remaining nonimplausible interaction
samples are kept and define the nonimplausible region for
the next wave. Note that we are using parallelograms to
define the bivariate surfaces of the nonimplausible volume
which allows us to incorporate parameter correlations. In
this work the iterative history matching is carried out in five
waves as shown in Table I. Initial waves comprise selected
groups of observables and subsets of active input parame-
ters. This enables reaching sufficiently high resolution in the
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TABLE I. Properties and summary statistics of the five waves of history matching performed in this work. See the text for details on the
few-nucleon observables that are included in the target sets. The number of active inputs correspond to the dimensionality of the LEC subspace
that is being explored in each wave. The second to last column indicates the fraction of input samples that passed the implausibility test, while
the last column shows how large proportion of the initial volume that remains.

Target set Z Active Input Non-implausible Proportion space

Wave Outputs Systems inputs samples fraction non-implausible

1 6 × 6 np scattering 5–7 106–2.7 × 108 10−1–10−4 1.5 × 10−6

2 6 × 6 np scattering 5–7 106–2.7 × 108 10−1–10−4 3.7 × 10−8

3 3 A = 2 7 2.7 × 108 7 × 10−3 2.4 × 10−8

4 6 A = 2–4 13 108 1.3 × 10−4 1.0 × 10−9

5 6 A = 2–4 17 109 1.7 × 10−3 Same

space-filling design of interaction samples. Figures 6 and 7
show the nonimplausible volume for each wave including the

final one. In waves 1 and 2 we constrain all relevant LECs (ex-
cept cD and cE ) grouped by partial waves (1S0, 3S1, 1P1, 3P0,

FIG. 6. Nonimplausible parameter domains for (C1P1, C3P0, C3P1, C3P2, cD, cE , and c1–c4) at the ends of the five history matching waves.
The initial parameter domain is represented by the axes limits for all panels (except c1–c4). The volume of the nonimplausible domain is
iteratively reduced in waves 2, 3, 4, and 5 (shown by green dash-dotted, blue dashed, black dotted, and red solid rectangles, respectively).
The nonimplausible samples in the final wave are shown as two-dimensional histograms (purple). Note that the sampled volume for c1–c4

(illustrated by red solid and dashed contour lines denoting 68% and 90% credible regions, respectively) remain the same in all waves. In
practice, for these LECs, we use a four-dimensional hypercube mapped onto the multivariate Gaussian probability density function resulting
from a Roy-Steiner analysis of pion-nucleon scattering data [99]. The contour lines (purple solid and dashed) for the nonimplausible samples
identified in the final wave are shown for comparison.
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FIG. 7. Nonimplausible parameter domains for (C̃1S0,np, C̃1S0,nn, C̃1S0,pp, C̃3S1, C1S0, C3S1, CE1) at the ends of the five history matching waves.
Note that the input volume for the isospin symmetry-breaking LECs (C̃1S0,np, C̃1S0,nn, C̃1S0,pp) are strongly correlated. The initial parameter
domain is displayed by the black solid quadrilaterals. The volume of the nonimplausible domain is iteratively reduced in waves 2, 3, 4, and 5
as shown by the green dash-dotted, blue dashed, black dotted, and red solid quadrilaterals. The nonimplausible samples in the final wave are
illustrated as two-dimensional histograms (purple). Enlargements of the most relevant region of the LEC pairs of (C̃3S1, C̃1S0,np, C̃1S0,nn, C̃1S0,pp)
are shown in the top right panels.

3P1, 3P2) using neutron-proton scattering phase shifts at six
energies (Tlab = 1, 5, 25, 50, 100, 200). In wave 3 we include
only the deuteron ground-state energy, point-proton radius
and quadrupole moment as target observables and consider
C̃3S1, C3S1, CE1, and c1–c4 as active parameters. In wave 4,
we add the 3H binding energy and the 4He binding energy
and point-proton radius to the set of target observables. Here
we consider also the three-nucleon force parameters cD, cE

along with the other LECs. In this wave, however, we fixed the
four P-wave LECs (C1P1, C3P0, C3P1, C3P2) to the values from
the �NNLOGO(394) interaction [43], since the selected target
observables are not very sensitive to these parameters. We
added an additional method uncertainty to the denominator of

the implausibility metric (7) to capture the reduced precision
of the model with fixed P-wave parameters. Following a sen-
sitivity study we set the standard deviation of this additional
error to 100 and 400 keV for the 3H and 4He binding energy,
respectively, and to 0.03 fm2 for the squared point-proton
radius of 4He.

Finally in wave 5, all 17 model parameters are active and
the nonimplausible domain is explored by 1 × 109 space-
filling design samples. In the end we find that 1.7 × 106 of
them pass the implausibility constraint with the same set of
few-nucleon target observables as in wave 4. It is worth to
mention that the order at which observables are considered
in history matching waves is irrelevant as long as one uses the
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maximum implausibility as the constraint. With the maximum
implausibility measure, the final nonimplausible region is the
intersection of constrained parameter regions from different
waves and is therefore unrelated to wave ordering.

F. Bayesian machine learning error model

To connect the emulator predictions with actual nuclear
matter properties one needs to incorporate errors from dif-
ferent sources. A statistical model for the density-dependent
energy per particle, which accounts for the most relevant
sources of uncertainty, can be written as

y(ρ) = yk (ρ) + εk (ρ) + εmethod(ρ) + εemu(ρ), (9)

where yk (ρ) is the nuclear matter emulator prediction using
our EFT model truncated at order k at given density ρ, while
the stochastic terms εk (ρ), εmethod(ρ), and εemu(ρ) correspond
to the EFT truncation error (model discrepancy), the method
error, and the emulator error, respectively. To quantify the
distributions of these stochastic variables we apply and extend
a Bayesian machine-learning error model that was originally
proposed by Drischler et al. [22]. Within this error model we
construct multitask GPs [100] to estimate both the variance
and the covariance of target errors as a function of density and
proton-to-neutron fraction (SNM and PNM) from given prior
information.

Let us first consider the EFT truncation error. We follow
Refs. [101,102] and write the EFT expansion for an observ-
able, truncated at order k, as

yk (ρ) = yref (ρ)
k∑

n=0

cn(ρ)Qn(ρ). (10)

Here yref is a reference scale for the observable y, cn are di-
mensionless expansion coefficients (with c1 = 0 in Weinberg
power counting), while the expansion parameter Q = kF /�b

is the ratio of the Fermi momentum kF and the breakdown
momentum �b. Here we use �b = 600 MeV. Note that, for
simplicity, we fixed �b and used the Fermi momentum as the
energy scale for the EOS. In future studies one could attempt
to infer �b or Q directly when making inferences to data that
is more sensitive to higher energies. With a simple extension
of Eq. (10) to infinite order, the truncation error εk at order k
can be expressed as

εk (ρ) = yref (ρ)
∞∑

n=k+1

cn(ρ)Qn(ρ). (11)

We infer the expansion coefficients cn(ρ) given EFT conver-
gence assumptions and choose yref (ρ) = yLO(ρ). We further
assume that ci(ρ) and c j (ρ), at different orders i and j, should
be independent and identically distributed random functions
of natural size. Thus, the error model assumes that they can
be described by a single underlying GP,

cn(ρ) | c̄2, l ∼ GP[0, c̄2r(ρ, ρ ′; l )], (12)

where we use a (Gaussian) radial basis correlation function
r(ρ, ρ ′; l ) with c̄2 and l the GP hyperparameters correspond-
ing to the variance and the correlation length, respectively.
Note that in these equations ρ and l are measured in fm−1

as we translate from density to the corresponding Fermi mo-
mentum for each type of nuclear matter. The mean function
of the GP is taken to be zero since the correction at each
order can be positive or negative. With Eqs. (11) and (12) one
can easily derive the EFT truncation error as a geometric sum
of independent normally distributed variables. Its distribution
then follows

εk (ρ) | c̄2, l, Q ∼ GP
[
0, c̄2Rεk (ρ, ρ ′; l )

]
, (13)

with

Rεk (ρ, ρ ′; l ) = yref (ρ)yref (ρ ′)
[Q(ρ)Q(ρ ′)]k+1

1 − Q(ρ)Q(ρ ′)
r(ρ, ρ ′; l ).

(14)

We note that k = 3 for �NNLO.
Having defined the GP that describes the truncation error,

the hyperparameters c̄2 and l can be inferred from order-
by-order EFT predictions and expert elicitation [99]. Using
data D, corresponding to order-by-order predictions at several
densities ρ, and the incorporation of EFT expectations via a
prior pr(c̄2, l ), the posterior for c̄2 and l becomes

pr(c̄2, l |D) ∝ L(D | c̄2, l )pr(c̄2, l ). (15)

Here we use a scaled inverse-chi-squared distribution [103] as
the prior for c̄2 and a uniform prior for l (with l ∈ [0, 10]). In
practice, we first train two GPs separately with order-by-order
predictions of the EOS for PNM and SNM (at discrete density
points ρ = 0.06, 0.14, . . . , 0.38 fm−3) using leading order
(LO), next-to-leading order (NLO) and NNLO �-full interac-
tions [104] that were optimized using the protocol described in
Ref. [78]. See the Supplemental Material [105] for numerical
values of the LECs that define these convergence-study inter-
actions. For simplicity we then used the maximum a posteriori
(MAP) value as a point estimate for the hyperparameters. The
hyperparameters learned in this way from the training data are
c̄1 = 0.99 and l1 = 0.88 fm−1 for PNM and c̄2 = 1.66 and
l2 = 0.45 fm−1 for SNM.

These two GPs (separately trained for PNM and SNM)
describe the correlation of truncation errors as a function
of density for either system individually. As discussed in
Refs. [22,23] it is crucial to also account for the cross cor-
relation between PNM and SNM truncation errors. This is
important to avoid overestimating the total uncertainty for
observables such as the symmetry energy S that corresponds
to the difference between E/N and E/A. Applying a multitask
GP model, the truncation errors of PNM and SNM become
jointly distributed[

εk,pnm

εk,snm

]
∼ N

([
0
0

]
,

[
K11 K12

K21 K22

])
, (16)

where Kii is the covariance matrix generated by the ker-
nel function c̄2

i Rεk (ρ, ρ ′; li ) of PNM (i = 1) and SNM
(i = 2) respectively, as described above, while K12 = KT

21 is
the cross-covariance that we describe with the kernel function
ρ12c̄1c̄2Rεk (ρ, ρ ′; l12). Following Ref. [23] we set the cross
correlation coefficient ρ12 = [2l1l2/(l2

1 + l2
2 )]1/2 = 0.90 and

correlation length l12 = [(l2
1 + l2

2 )/2]1/2 = 0.70.
In this work we extend the statistical error model by also in-

corporating the method error and its correlation structure into
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the analysis. Specifically we consider our two main sources
of method uncertainty, namely, the truncation of the cluster
operator and the finite-size effect of the cubic momentum
lattice. Assuming independence, the total method error can
then be written as εmethod = εcc + εfs. We again use the GP
error model such that

εκ (ρ) | c̄2
κ , lκ ,∼ GP

[
μκ (ρ), c̄2

κRκ (ρ, ρ ′; lκ )
]
, (17)

where the subscript “κ” can be either the cluster operator
truncation “cc” or finite-size effect “fs,” and

Rκ (ρ, ρ ′; lκ ) = yκ,ref (ρ)yκ,ref (ρ ′)r(ρ, ρ ′; lκ ). (18)

As before, we use the corresponding Fermi momentum (in
fm−1) as the independent variable rather than the density.

For the cluster operator truncation we estimate the density-
dependent mean error and covariance using results from a
previous convergence study with 34�-full interactions at
NNLO [44] (with the same 394 MeV momentum cutoff
as here). In that study, computations were performed at
CCD(T) level which is a more accurate, but computationally
heavier, CC approximation that includes doubles excita-
tions and perturbative triples corrections [15]. In particular,
triples correlation energies—the difference between CCD
and CCD(T) results—were extracted for the 34 interactions.
We use the average (per density) triples correlation en-
ergy as our mean errors, resulting in μcc,PNM(ρ) = 0.16k2

F −
0.50kF + 0.32 MeV/nucleon for PNM and μcc,SNM(ρ) =
−1.28kF + 0.80 MeV/nucleon for SNM. At ρ = 0.16 fm−3

these mean shifts are −0.04 MeV/nucleon for PNM and
−0.91 MeV/nucleon for SNM. Furthermore, we also use
these mean triples correlation energies as our reference scale
ycc,ref (ρ) which implies that c̄cc should be interpreted as
the ratio between the cluster truncation error and the triples
correlation energy. Following previous CC convergence stud-
ies [106,107] and expert elicitation we conservatively assign
c̄cc = 0.1 for both PNM and SNM corresponding to ±20%
of the triples correlation energy as a 95% degree-of-belief
error estimate of corrections beyond the triples approxima-
tion. We also assume that the observed density-dependence
of the energy differences between the CCD and CCD(T) re-
sults for the 34 interactions in Ref. [44] provides a relevant
measure of the correlation structure of the CC truncation
method error. These data are therefore used to train the GPs
and the inferred correlation lengths (within the density range
ρ ∈ [0.12, 0.20] fm−3) are lcc,PNM = 0.50 fm−1 and lcc,SNM =
0.58 fm−1.

For the finite-size effect, we use the CCD ground-state en-
ergy as the reference scale and set correlation length lcc,PNM =
0.50 fm−1 and lcc,SNM = 0.58 fm−1. Following the study in
Ref. [15], we take ±0.5% (±4%) for PNM (SNM) as esti-
mates of the 95% credible intervals of finite-size errors for
each system. This gives c̄fs,PNM = 0.0025 (c̄fs,SNM = 0.02) for
the nuclear-matter calculations in this work.

Finally, we also use the GP error model described in
Eqs. (17) and (18) to incorporate the emulator error εemu(ρ)
in Eq. (9). These GPs were trained by the differences between
emulator predictions and CCD results with the latter then used
as reference scale. The training data are taken from the CCD
computations and emulator predictions of the 34 interactions

FIG. 8. The EOS for PNM (top) and SNM (bottom) calculated
for one representative interaction with the nuclear matter emula-
tors (open squares) plus the mean value of the method error (solid
squares). The bands indicate two standard deviations of the trun-
cation error (green), method error (blue), and emulator error (pink)
from the GP error models described in the text. The errors at different
densities are correlated as illustrated by three random samples shown
by dashed curves. Correlations extend between PNM and SNM (sam-
pled error curves in the same color).

in Ref. [44]. For the SNM emulator error we found lemu,SNM =
0.38 fm−1 and we use μemu,SNM = 0 and c̄emu,SNM = 0.01.
We ignore the small emulator error for PNM due to the high
accuracy achieved by the PNM emulator predictions.

Following these assignments, the full posterior predictive
distribution (PPD) for nuclear matter observables, incorpo-
rating all relevant sources of uncertainty, can be sampled
according to Eq. (9). In particular, it becomes straightforward
to sample the error terms from the corresponding covariance
matrices once the multitask GPs are determined. In practice,
this task is efficiently performed using

ε = Lx, (19)

with L being the Cholesky decomposition of the cross covari-
ance matrix K (K = LLT) and x a standard normal random
vector. Note that we emulate results at five densities for both
PNM and SNM. Thus ε is a ten-dimensional vector and the
cross covariance is a 10 × 10 matrix. This sampling procedure
is crucial for generating the PPD of nuclear matter properties.
The emulator predictions for the nuclear matter EOS and
the corresponding 2σ (95%) credible interval for errors are
illustrated in Fig. 8. Three randomly sampled EOS predictions
are also shown and one should note that the multitask GPs
guarantee that the sampled EOS of PNM and SNM are smooth
and properly correlated with each other. From this figure it is
also clear that the method error for PNM is quite small. This
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TABLE II. Experimental values and error assignments for ob-
servables used in the fifth wave of the iterative history matching
(history-matching observables) and for observables used in the
model validation and calibration (predicted observables). Energies E
in (MeV), point-proton radii rp in (fm), and the deuteron quadrupole
moment Q in (e2 fm2). See the text for details.

History-matching observables

Observable z εexp εmodel εmethod εemu

E (2H) −2.2298 0.0 0.05 0.0005 0.001%
rp(2H) 1.976 0.0 0.005 0.0002 0.0005%
Q(2H) 0.27 0.01 0.003 0.0005 0.001%
E (3H) −8.4818 0.0 0.17 0.0005 0.01%
E (4He) −28.2956 0.0 0.55 0.0005 0.01%
rp(4He) 1.455 0.0 0.016 0.0002 0.003%

Predicted observables

E (6Li) −31.9940 0.0 0.55 0.2000 0.01%
E (16O) −127.62 0.0 1.00 0.75 0.5%
rp(16O) 2.58 0 0.03 0.01 0.5%

can be understood since emulator errors, finite-size effects and
CC correlation energies are all rather small for PNM.

III. HISTORY MATCHING ANALYSIS

The tremendous computational speed-up offered by our
novel nuclear-matter emulators allows us to perform a detailed
statistical analysis of observable predictions using the χEFT
model. The results shown in this section represent general
outcomes of the interaction model described in Sec. II used
within ab initio computations.

As a first step of this analysis we apply the history match-
ing procedure as described in Sec. II E with five waves of
global parameter search to iteratively reduce the LEC domain.
The history matching is performed using neutron-proton
phase shifts in S and P waves plus few-body (A = 2 − 4)
bound-state observables in the target sets. The experimental
values and the error assignments for the nuclear bound-state
observables can be found in Table II. The experimental targets
are from Refs. [108–110]. Note that the target point-proton
radii were transformed from experimental charge radii using
the same relation as in Ref. [50]. For the deuteron quadrupole
moment we use the theoretical result obtained by the CD-
Bonn [110] model with a 4% error bar. The theoretical model
εmodel (method εmethod) errors are estimated from the EFT (CC)
convergence pattern as in Ref. [44] while emulator errors εem

are estimated from cross validation.
This selection of target data is representative of what could

have been considered when seeking an optimal interaction
model. However, the aim of our approach is fundamentally
different. Rather than seeking a single optimum, we con-
sider all nonimplausible parametrizations in order to make
a comprehensive study of the behavior of our model. Fur-
thermore, we consider much simpler linearized probability
distributions, with just mean values and variances as spec-
ifiers, to identify the interesting parameter domain. Finally,
we just divide the parameter space into implausible or

FIG. 9. Histograms of A = 2–6 few-body observables predicted
during history matching. The hashed histograms represent results
obtained with 1 × 109 random samples from the wave 5 input
LEC domain. The solid histograms correspond to model predictions
with the final set of 1.7 × 106 nonimplausible samples. Energies
in (MeV), square of point-proton radii in (fm2) and the deuteron
quadrupole moment in (e2 fm2). The red dashed lines denote the
experimental values and the red bands indicate the ±3σ error region.

nonimplausible. All samples from the latter domain are in-
cluded in this part of the analysis without any probability
weighting.

In the final wave, we explored 1 × 109 samples from a
space-filling design in the nonimplausible domain that was
established at the end of wave 4. We confronted the model pre-
dictions for the six A = 2–4 observables and found 1.7 × 106

nonimplausible interaction parametrizations. At this point, we
did not see any need to proceed with another wave since there
were no signs of further reduction of the parameter domain.
The 1.7 × 106 samples constitute a good representation of all
nonimplausible interactions.

Predictions for different few-body observables are shown
in Fig. 9. Here we compare model predictions made with
the 1 × 109 random samples generated at the start of wave
5 (hashed histograms) with the results obtained with the
1.7 × 106 samples that survive the implausibility constraint.
As shown, the predictions with the random samples are char-
acterized by very large variances. Clearly, the 17-dimensional
LEC domain is still quite large even after the history match-
ing waves. As for the 1.7 × 106 nonimplausible samples,
all of them give results within ±3σ error regions for the
A = 2–4 observables (as indicated by the red band) since
these observables were included as target data in the history
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FIG. 10. Histograms of nuclear matter properties at saturation
predicted with the 1.7 × 106 nonimplausible samples. Saturation
density ρ0 in (fm−3), saturation energy E0/A, symmetry energy S,
slope L and incompressibility K in (MeV). The red bands indicate the
empirical region with E0/A = −16.0 ± 0.5, ρ0 = 0.16 ± 0.01, S =
31 ± 1, L = 50 ± 10, and K = 240 ± 20 from Refs. [95,111,112].

matching procedure and we used cI = 3 for the implausibility
constraint (8).

The prediction for the 6Li ground-state energy (last panel
of Fig. 9) serves as model validation since it was not included
in the history matching. We can see that the mode of the
E (6Li) histogram is reasonable, and clearly within the 3σ

region, which indicates a very reasonable model performance
for light nuclei.

We then consider model predictions for the infinite nuclear
matter systems using the SPCC emulators from Sec. II A
with small-batch voting and GP interpolation as described
in Secs. II C and II D. In this particular analysis we do not
perform a full sampling of the error model outlined in Sec. II F
but only include the mean shift of the EOS for SNM that is
expected from triples corrections. This shift is applied for all
results shown in Figs. 10–12.

Saturation properties for the nonimplausible interaction
samples are shown in Fig. 10. All results are obtained using
the nuclear matter emulator outputs as described in Sec. II D.
Interactions that give a saturation density outside of the
interval ρ ∈ [0.12, 0.20] fm−3 (about 27% of all nonimplau-
sible interactions) are not shown since our emulators are
only constructed within this density interval. It is quite clear
from Fig. 10 that the modes for saturation density, satura-
tion energy, and symmetry energy deviate from the empirical
region and that here is a very large variance (in particu-
lar for the saturation density). We hypothesize that this is
a consequence of the large extrapolation from the history
matching observables in light nuclei (A = 2–4) to properties
of infinite nuclear mater, and to the limited correlation (see

FIG. 11. Correlation structure between nuclear matter saturation
properties: saturation density ρ0 (in fm−3), saturation energy E0/A,
symmetry energy S, slope L, and incompressibility K (all in MeV)
and selected observables of finite nuclei: ground-state energies (in
MeV) and radii (in fm) of 4He, 6Li, 16O. All results are obtained
with the 1.7 × 106 nonimplausible interactions from the fifth wave of
history matching. The Pearson correlation coefficient r is indicated
in each panel. Note that 4He observables (thick, blue panel axes) are
included in the history matching procedure while the other observ-
ables are pure predictions.

below) between few-body observables and properties of nu-
clear matter.

The large number of nonimplausible interaction samples
together with access to fast and accurate emulators enable
an extensive study of correlations between properties of fi-
nite nuclei and infinite nuclear matter obtained with chiral
forces. The results of such a correlation study are shown in
Fig. 11. Note that the 6Li and 16O observables are model pre-
dictions while the 4He ones are part of the history-matching
procedure. We observe a positive correlation between ground-
state energies of finite nuclei and the saturation energy E0/A.
This correlation is getting stronger from 4He via 6Li to 16O
(r = 0.29, 0.85, and 0.98, respectively). This is reasonable
since the central density of heavier system is closer to the
density of nuclear matter at saturation. On the other hand we
find an anticorrelation between ground-state energies and the
saturation density ρ0. This negative correlation is also getting
more prominent in heavier system. As for the 16O radius
we observe a similar correlation structure as for the energy
meaning a positive correlation with E0/A and anticorrelation
with ρ0. We stress that these correlations are general results of
the design of the �NNLO interaction model and that they are
characteristic features of the corresponding Hamiltonian.

The correlation between selected LECs and nuclear matter
properties is shown in Fig. 12. Even though 3NFs should
be important for an accurate description of the saturation of
nuclear matter, we find that the correlation between the 3NF
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FIG. 12. Correlation structure between nuclear matter saturation
properties: saturation density ρ0 (in fm−3), saturation energy E0/A,
symmetry energy S, slope L, and incompressibility K (all in MeV)
and selected LECs (cD, cE , C1S0, and C3P0). The parameters ci and
C1S0 are in units of GeV−1 and 104 GeV−4, respectively. Results
are obtained with the 1.7 × 106 nonimplausible interactions from the
fifth wave of history matching. The Pearson correlation coefficient r
is indicated in each panel.

short-range contacts cD and cE and nuclear matter properties
is weak (as indicated by small Pearson correlation coeffi-
cients). This observation is consistent with the fact that cD and
cE are not well constrained by the present history matching
observables and that their contribution to the 3NFs are not
exclusive since other LECs such as c1, c3, and c4 also play an
important role. It is interesting to note that the singlet S-wave
contact C1S0 gives the strongest correlation with the slope L
of the symmetry energy, which is also known to be strongly
correlated with the neutron skin thickness of 208Pb [34,44].
This result indicates that this particular LEC serves as a bridge
between neutron-proton scattering in the 1S0 partial wave and
the thickness of neutron skins in finite nuclei. A more detailed
discussion of this constraint on the allowable range of the
48Ca and 208Pb neutron skin thicknesses can be found in Hu
et al. [44].

IV. BAYESIAN ANALYSIS: POSTERIOR
PREDICTIVE DISTRIBUTIONS

The history matching results do not offer a probabilistic
interpretation since no actual probability distributions were
invoked. For the target data we only considered an im-
plausibility criterion rather than a fully specified likelihood.
The nonimplausible samples do, however, offer an excellent
starting point for a Bayesian analysis. To acquire PPDs for
nuclear matter and finite nuclei observables we proceed as
follows: First, since the final wave of history matching proce-
dure does not include phase shifts, we confront all 1.7 × 106

nonimplausible samples with the phase shift targets from the
first wave (including S and P partial waves up to Tlab = 200
MeV) and apply the implausibility constraint (8). We also
examine whether the samples give an np bound state in the
1S0 channel as a sanity check. Just a few samples failed this
test. Taken together, these constraints reduce the number of
nonimplausible samples to 8218. Second, we use the method
of sampling and importance resampling [71,72] to extract an
approximate posterior probability density function (PDF) of
the LECs via Bayes’ theorem:

pr(�α |Dcal ) ∝ L(Dcal | �α) pr(�α). (20)

We assume a uniform prior probability distribution, pr(�α), for
all LECs except c1–c4 for which the prior is described by a
multivariate normal distribution originating in the Roy-Steiner
analysis of πN scattering data performed in Ref. [99]. The
history matching procedure provides a set of samples from
this prior. Although the full data likelihood is not involved,
the incorporation of implausibility constraints guarantees that
samples with a negligible contribution to the posterior PDF
are removed. Operating with the remaining large set of
prior samples {�αi}n

i=1 we now specify a data likelihood and
evaluate ωi ≡ L(Dcal | �αi ) and so-called importance weights
qi ≡ ωi/

∑n
j=1 ω j . Finally, we resample a set {�α∗

i }N
i=1 from

the discrete distribution {�αi}n
i=1 according to the importance

weights qi. This resampled set will then be approximately
distributed according to the target distribution pr(�α |Dcal ) ∝
L(Dcal | �α)pr(�α). See Ref. [72] for a recent importance re-
sampling review with a nuclear theory perspective. We have
studied the convergence of the posterior and found that a
resampling set of size N = 10 000 is sufficient. We also found
that a rather large subset of >400 samples from {�αi}n

i=1 pro-
vide 95% of the posterior PDF samples.

To examine how the choice of calibration data in the
likelihood L(Dcal | �α) affects the χEFT prediction we consid-
ered two different versions: (i) Dcal = DA=2,3,4 encompassing
binding energies and radii of 2,3H and 4He including
the quadrupole moment of the deuteron, and (ii) Dcal =
DA=2,3,4,16 where we also include the energy and radius of
16O. The default choice for the functional form of the like-
lihood is a normal distribution with independent errors (as
summarized in Table II). The sensitivity to this specification of
uncorrelated, Gaussian errors was tested using two alternative
likelihood forms, namely, a noncorrelated Student-t distribu-
tion (with ν = 5 degrees of freedom implying heavier tails)
and a multivariate normal distribution with positive correla-
tion (ρ = 0.7) between the ground-state energy and radius
of the same nucleus and between ground-state energies of
different nuclei. In the end, we found no significant impact
using the alternative distributions and therefore only show
results obtained with the default, uncorrelated Gaussian like-
lihoods. See the Supplemental Material [105] for numerical
LEC values of the nonimplausible samples, the corresponding
observable predictions using the emulators described in the
text, and the likelihood PDF values.

The model PPD for an observable can be written as the set
of model predictions evaluated for samples drawn from the
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FIG. 13. The PPD of nuclear matter properties at saturation with
two different choices of calibration observables: DA=2,3,4 (left col-
umn) and DA=2,3,4,16 (right column). The panels (from top to bottom)
show the saturation density ρ0 (in fm−3), saturation energy E0/A,
symmetry energy S, slope L, and incompressibility K (all in MeV).
The red bands indicate the empirical region with E0/A = −16.0 ±
0.5, ρ0 = 0.16 ± 0.01, S = 31 ± 1, L = 50 ± 10, and K = 240 ± 20
from Refs. [95,111,112]. The upper half of each panel (dark blue) in-
dicates PPD results from the sum of two independent runs (≈10 000
nonimplausible samples in total) while the lower half (light blue)
shows results obtained by the first run only (≈5000 nonimplausible
samples).

parameter posterior

PPDth = {yth(α̃) : α̃ ∼ pr(α̃ |Dcal )}, (21)

for which we use the resampled set {�α∗
i }N

i=1. From Eq. (21)
it is clear that the predictive distribution is conditional on the
selected calibration data Dcal.

Figure 13 shows the predicted distribution of nuclear mat-
ter properties calibrated by either DA=2,3,4 or DA=2,3,4,16. Here
we collect samples from the full PPD for which we also sam-
ple different sources of uncertainty as discussed in Sec. II F.
For PPDA=2,3,4 (PPDA=2,3,4,16) we find that 15% (60%) of the
samples are drawn from the training set and therefore have no
emulator error. The PPDA=2,3,4 is shown in the left column of
Fig. 13. The modes of the marginal distributions for saturation
density, saturation energy, and symmetry energy still deviate
from the empirical values. We note that the saturation density
PPD is asymmetric and our result almost indicates a bimodal
distribution. The PPDA=2,3,4,16 is shown in the right column
of Fig. 13 and provides an improved prediction of nuclear
matter saturation with better precision. The saturation energy
is slightly lower (more binding) compared with the empirical

FIG. 14. The PPD for the EOS around saturation density,
pr(E (ρ )/N, E (ρ )/A |DA=2,3,4,16). The sampling of the PPD includes
all relevant errors as described in Sec. II F as well as the parametric
uncertainty.

range and the mode of the incompressibility K is shifted to
larger values. The predictions for S and L are not significantly
affected by the addition of 16O to the calibration data. The
comparison of PPDA=2,3,4 and PPDA=2,3,4,16 reveals that the
description of nuclear matter properties is quite sensitive to
the choice of calibration observables. The reason is quite clear
from the correlation results shown in Fig. 11. It is clear that
the 16O ground-state energy and radii are strongly correlated
with nuclear matter properties. Thus a likelihood that contains
these observables provides a more precise nuclear matter pre-
diction. The full PPD for the energy per particle of PNM (top
panel) and SNM (bottom panel) as a function of density is
shown in Fig. 14.

Given the multistage analysis one can ask whether the
final result is sensitive to the randomness of nonimplausible
samples that results from the space-filling designs used in
history matching. For this reason we performed two inde-
pendent runs, from the start of the history matching to the
final Bayesian analysis, with each one producing ≈5000 non-
implausible samples. It is the sum of those two runs that is
presented in the upper half of each panel in Fig. 13. The lower
half displays the smaller statistics result that is obtained with
just the first run. The similarity of the upper and lower halves
indicates the robustness of the approach and the fact that the
convergence of the sampling and importance resampling step
is sufficient to accurately represent the target distribution.

Finally, in Fig. 15 the LEC parameter PDF is shown
conditional on the two calibration datasets. The marginal dis-
tribution of cD, cE , C3P0, C3P1, and C3P2 are the most sensitive
ones with respect to the choice of calibration data, while
the differences in the other marginal distributions are barely
distinguishable. This finding suggests that these terms in the
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FIG. 15. The LEC posterior PDF from importance resampling
with either DA=2,3,4 (orange) or DA=2,3,4,16 (blue) as calibration data.
The range for each LEC is listed below each panel. The parameters
ci, C̃i, and Ci are in units of GeV−1, 104 GeV−2, and 104 GeV−4,
respectively.

chiral Hamiltonian are the most important ones to describe
nuclear matter and heavier mass nuclei—yet remains poorly
constrained by observables in the few-nucleon sector.

V. SUMMARY

We have constructed nuclear matter emulators using the
SPCC method that works for a large 17-dimensional LEC
hyperspace of �-full χEFT at NNLO. In particular, we
have developed a small-batch voting algorithm to handle
the spurious-state problem that can occur when emulating
quantum many-body methods employing a non-Hermitian
Hamiltonian. These nuclear matter emulators are then applied

to 1.7 × 106 nonimplausible interaction samples generated
via five waves of history matching with A = 2–4 observables.
This allows us to study properties of the χEFT model includ-
ing the correlation structure between nuclear matter saturation
properties and observables of finite nuclei without bias from
a specific optimization scheme. In particular we find an in-
creasing correlation between saturation energy (density) and
the ground-state energy (radius of finite nuclei) as the mass
number of nuclei increases. In addition, a positive correlation
between C1S0 and the symmetry energy slope L is observed.

Starting from the history matching samples we performed
a Bayesian analysis including relevant sources of uncertainty
and using a correlated error model for the nuclear EOS. We
applied the method of sampling and importance resampling
method to obtain approximate samples of two parameter pos-
terior PDFs with two different calibration datasets, DA=2,3,4

and DA=2,3,4,16. The corresponding nuclear matter predictions
(given by PPDA=2,3,4 and PPDA=2,3,4,16) illustrate the sensitiv-
ity to the calibration data. We found that predictions of nuclear
matter saturation is more precise when incorporating the 16O
energy and radius in the likelihood calibration.

We conclude that observables from 16O are informative,
but we note that they are not the only choice. We have seen
that predictions for S and L were not significantly affected by
the addition of 16O to the calibration data. It will therefore be
interesting to explore the information content of observables
from neutron-rich systems. Furthermore, one should also con-
sider other few-nucleon observables, such as the 3H β decay
rate for which emulators are also available [113], to monitor
how they constrain the chiral interaction model and to explore
whether this can lead to a satisfactory description of nucleonic
matter ranging from light nuclei to infinite nuclear matter.
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