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Data-driven density functional model for atomic nuclei
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Through ensemble learning with multitasking and complex connection neural networks, we aggregated
nuclear properties, including ground-state density distributions, charge radii, and binding energies obtained from
the Kohn-Sham auxiliary single-particle systems. The root-mean-squared (RMS) error in describing binding
energies is reduced to about 500 keV, while the RMS error in describing charge radii is decreased to about
0.017 fm. In addition, by using the correlation between densities and binding energies, we discuss the impact
of various densities and nuclear radii on the binding energy and find the neutron-skin thickness of 208Pb to be
around 0.220 fm. The present paper provides a new way to accelerate the integration of machine learning into
nuclear density functional theory.
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I. INTRODUCTION

Nuclear mass is a fundamental property for extracting var-
ious nuclear structure information, including nuclear pairing
correlation, shell effect, deformation transition, and nuclear
interactions [1,2]. In astrophysics research, nuclear mass also
plays a crucial role in determining the composition on the
surface of neutron stars [3], the astrophysical processes of
nucleosynthesis, and the origin of elements in the Universe
[4].

Considering the profound impact of mass in nuclear
physics, a substantial amount of research has been devoted
to enhancing the description and predictive accuracy. Tra-
ditional theoretical models, such as the Bethe-Weizsäcker
mass formula [5], the finite-range droplet model [6], and the
Weizsäcker-Skyrme model [7], as well as the Hartree-Fock-
Bogoliubov mass model [8–10] and the relativistic mean-field
model [11–15], typically exhibit an accuracy range between
0.3 and 3 MeV. Currently, the machine learning based research
is gradually becoming one of the main forces on the path of
achieving higher accuracy. Utama et al. [3] introduced the ap-
plication of Bayesian neural networks to the residuals between
theoretical and experimental data, achieving remarkable suc-
cess with an improvement in mass accuracy of approximately
40%. The accuracy further reached an impressive 84 keV
[16], through the incorporation of nuclear pairing and shell
effects [17] together with meticulous design for multiple net-
works [16]. At the same time, machine learning approaches,
such as the radial basis function [18,19], kernel ridge regres-
sion [20,21], the support vector machine [22], the Gaussian
process [23–27], the decision tree [28,29], and others, have
also been employed to describe the nuclear masses. From
successful cases, another key insight is ensemble learning,
which involves integrating multiple learning models to make

posterior predictions, also known as Bayesian model averag-
ing [25–27,30] or world averaging [3].

With the description accuracy approaching the limits, the
research emphasis should be reverted to the fundamental con-
nections among observables for a deeper understanding of the
physics behind the phenomena, for example, in the scheme
of nuclear density functional theory (DFT). In a previous
work [31], the Kohn-Sham network (KSN) was proposed to
calibrate the nuclear charge radii based on the single-particle
wave functions obtained by the Skyrme-Hartree-Fock theory
with Bardeen-Cooper-Schrieffer (SHF + BCS) correlations.
While enhancing the ability to describe the nuclear radius, it
has to some extent lost the description of the binding energy.
Therefore, it is necessary to reconnect the binding energy.

In this paper, based on the previous findings, we will
establish a neural network mapping from nuclear spatial den-
sity, kinetic density, and spin-orbit density to nuclear binding
energy. Different datasets will be employed to explore the
network performance, where inputs include densities from
SHF + BCS and those calibrated by KSN, and outputs com-
prise the binding energies from SHF + BCS and experimental
data. The impact of the loss function on the training results
will also be discussed. Furthermore, according to the corre-
lation between densities and binding energies, the effects of
various densities on binding energy, neutron skin thickness,
and some relevant issues will also be investigated.

II. NEURAL NETWORK ARCHITECTURE

To aim at one of the most realistic mapping relationships,
we focus on two main aspects for generating the inputs.

On the one hand, we derive features that empirically en-
compass known physical information based on proton number
Z and neutron number N , including valence proton number
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Zv , valence neutron number Nv , proton hole number Zh, neu-
tron hole number Nh, proton shell number Zs, neutron shell
number Ns, shell effect parameter S, proton number parity ZP,
neutron number parity NP, and parity parameter P. Taking the
proton as an example, the relations among Z , Zs, Zv , Zh, and
ZP satisfy

Z = M(Zs) + Zv,

Zh = M(Zs + 1) − Zv,

ZP = Z mod 2 (1)

with the magic number list M being {8, 20, 28, 50, 82, 126,
184}. The shell effect parameter S and the parity parameter P
are defined as [17]

S = dp dn/(dp + dn) and P = [(−1)Z + (−1)N ]/2 (2)

with dp (dn) representing the difference between the actual
proton (neutron) number Z (N) and the nearest magic number.
The Z , N , Zv , Nv , Zh, and Nh share the same dimension; we
denote them as X1 for uniform normalization in the neural
network, while Zs, Ns, S, ZP, NP, and P would be a supplement
organized as X2. In addition to the clearly defined shell effects
and the odd-even staggering, this part of the network also
implicitly supplements some beyond-mean-field physics that
is challenging to describe within the Kohn-Sham framework,
such as nucleon correlations forming on the nuclear surface,
including the α cluster [32,33].

On the other hand, we obtain several crucial densities from
KSN single-particle wave functions ϕi and occupancy weights
wi calibrated by experimental charge radii. They include the
nuclear spatial density

ρ =
∑

i

di(
√

wiϕi )2

4π
, (3)

kinetic density

τ =
∑

i

di

4π

[
(∂r

√
wiϕi )

2 + li(li + 1)

r2
(
√

wiϕi )
2

]
, (4)

and spin-orbit density

J =
∑

i

di

4π

[
ji( ji + 1) − li(li + 1) − 3

4

]
2

r
(
√

wiϕi )
2. (5)

Here i ∈ {1s1/2, 1p3/2, 1p1/2, . . . } indicates the single-particle
states, while di, li, and ji respectively represent the degen-
eracy, the orbital angular momentum, and the total angular
momentum of a state i. In the Skyrme-Hartree-Fock theory,
the three aforementioned densities determine the kinetic, po-
tential, and spin-orbit terms of nuclear interactions, thereby
determining the nuclear binding energy via the Kohn-Sham
equations.

In practice, when employing charge radii to calibrate
densities [31], 640 nuclei data with Z > 40 were utilized,
encompassing the majority of deformed nuclei. In this sense,
all densities should be considered as angularly averaged. This
also implies that the deformation-induced changes in binding
energy are also characterized by the features X1 and X2.

The mapping network from the above inputs to the nuclear
binding energy is referred to as a density-to-energy network

FC FC Conv

BN

FC

1 2

,

KSN

FIG. 1. Schematic diagram of the structure the of density-to-
energy network. See the text for details.

(DTEN), the structure of which is shown in Fig. 1. The X1

and X2 are input into two separate four-layer fully connected
(FC) neural network cells (C1 and C2), while the six densities
(ρn, τn, Jn, ρp, τp, Jp) as continuous variables are fed into a
five-layer convolutional (Conv) neural network cell with six
channels (C3). Specifically, a max-pooling layer is connected
after each convolutional layer to reduce the parameter and
expedite convergence. Subsequently, the outputs from these
branch cells are concatenated and uniformly batch normal-
ized (BN) to align the feature distributions with a normal
distribution. Afterward, passing through another FC cell (C4),
the features are finally mapped to the binding energy Eb. An
essential point that must be emphasized is that the network
consists of 23 layers with complex connections, whose com-
plexity can lead to some neurons being trapped in the negative
range and becoming deactivated under the commonly used
ReLU (=max{0, x}) activation function [34] for nonlinearity,
especially after multiple iterations. To address this issue and
improve convergence, we adopt the LReLU (=max{0.01x, x})
activation function [35] to avoid gradient vanishing. Further-
more, to mitigate the influence of absolute data magnitudes,
all input features are subject to min-max scaling, ensuring
they fall within the range of 0 to 1. Due to the constrained
range of values, we employed the Sigmoid (= 1/(1 + e−x ))
activation function in the final layer. The meticulously de-
signed hyperparameter set for the DTEN architecture is listed
in Table I. In the table, the initial row and the conclud-
ing row of each cell respectively represent its input and
output, with the symbol “�” meaning concatenating two vec-
tors, i.e., [a, b, . . . ] � [c, d, . . . ] = [a, b, . . . , c, d, . . . ]. The
network contains a total of 1 173 281 trainable parame-
ters. During the training process, a dynamically decreasing
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TABLE I. The hyperparameter set of the DTEN structure. The
“D” represents the output dimension of the layer, the “Cin” the input
channels, the “Cout” the output channels, the “Ks” the size of the
kernel which includes both convolutional and pooling dimensions,
the “St ” the stride used during convolution or pooling operations,
and the “g(x)” the nonlinear activation function.

C1 or C2

L Type D g(x)

X1 or X2 6
1 FC 32 LReLU
2 FC 64 LReLU
3 FC 128 LReLU
4 FC 256 LReLU

Output1 or output2 256
C3

L Type D Cin. Cout. Ks St g(x)

Densities (6,150)
1 Conv. (32,150) 6 32 3 1 LReLU
2 Pooling (32,75) 32 32 2 2
3 Conv. (64,75) 32 64 3 1 LReLU
4 Pooling (64,25) 64 64 3 3
5 Conv. (128,25) 64 128 3 1 LReLU
6 Pooling (128,8) 128 128 3 3
7 Conv. (256,8) 128 256 3 1 LReLU
8 Pooling (256,2) 256 256 4 4
9 Conv. (512,1) 256 512 2 1 LReLU

Output3 512
C4

L Type D g(x)

Output1 � output2 � output3 1024
1 BN 1024
2 FC 512 LReLU
3 FC 256 LReLU
4 FC 128 LReLU
5 FC 32 LReLU
6 FC 1 Sigmoid

Binding energy 1

learning rate, which reduces as the loss function converges,
is applied with the Adaptive Momentum Estimation (Adam)
optimizer [36]. The aforementioned definitions and concepts
are entirely consistent with the patterns used in PYTORCH [37].

In the current design, the non-model-dependent inputs
(X1 and X2) and the model-dependent inputs (Densities) are
blended. The advantage is to retain accuracy as much as
possible while exploring the impact of densities on binding
energy. In this manner, the search for a parametrized energy
density functional is replaced by neural network mapping, but
the insights from traditional functionals are not aborted, which
will produce profound significance for describing complex
nuclear systems.

III. RESULTS AND ANALYSIS

In this paper, the proton single-particle wave functions
generated by KSN have undergone the calibrations with the

FIG. 2. The proton
√

wiϕi(r) in coordinate space for each single-
particle orbital in the nucleus 136Xe with (a) SHF + BCS and
(b) calibrated KSN, and the comparisons for the corresponding
(c) spatial densities, (d) kinetic densities, and (e) spin-orbit densities.

experimental charge radii of over 600 nuclei. However, due to
the lack of neutron information from laboratories, the original
SHF + BCS neutron densities with SkM* interaction [38]
are still employed. To ensure that the variation in density is
within physically permissible limits, we need to examine the
calibrated proton densities.

The comparisons in Fig. 2 depict
√

wiϕi(r) in coordinate
space for each single-particle orbital, spatial densities, kinetic
densities, and spin-orbit densities between SHF + BCS and
calibrated KSN. It is evident that there are only minimal
changes for the various densities. This is understandable: dur-
ing the calibration process of KSN [31], the original

√
wiϕi(r)

from SHF + BCS still retains a certain weight, and the cali-
bration for charge radii often only minimally changes on the
typical order of a few 10−2 fm. This implies that the loss of
self-consistency in the Kohn-Sham equation is limited at a
minimal level, hence it is feasible to roughly explore changes
in the kinetic, potential, and spin-orbit terms of nuclear in-
teractions on the basis of the SkM* parameters. However, as
illustrated in Ref. [39], a neural network trained with den-
sity and binding energy data from Skyrme DFT was applied
to discuss Ca isotopes, encountering a failure in describing
48Ca with an overbinding phenomenon. Such failure can be
attributed to an indispensable beyond-mean-field effect ap-
pearing near 48Ca [40,41]. To capture the descriptive capacity
of the beyond-mean-field effect, it is a natural approach to
establish a mapping relation that targets experimental data.
Turning to the training processes of DTENs, the changes in
the loss value as a function of training epochs are shown in
Fig. 3(a). In approximately 2400 nuclei with proton numbers
greater than 40, for which binding energies have been mea-
sured with high precision, we utilize an 8:2 ratio for dividing
the data into the training and validation sets. For each epoch,
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FIG. 3. (a) Loss values on the training set and validation set as
a function of training epochs. (b) The root-mean-squared errors in
integrating M networks with different datasets and loss functions.
See text for the legends.

all nuclei in the training set are trained once, and then the loss
value on the validation set (Lv) is calculated and recorded.
If a certain Lv is lower than all previously records, then the
model parameters will be saved and overwrite the previous
ones. After experiencing 50 epochs without model parameters
being overwritten, the model will reload the most recently
saved parameters, and the learning rate will be reduced by
a factor of 10. When the learning rate falls below 10−8, the
training stops.

Here, the loss function is constructed as a weighted mean
squared error

Loss = C × 〈(Eb,pre − Eb,tar )
2 × Aα〉, (6)

where Eb,pre and Eb,tar represent the predicted and experimen-
tal values of the binding energy, respectively. The constant
C = 2.78 MeV−2 is caused by max-min scaling mentioned
before. Weight A corresponds to the mass number with the
exponent α emphasizing the importance of mass, where α = 0
implies that the binding energies per nucleon are equally
significant for all nuclei, while an α of 2 means that the
masses of all nuclei are equally important. By setting α = 1,
a compromise is achieved between the binding energy per
nucleon and mass to some degree. In Fig. 3(a), α is set to
1. It can be observed that the training set and validation set
have essentially converged after 150 epochs, indicating basi-
cally no overfitting occurs and emphasizing the generalization
capability.

It can be observed that the loss value has converged to
a very low level. Further examination reveals that the root-
mean-squared (RMS) error of binding energy corresponding
to this loss is 1.6 MeV. Based on this, to achieve higher
accuracy, we further employ ensemble learning, combin-
ing multiple DTENs with identical structures for a final

prediction. For each DTEN, the model initialization is differ-
ent, which leads to variations in the convergence paths during
the model training process using stochastic gradient descent,
resulting in different predictive capabilities. The predictive
capability of a DTEN can be described by the RMS error
σ , serving as a prior according to the Bayesian principle.
Therefore, the final prediction can be expressed as

Eb,final =
M∑
i

wi × Eb,pre,i (7)

with

wi = 1/σ 2
i∑M

i 1/σ 2
i

, (8)

where M is the total number of models in the ensemble. The
blue scatter line for the mapping from the KSN-calibrated
densities to the experimental masses (labeled as “ρKSN to
Eexp”) in Fig. 3(b) describes the corresponding variation of
the final σ concerning M. It is clear that with the increase in
the number of models, the RMS error is substantially reduced,
ultimately converging to about 500 keV. There is almost no
improvement with M = 64 compared with M = 32; therefore,
further increasing the number of models in the ensemble is
not essential. The final precision, compared with the adopted
SHF + BCS theory [42] with the RMS error being about
10 MeV, has been improved by orders of magnitude.

The comparison of different α values for ρKSN to Eexp is
shown in Fig. 3(b). It is found that the case of α = 1 leads
to the smallest error, compared with the cases of α = 0 (pink
curve) and α = 2 (green curve). This might be because α =
0 leads the network to focus on lighter nuclei, while α = 2
causes the network to pay more attention to heavier nuclei,
resulting in a partial loss of global perspective in both cases.

According to the past experience, the learning capability
of a network often depends on the dataset. We further dis-
cuss this issue on the basis of α = 1. Two additional datasets
are conducted: one mapping from the DFT densities to the
corresponding DFT energies (labeled as “ρDFT to EDFT”), and
the other mapping from the DFT densities to the experimental
energies [43] (labeled as “ρDFT to Eexp”). The corresponding
comparisons are presented in Fig. 3(b). Upon comparing the
training results of three datasets, we observe that under the
final ensemble (M = 64), the loss values of all three are very
similar, with differences of only a few tens of keV. Although
the ρDFT to Eexp case seems to exhibit superior accuracy in de-
scribing experimental values, the difference is not significant.
Meanwhile, to balance the accurate description of radii, we
still consider the ρKSN to Eexp case to be more reasonable.

In principle, the data derived from laboratory measure-
ments should add greater complexity to the dataset. However,
from the above discussion, we find that the descriptive capa-
bility of the present network is consistent for the descriptions
of both the computed data and the experimental data. This
supports the notion that neural networks based on the simu-
lated data are also effective in the description of the real world.

Based on the strong correlation between densities and
binding energies, inferring the nuclear neutron-skin thickness
is an interesting and crucial problem. The KSN-calibrated
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FIG. 4. The energy of 208Pb as a function of compression ratio
kn, where E (ρ∗), E (τ ∗), and E (J∗) denote the change in energy
due to the compressed space density, kinetic density, and spin-orbit
density, respectively. The E (ϕ∗) represents the effect caused by the
compressed wave function, which compresses all three densities
simultaneously. The corresponding neutron-skin thickness for ρ∗ and
ϕ∗ is labeled with the lower x axis. The red dashed line represents the
calculated values on the training set, while the shadow indicates the
experimental value [44].

proton densities have reflected the true information about
proton radii. By observing the correlation between neutron
density variations and the binding states of a nucleus, we can
further infer the neutron-skin thickness. To this end, 208Pb,
as a prominent spherical nucleus, is taken for examination.
Physically, the variation in spatial density will also lead to
the changes in kinetic density and spin-orbit density. To main-
tain the self-consistency, based on the Kohn-Sham auxiliary
single-particle system, we apply a compression operator to the
neutron single-particle wave function, i.e.,

ϕn(r) → Cknϕn(knr), (9)

where the parameter kn controls the compression ratio, while
Ckn maintains the normalization. Simultaneously, to quali-
tatively understand the impact of each density on binding
energy, they are also individually compressed for comparison.

With the variation of kn, the corresponding changes occur
in the binding energy, as shown in Fig. 4. At a neutron-
skin thickness of 0.220 fm for the compressed wave function
ϕ∗, the nuclear binding strength is maximized. The obtained
value is greater than the initial training value (red dashed
line) and coincidentally falls on the edge of the experimental
measurement range [44]. Another noteworthy point is that
near the minimum point, the energy changes relatively softly,
less than 100 keV, suggesting that the neutron-skin thickness
is not so sensitive to its binding energy. Furthermore, when
compressing each density individually, it can be observed
that the kinetic density τ has only a relatively minor effect,
whereas the spin-orbit term J and the matter density term ρ

have strong contributions to the binding energy. In this regard,
artificial intelligence recognizes that with the compression
of the nucleus, the matter density contributes more energy,
whereas the energy from the spin-orbit density diminishes, a
phenomenon aligned with the logic of physics.

FIG. 5. The binding energies of (a) 132Sn and (b) 208Pb as 2D
functions of proton and neutron radii. The blue dashed line represents
kn(p) = 1. The black spherical dotted line depicts the variation of the
binding energy peak for each Rp.

The impact of variations in the proton radius on the system
is illustrated in Fig. 5, where the minimum energy neutron ra-
dius has been searched under different proton radii. According
to the black spherical dotted line, which depicts the variation
of the binding energy peak with changes in the proton radius,
it is noticeable that an increase in the proton radius necessi-
tates an increase in the neutron radius. However, the increase
in the neutron radius is always less than that of the proton
radius (	Rn < 	Rp) from the 132Sn and 208Pb, implying that
the increasing proton radius will reduce the skin thickness. It
is worth emphasizing that the current conclusions are quite
stable. The energy surfaces under other conditions presented
in Fig. 3(b) have also been examined, yielding remarkably
similar results.

Finally, as supplementary information, the RMS deviation
of the charge radii of 630 nuclei with Z > 40 from experi-
mental data [45] is further compared among the SHF + BCS
calculation, neural network calibration (Ref. [31]), and the en-
semble prediction results using 50 calibrated neural networks
(labeled as “This paper”), which is shown in Table II. By
comparing the SHF + BCS calculation with the calibration of
a single network [31], it can be noted that the single network
has significantly improved the description of charge radii and
has limited overfitting (the RMS deviation in the training set
is 0.0167 fm and in the validation set is 0.0172 fm). Unlike
the prediction of binding energies, further ensemble learning
for charge radii is highly inefficient. This may be due to the
composite loss function based on both theory and experiment

TABLE II. The root-mean-squared deviation (fm) of the charge
radii of 630 nuclei with Z > 40 from experimental data.

SHF+BCS Ref. [31] This paper

0.0456 0.0168 0.0163
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during calibration having already sufficiently constrained the
charge radii.

The current research, in conjunction with Ref. [31], has
essentially completed the construction of neural networks
based on the Kohn-Sham scheme for enhancing DFT. Re-
garding observables, it achieves high accuracy in describing
both binding energies and nuclear radii. In terms of physical
details, it can also be employed to explore the contributions of
single-particle states and shell structure, as well as the impact
of various densities on binding energy.

Nevertheless, the current model still deserves further re-
finement and optimization. Primarily, when considering the
nonmagic nuclei, the valence-nucleon-induced deformation
effects do not directly manifest in the densities. The present
densities are assumed to be angularly averaged, which may
impact the accuracy of describing binding energies and further
compromise the capability to characterize multipole defor-
mation potential surfaces. Therefore, three-dimensionalizing
the current model is imperative. Secondly, the current model
still falls short of providing a self-consistent description of
the system. Embedding the present network into the Kohn-
Sham equations represents a significantly important direction.
Finally, the critical role played by spin-orbit density suggests
that a relativistic framework may be more effective in describ-
ing the neutron skin.

IV. SUMMARY

With the aid of the nuclear single-particle wave func-
tions generated by the experimental charge radius calibrated
Kohn-Sham network, we computed three essential densities
in DFT, i.e., spatial density, kinetic density, and spin-orbital
density. Through an elaborated neural network, the densities
are further mapped to the experimental binding energies. By
employing a weighted ensemble of multiple models, the RMS
error in describing binding energies is decreased to 455 keV,
while the RMS error in describing charge radii is decreased

to 0.0163 fm. There has been a noticeable improvement com-
pared to the initial calculations based on SHF + BCS.

The relation between binding energy and neutron-skin
thickness is further explored. Considering the self-consistency
among densities, a contraction operator is applied to the neu-
tron single-particle wave functions to establish the correlation
between neutron skin and binding energy. By searching for the
minimum point, the estimated neutron-skin thickness of 208Pb
is obtained as approximately 0.220 fm. When discussing the
impacts of various densities independently, artificial intelli-
gence identifies that both spatial and spin-orbit densities play
significant roles. Further investigation of the energy variations
in the Rn-Rp two-dimensional plane indicates that changes in
the proton radius are more sensitive than those in the neutron
radius. We look forward to further experimental validation of
these conclusions.

This paper aggregates the charge radius data over 600
nuclei, the binding energy data for more than 2400 nuclei,
and the single-particle state data based on DFT. Ultimately,
it bypasses the many-body interaction potential and estab-
lishes the correlations among observables, whose descriptive
performance for the nuclear ground state has surpassed that
of the majority of existing density functional models. In the
future, by three-dimensionalizing the model, incorporating
adversarial neural networks, as well as introducing more ex-
perimental data, the neural network for enhancing DFT will
possess stronger descriptive capabilities.
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