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Background: Nowadays, modern microscopic approaches for fission are generally based on the framework
of nuclear density functional theory (DFT), which has enabled a self-consistent treatment of both static and
dynamic aspects of fission. The key issue is a DFT solver with high precision and efficiency especially for the
large elongated configurations.
Purpose: We aim to develop a DFT solver with high precision and efficiency based on the point coupling
covariant density functional theory (CDFT), which has achieved great success in describing properties of nuclei
for the whole nuclear chart.
Method: We have extended the point-coupling CDFT to be based on the two-center harmonic oscillator (TCHO)
basis, which matches well with the large elongated configurations during the fission process. A multidimensional
constraint and the time-dependent generator coordinate method (TDGCM) have been used to analyze the fission
potential energy surface (PES) and fission dynamics, respectively. To simulate the splitting process of the nascent
fragments beyond scission, we also introduce a density constraint into the new CDFT framework.
Results: Illustrative calculations have been done for the PESs and induced fission dynamics of two typical
examples: 226Th and 240Pu. A more reasonable PES is obtained in the new framework compared to that based on
the one-center harmonic oscillator (OCHO) with the same basis space. An optimization of about 0.2–0.3 MeV
has been achieved for the outer fission barriers and large elongated configurations. The dynamical simulations
based on CDFT-TCHO show an improved description of fission yields.
Conclusions: The newly developed CDFT solver optimizes the elongated configurations, improves the calcu-
lation efficiency, and provides a basis for large-scale multidimensional constraint calculations and dynamical
simulations.
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I. INTRODUCTION

Nuclear fission presents a unique example of nonequilib-
rium large-amplitude collective motion where all nucleons
participate with complex correlation effects, making the mi-
croscopic description of fission one of the most complex
problems in low-energy theoretical nuclear physics [1,2].
Since the discovery of nuclear fission, various theories have
been put forward and have enabled great progress. Based
on the work of Bohr and Wheeler [3], the early theories
for fission introduced a set of deformation parameters into
the liquid drop model to construct multidimensional potential
energy surfaces (PESs) to describe the relationship between
nuclear deformation and energy, which gives a simple ex-
planation of nuclear fission. In subsequent studies, the shell
corrections and pair correlations were added to the liquid
drop model, resulting in the macroscopic-microscopic (MM)
approach [4,5]. The MM approach has a series of versions
characterized by different parametrizations of the nuclear sur-
face of the liquid drop and different phenomenological nuclear
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potentials, such as the five-dimensional finite-range liquid-
drop model (FRLDM) [6–8], the macroscopic-microscopic
Woods-Saxon model [9,10], the macroscopic-microscopic
Lublin-Strasbourg drop (LSD) model in the three-quadratic-
surface parametrization [11,12], the LSD in Fourier shape
parametrization [13], the two-center shell model [14], and
so on. Based on a large number of parameters, the MM ap-
proach has greatly optimized the description of atomic nuclei.
However, due to the parameter dependence of the results,
the explanation of the microscopic mechanism of fission still
eludes us.

Nowadays, modern microscopic approaches for fission are
generally based on the framework of nuclear density func-
tional theory (DFT), which has enabled a self-consistent
treatment of both static and dynamic aspects of fission [1,15–
19]. In the DFT framework that relies on the adiabatic ap-
proximation, the total energies and wave functions along the
fission path are generally determined by the minimization
of the energy density functional of the nucleus within a
given set of constraints and assumed symmetries. Then the
fission observables can be obtained by performing a time-
dependent evolution of the collective wave packet on the
microscopic PES using, e.g., the time-dependent generator co-
ordinate method [20–35]. In this approach the dynamics of the
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fissioning system essentially depends on the microscopic in-
puts, e.g., the PES and collective inertia as functions of
few collective coordinates. However, the fully microscopic
and nonadiabatic time-dependent DFT has shown that many
collective degrees of freedom are excited in the fission pro-
cess [36]. Therefore, to achieve a better description of fission
dynamics based on DFT, one needs to carry out a larger-
scale multidimensional calculation including more collective
degrees of freedom. To this end, a DFT solver with high
precision and efficiency especially for the large elongated
configurations is necessary.

At present, based on the nonrelativistic density functionals,
the popularly used DFT solvers for nuclear fission include,
e.g., the codes HFBTHO [37] and HFODD [38,39] that solve
the Skyrme Hartree-Fock-Bogolyubov (HFB) equations in the
Cartesian deformed harmonic-oscillator (HO) basis, the code
SKYAX [40] solving the Skyrme-Hartree-Fock equations on
a two-dimensional mesh assuming axial symmetry, and the
solvers for the HFB equation with the finite-range Gogny ef-
fective interaction in the deformed HO basis [41,42]. Based on
the relativistic (covariant) framework, the multidimensional
constrained CDFT in an axially deformed HO basis has been
implemented [27,43], and, very recently, the time-dependent
CDFT in three-dimensional lattice space has also been de-
veloped by means of the inverse Hamiltonian and spectral
methods [44,45]. The constrained CDFT in deformed HO
basis has been extensively used to study the spontaneous and
induced fission dynamics, and achieved an acceptable agree-
ment with the experimental data [27–31,46–48]. However,
due to the mismatch between the one-center HO (OCHO)
basis and the elongated configurations of the fissioning nu-
cleus, both the accuracy and efficiency of the calculations
decrease with the increase of elongation, and in particular,
the calculation becomes unreliable for the configurations be-
yond scission. One way to solve this problem is to extend
the present framework to be based on the two-center HO
(TCHO) basis [49–51], which has been proved to be par-
ticularly well suited for the description of highly elongated
systems [22,25,49].

In this work, we will extend the point-coupling CDFT to be
based on the TCHO basis and perform illustrative calculations
for the PESs and induced fission dynamics of two typical
examples: 226Th and 240Pu. Moreover, we will implement the
density constraint in the new developed CDFT and analyze the
configurations and potential energy curve beyond scission. In
Sec. II, the theoretical framework is introduced. The results
for PESs and fragment yield distributions calculated based
on CDFT in one-center and two-center HO bases are com-
pared and discussed in detail in Sec. III. Density-constrained
calculation for postscission configurations is briefly discussed
in Sec. IV. Section V contains a summary of results and an
outlook for future studies.

II. THEORETICAL FRAMEWORK

A. Covariant density functional theory

There is strong evidence that relativistic effects play an
indispensable role in our understanding of the fine structure of

atoms/molecules and nuclei, although nonrelativistic methods
were historically very popular and are still routinely utilized
in modern studies. The most familiar manifestations of rela-
tivistic effects include the appearance of antifermions, their
spin, and the resulting spin-orbit interactions, which form a
key to understand the spin-orbit splitting of atomic spectra
and nuclear single particle levels [52]. In recent decades, the
relativistic (covariant) DFTs have been successfully applied
to the study of nuclear static and dynamic properties [53–55].
Here, we will adopt CDFT to study nuclear fission, and the
point-coupling version for CDFT can be written as

ECDF =
∫

drεCDF(r)

=
∑

k

∫
drυ2

k ψ̄k (r)(−iγ∇ + m)ψk (r)

+
∫

dr
(

αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS
ρS

+ αV

2
jμ jμ + γV

4
( jμ jμ)2 + δV

2
jμ
 jμ + e

2
ρpA0

+αTV

2
jμTV ( jTV )μ + δTV

2
jμTV 
( jTV )μ

)
(1)

with the local densities and currents

ρS (r) =
∑

k

v2
k ψ̄k (r)ψk (r),

jμ(r) =
∑

k

v2
k ψ̄k (r)γ μψk (r),

jμTV (r) =
∑

k

v2
k ψ̄k (r)γ μτ3ψk (r), (2)

where ψ is the Dirac spinor field of the nucleon. ρp and A0

are respectively the proton density and Coulomb field. The
subscripts indicate the symmetry of the couplings: S stands
for scalar, V for vector, and T for isovector. Various cou-
pling constants (α, β, γ , δ) are determined by the PC-PK1
parametrization [56].

Minimizing the energy density functional Eq. (1) with
respect to ψ̄k , one obtains the Dirac equation for the single
nucleons,

{−iα · ∇ + V (r) + β[M + S(r)]}ψk (r) = εkψk (r), (3)

where the local scalar S(r) and vector V (r) potentials are
functions of densities and currents in the nucleus:

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS
ρS,

V μ(r) = αV jμ + γV ( jν jν ) jμ + δV 
 jμ + eAμ 1 − τ3

2

+ τ3
(
αTV jμTV + δTV 
 jμTV

)
. (4)

Solving Eqs. (2)–(4) iteratively, one can obtain the single-
nucleon wave functions, densities, and currents, and also the
binding energy of the nucleus ECDF. Here, note that the Broy-
den method [57,58] was used in the iteration, which can speed
up the convergences by about one order compared to the linear
mixing for the elongated configurations.
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Pairing correlations between nucleons are treated using the
Bardeen-Cooper-Schrieffer (BCS) approach with a δ pairing
force [59]. Due to the breaking of the translational symmetry,
one has to consider the center-of-mass (c.m.) correction en-
ergy for the motion of the c.m., and here a phenomenological
formula Ec.m. = − 3

4 × 41A−1/3 is adopted. Finally, the total
energy is given by

Etot = ECDF + Epair + Ec.m. (5)

B. Two-center harmonic oscillator basis

To calculate the multidimensional PES in a large deforma-
tion space, one needs to solve the Dirac equation (3) with
high precision and efficiency. When employing a one-center
basis for calculation, theoretically, all possible configurations
can be calculated as long as the basis space employed is
sufficiently large. However, in practice, limited by the current
level of computer technology, it is impossible to construct a
basis space large enough, which hinders us from performing
large-scale multidimensional calculations. Solving the Dirac
equation based on a two-center basis may be an effective
method to improve the precision and efficiency [60]. There-
fore, in this work, we expand the Dirac spinor in a two-center
harmonic oscillator (TCHO) basis to match the large elon-
gated configuration during fission. The axially symmetric
TCHO potential in cylindrical coordinate system reads

V (r⊥, z) = 1

2
Mω2

⊥r2
⊥ +

{
1
2 Mω2

1(z + z1)2, z < 0,

1
2 Mω2

2(z − z2)2, z � 0,
(6)

where M is the nucleon mass. TCHO can be regarded as
two off-center harmonic oscillators connected at z = 0, while
z1 (z2) and ω1 (ω2) denote the distance from z = 0 to the
center of the left (right) harmonic oscillator and its frequency,
respectively.

Due to the spatial rotational symmetry along z axis, the
eigenfunction of TCHO can be written as the product of
eigenfunctions of different degrees of freedom,

�(r⊥, z, θ, s) = φml
nr

(r⊥)φν (z)
1√
2π

eiml θχms (7)

with

φml
nr

(r⊥) =
√

2

b⊥

√
nr!

(nr + ml )!
ηml /2Lml

nr
(η)e−η/2, (8)

φν (z) =
{

Cν1 Hν1 (−ζ1)e−ζ 2
1 /2 for z < 0,

Cν2 Hν2 (ζ2)e−ζ 2
2 /2 for z � 0,

(9)

where η = r2
⊥/b2

⊥, ζ1 = (z + z1)/b1, and ζ2 = (z − z2)/b2.
b⊥, b1, and b2 are the characteristic lengths obeying the
general relationship b = √

h̄/Mω with their corresponding
frequencies. Lml

nr
(η) and Hν (ζ ) denote the associated Laguerre

polynomial and Hermite function, respectively. In Eq. (9),
ν1, ν2, Cν1 , and Cν2 are determined by four conditions: con-
tinuity of φν (z) and φ′

ν (z) at z = 0, stationary condition of
eigenenergy, and normalization [51]. For the convenience of
discussion and application, we set z1 = z2, b1 = b2 and de-
note the TCHO basis as |α〉 = |nrνml ms〉 in the following.

FIG. 1. Evolution of the eigenvalue ν1 (a) and the wave function
φν (z) of the ground state (b) with increasing z1 for fixed b1 = 3.3 fm.

The choice of parameters z1 and b1 is introduced in detail in
Appendix A.

To get an intuitional impression of the TCHO basis, in
Fig. 1, we show the evolution of the eigenvalue ν1 and the
wave function φν (z) of the ground state with increasing z1.
Obviously, the eigen quantum numbers are not integers when
z1 �= 0, and the levels become denser for larger z1. Remark-
ably, the evolution of the wave function is consistent with
that of the configurations in the fission process by adopting
deformation-dependent basis parameters, which is introduced
in detail in Appendix A. For configurations with small defor-
mations, TCHO reduces to OCHO (specifically, z1 = z2 = 0
when β2 < 1). As the nucleus elongates and the two fragments
are forming, the basis employed gradually changes from one
center to two center, ensuring consistency with the evolving
density distribution.

To solve the Dirac equation (3) in the TCHO basis, first we
expand the Dirac spinor ψk as

ψk (r, s) =
(

fk (r, s)

igk (r, s)

)
=

( ∑
α f k

α |α〉
i
∑

ᾱ gk
ᾱ|ᾱ〉

)
. (10)

The summation of α has to be truncated for a given num-
ber of shells Nf which satisfies Eα � (Nf + 3/2)h̄ω with
h̄ω = 41A−1/3 MeV, and the summation of ᾱ is truncated at
Ng = Nf + 1 to avoid spurious states. Then we obtain the
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Dirac equation in matrix form,(
Aα,α′ Bα,ᾱ′

Bᾱ,α′ −Cᾱ,ᾱ′

)(
f k
α′

gk
ᾱ′

)
= εk

(
f k
α

gk
ᾱ

)
. (11)

The matrix elements Aα,α′ , Bα,ᾱ′ , and Cᾱ,ᾱ′ can be expressed
as follows:

Aα,α′ = δml m′
l
δmsm′

s
Nml

nr
Nml

n′
r

∫ ∞

0
dηe−ηηml Lml

nr
(η)Lml

n′
r
(η)

×
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Cν1Cν ′

1

∫ 0

−∞
dz e−ξ 2
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1
(−ξ1)

+Cν2Cν ′
2

∫ ∞

0
dz e−ξ 2

2 Hν2 (ξ2)Hν ′
2
(ξ2)

]

× [M + S(r⊥, z) + V (r⊥, z)], (12)
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]

× [M + S(r⊥, z) − V (r⊥, z)], (13)
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,

(14)

with

I1
(
ν, ν ′) = Cν1Cν ′

1

b1

∫ 0

−∞
dz e−ξ 2

1 Hν1 (−ξ1)

× [ξ1Hν1 (−ξ1) + Hν ′
1+1(−ξ1)]

+ Cν2Cν ′
2

b2

∫ ∞

0
dz e−ξ 2

2 Hν2 (ξ2)

× [ξ2Hν2 (ξ2) − Hν ′
2+1(ξ2)]. (15)

Finally, we can obtain the single nucleon energies and wave
functions by diagonalizing the Hamiltonian matrix. In the
following, we will denote the new implementation of CDFT
based on TCHO basis as CDFT-TCHO.

C. Multidimensional constraint calculation

The entire map of the energy surface in multidimensional
collective space for fission is obtained by imposing constraints
on a number of collective coordinates, e.g., axial quadrupole

and octupole moments q2, q3, and the number of nucleons in
the neck qN ,

〈Etot〉 +
∑

k=2,3

Ck (〈Q̂k〉 − qk )2 + CN (〈Q̂N 〉 − qN )2, (16)

where 〈Etot〉 is the total energy of CDFT, Ck and CN are the
corresponding stiffness constants. Q̂2, Q̂3, and Q̂N denote the
mass quadrupole and octupole operators, and the Gaussian
neck operator, respectively:

Q̂2 = 2z2 − r2
⊥.

Q̂3 = 2z3 − 3zr2
⊥.

Q̂N = e−(z−zN )2/a2
N . (17)

where aN = 1 fm and zN is the position of the neck determined
by minimizing 〈Q̂N 〉 [42]. The left and right fragments are
defined as parts of the whole nucleus with z � zN and z � zN ,
respectively.

The widely used quadrupole and octupole deformation
parameters β2 and β3 can be determined from the following
relations:

β2 =
√

5π

3AR2
0

〈Q̂2〉, (18)

β3 =
√

7π

3AR3
0

〈Q̂3〉, (19)

with R0 = r0A1/3 and r0 = 1.2 fm.
When the configurations for the full collective space are

obtained under the constrained calculations, we can finally
determine the collective PES by subtracting the energy of
zero-point motion, e.g., the vibrational and rotational zero-
point motions:

V (β2, β3, qN , . . . ) = Etot − 
Evib − 
Erot. (20)

The zero-point energy (ZPE) corrections are calculated in the
cranking approximation [61], and the expression for vibra-
tional ZPE reads


Evib = 1
4 Tr

[M−1
(3)M(2)

]
, (21)

with

M(n),kl =
∑
i, j

〈i|Q̂k| j〉〈 j|Q̂l |i〉
(Ei + Ej )n

(uiv j + viu j )
2, (22)

where Ei and vi are the quasiparticle energies and occupation
probabilities, respectively. The summation is over the proton
and neutron single-particle states in the canonical basis. The
rotational ZPE takes the form


Erot = 〈Ĵ2〉
2I , (23)

where I is the Inglis-Belyaev moment of inertia [62,63].
For the dynamical simulation, one also needs to

calculate the mass tensor in the perturbative cranking
approximation [61]:

Bkl (β2, β3, qN , . . . ) = h̄2
[M−1

(1)M(3)M−1
(1)

]
kl
. (24)
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D. Time-dependent generator coordinate method

Based on the adiabatic approximation for low-energy fis-
sion, the nucleon degree of freedom is decoupled from the
collective degrees of freedom. Therefore, the nuclear wave
function |Φ〉 is represented as a superposition of intrinsic
states |ϕ(β )〉 calculated by the CDFT:

|Φ(t )〉 =
∫

f (β, t )|ϕ(β )〉dβ, (25)

where f represents the corresponding weight function. It is
noted that the intrinsic state ϕ(β ) is chosen as a Slater de-
terminant composed of a series of Dirac spinors in Eq. (3).
Correspondingly, the nuclear wave function satisfies the time-
dependent equation

ih̄∂t |Φ〉 = Ĥ |Φ〉. (26)

where Ĥ is the Hamiltonian of the nuclear system determined
by CDFT. In the current relativistic framework, the equation is
naturally expressed as first-order derivatives with respect to
both time and space for the nuclear system composed of Dirac
particles.

Applying the variational principle yields the equation of
motion for the weight function, known as the Griffin-Hill-
Wheeler equation,

ih̄N ∂t f = H f (27)

with the normal overlap kernel N and Hamiltonian kernel H
N (β ′, β ) = 〈ϕ(β ′)|ϕ(β )〉,

H(β ′, β ) = 〈ϕ(β ′)|Ĥ |ϕ(β )〉. (28)

The weight function f is not a probability amplitude of
finding the system at the collective coordinate β due to the
non-orthogonality of the basis. Thus, a transformation should
be done first [64]:

g = N 1
2 f ,

Hcoll = N− 1
2 HN− 1

2 . (29)

Then we employ the Gaussian overlap approximation
(GOA) for the normal kernel N and expand the collective
Hamiltonian up to second-order derivatives of collective co-
ordinates [64]. Finally, a local collective Hamiltonian is
obtained, and the equation of motion for the collective wave
function in the (β2, β3) space is as follows:

ih̄
∂

∂t
g(β2, β3, t )

=
[
− h̄2

2

∑
kl

∂

∂βk
B−1

kl (β2, β3)
∂

∂βl
+ V (β2, β3)

]

× g(β2, β3, t ), (30)

where g(β2, β3, t ) is a complex wave function, which con-
tains all the information about the dynamics of the system.
V (β2, β3) and Bkl (β2, β3) are the collective potential and
mass tensor, respectively, which are derived from the CDFT
Hamiltonian kernel in Eq. (28) and completely determine

the dynamics of the fission process in the TDGCM+GOA
framework. The probability current is defined by

Jk (β2, β3, t )

= h̄

2i

3∑
l=2

B−1
kl (β2, β3)

[
g∗(β2, β3, t )

∂g(β2, β3, t )

∂βl

− g(β2, β3, t )
∂g∗(β2, β3, t )

∂βl

]
. (31)

Starting from an initial state of the compound nucleus, the
collective current will move to a large deformation region and
pass through a so-called scission line that is composed of the
hypersurface at which the nucleus splits. At the time t , the
measurement of the probability of a given pair of fragments
can be calculated by integrating the probability current which
runs through the scission line. For a surface element ξ , the
sum of the time-integrated flux of the probability F (ξ, t ) can
be written as [65]

F (ξ, t ) =
∫ t

t=0
dt

∫
(β2,β3 )∈ξ

J(β2, β3, t ) · dS. (32)

For each point on the scission line, it contains the information
of (AL, AH ), which represent the masses of light and heavy
fragments, respectively. Hence the yield of fission fragments
with mass A can be defined formally as

Y (A) ∝
∑
ξ∈A

lim
t→+∞ F (ξ, t ), (33)

where A is the set of all elements ξ belonging to the scission
line such that the heavy or light fragment has mass A. Here, we
will use the software package FELIX-2.0 [65] to solve the time-
dependent Schrödinger-like equation and calculate the fission
observables.

III. ILLUSTRATIVE CALCULATIONS FOR 226Th AND 240Pu

In this section, we present the illustrative calculations for
two typical examples: 226Th and 240Pu. Specifically, we will
compare the PESs, scission lines, and fragment yield distribu-
tions calculated based on CDFT in OCHO and TCHO bases
to demonstrate the improvement of the computing efficiency
and accuracy of CDFT-TCHO. In the CDFT framework, the
energy density functional PC-PK1 [56] determines the effec-
tive interaction in the particle-hole channel, and a δ force is
used in the particle-particle channel. The strength parameters
of the δ force are Vn (Vp) = 360 (378) MeV fm3 and Vn (Vp) =
338 (372.5) MeV fm3 for 226Th and 240Pu, respectively, which
are determined by reproducing the empirical pairing gaps
from a five-point formula [66].

In the first step, a large-scale deformation-constrained
CDFT calculation is performed to generate the PESs, scis-
sion lines, and mass tensors in the β2-β3 plane. The range
of collective variables is −0.98 to 6.98 for β2 with a step

β2 = 0.04, and from 0.00 to 4.24 for β3 with a step 
β3 =
0.08. When describing fission in a collective space, scission
is characterized by a discontinuity between the two domains
of prescissioned and postscissioned configurations. Following
our previous study [27], here we define the prescission domain
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FIG. 2. The potential energy surfaces of 226Th in the β2-β3 plane
calculated using the CDFT in OCHO (a) and TCHO (b) bases with
a cutoff of major shell Nf = 20. The orange solid line denotes the
optimal fission path.

by the nucleon number in the neck qN � 3 and consider the
frontier of this domain as the scission line.

For the induced fission dynamics, the TDGCM+GOA is
performed to model the time evolution of the fissioning nu-
cleus with a time step δt = 5 × 10−4 zs. The parameters of
the additional imaginary absorption potential that takes into
account the escape of the collective wave packet in the domain
outside the region of calculation are the absorption rate r =
20 × 1022 s−1 and the width of the absorption band, w = 1.5.

A. Results for 226Th

Figure 2 displays the PESs of 226Th in the β2-β3 plane
calculated using the CDFT in OCHO and TCHO bases with a
cutoff of major shell Nf = 20. The orange solid line denotes
the optimal fission path. The topographies of these two PESs
look almost same on the whole, and are also comparable with
that obtained using the Hartree-Fock-Bogoliubov framework
based on the Gogny D1S functional [67]. Two competing
fission valleys, i.e., the asymmetric one passing by the optimal
fission path and the symmetric one with β3 ≈ 0, are observed
and they are separated by a ridge from (β2, β3) ≈ (1.5, 0.0)
to (3.8, 1.2).

To compare the two calculations in more detail, we present
the potential energy curves along both the asymmetric and
symmetric fission paths in Fig. 3. The potential energies for

FIG. 3. The potential energy curves along the asymmetric (a) and
symmetric (b) fission paths of 226Th calculated using CDFT in TCHO
and OCHO bases.

the fission barriers and large elongated configurations calcu-
lated using TCHO are generally lower than those of OCHO.
Specifically, along the asymmetric path, a triple-humped fis-
sion barrier is predicted, and the calculated heights using
TCHO (OCHO) are 5.92 (6.11), 6.05 (6.25), and 4.32 (4.51)
MeV from the inner to the outer barrier, respectively. The
barrier heights along the symmetric path are 5.92 (6.11), 10.99
(11.30), and 2.37 (2.52) MeV from inner to outer. Please note
that here the values for the calculation with OCHO basis
are different from those in our previous work [27] due to
the consideration of the vibrational and rotational ZPEs [cf.
Eq. (20)] in current work. Moreover, we also find that the
ridge between two fission paths is lowered, e.g., ≈0.1 MeV
for (β2, β3) = (3.46, 1.20).

To check the efficiency of CDFT-TCHO, we take the more
elongated symmetric fission path as an example to compare
the computing time for three cases: TCHO with a cutoff of
major shell Nf = 20, and OCHO with Nf = 20 and Nf = 24,
in Fig. 4. For the first two calculations, the computing time
is similar, � 300 s for most of the configurations, but the
accuracy of TCHO is better, ≈0.3 MeV lower for the large
deformations due to the match between bases and calculated
configurations. To get accuracy similar to that of TCHO, the
OCHO basis space has to be enlarged to Nf = 24, which
of course consumes more time, about twice that of TCHO
calculation. Moreover, the extremely large computing time
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FIG. 4. The potential energy curves (a) and computing time
(b) for the symmetric fission path of 226Th calculated using CDFT
in TCHO and OCHO bases. The solid, dashed, and dotted curves
correspond to the results calculated from TCHO with a cutoff of
major shell Nf = 20 and from OCHO with Nf = 20 and Nf = 24,
respectively. The inset of panel (a) displays the potential energy
curves for large deformations.

for the configurations around the second fission barrier β2 ≈
1.6, ≈33 000 s by CDFT-OCHO, is significantly reduced to
≈1800 s by CDFT-TCHO. This is very important for the
large-scale multidimensional calculations that are crucial for
high-precision description of fission dynamics.

Figure 5 displays the scission lines of 226Th in the β2-β3

plane calculated using CDFT in TCHO and OCHO bases.
Their patterns are very similar and there is only a little
difference at the ends of the symmetric and asymmetric

FIG. 5. The scission lines of 226Th in the β2-β3 plane calculated
using CDFT in TCHO and OCHO bases.

FIG. 6. Total flux as a function of time (a) and preneutron emis-
sion charge yields (b) for the photoinduced fission of 226Th calculated
by TDGCM+GOA based on CDFT in OCHO and TCHO bases. The
experimental charge yields are also shown for comparison [68].

fission valleys, i.e. β3 ≈ 0.0 and 2.0. In addition, we have
also checked the mass tensors B22 and B33 calculated using
Eq. (24) and the relative root-mean-square discrepancy is
within 0.03%.

Using the PESs, mass tensor, and scission configurations
as inputs, we can simulate the dynamics for the photoinduced
fission of 226Th in the framework of TDGCM+GOA. Follow-
ing the procedure of Ref. [27], The initial state is prepared
by boosting the collective ground state in the direction of β2

with a target excitation energy about 11 MeV [68]. Figure 6
displays the time evolution of total flux that passes through the
scission line [panel (a)] and the preneutron emission charge
yields [panel (b)] for 226Th calculated based on CDFT in
OCHO and TCHO bases. Obviously, the total flux rises more
rapidly for the calculation based on TCHO. This is easy to
understand because the current is sensitive to the potential bar-
rier, while a lower barrier is obtained by TCHO. The charge
yields in Fig. 6(b) calculated based on both TCHO and OCHO
can reproduce the trend of the experimental data, especially
the coexistence of symmetric and asymmetric peaks in exper-
imental data. Although the peak values are still away from
the data, however, the TCHO calculation presents a trend to
improve the description: The asymmetric fission peak value
decreases from 15.07% to 13.76% and the dip at Z ≈ 40, 50

064310-7



LI, CHEN, ZHOU, CHEN, AND LI PHYSICAL REVIEW C 109, 064310 (2024)

FIG. 7. Same as Fig. 2 but for 240Pu.

increases from 1.66% to 1.96%, which can be attributed to
a reduction of the ridge between asymmetric and symmetric
fission valleys (cf. Fig. 2).

B. Results for 240Pu

Figure 7 displays the PESs of 240Pu in the β2-β3 plane
calculated using the CDFT in OCHO and TCHO bases. Along
the static fission path, the heights of the first fission barrier
are 6.79 MeV (OCHO) and 6.83 MeV (TCHO), while they
are 3.62 MeV (OCHO) and 3.76 MeV (TCHO) for the outer
barrier. Note that TCHO predicts higher fission barriers for
240Pu, different from the case in 226Th. For the region with
β3 ≈ 0.88, the calculated two PESs for 240Pu are quite differ-
ent: Scission happens much earlier in the TCHO calculation
than in that of OCHO. To understand the difference, we will
analyze the PES in a higher dimension by introducing a con-
straint on the particle number in the neck qN . Figure 8 displays
the PES in the β2-qN plane with a fixed β3 = 0.88 calcu-
lated by CDFT-TCHO. The solid curve denotes the fission
path without constraint on qN . For comparison, we also show
the corresponding fission path calculated by CDFT-OCHO,
denoted by the dashed curve. It is interesting to find that the
nucleus goes to different fission valleys in the two calculations
due to the subtle difference.

Furthermore, it is interesting to compare the present PES
to those calculated from nonrelativistic DFT with the Skyrme
SkM∗ and Gogny D1S functionals for the benchmark nucleus
240Pu [22]. All functionals yield similar binding energies and

FIG. 8. Potential energy surfaces of 240Pu in the β2-qN plane for
a fixed β3 = 0.88 calculated by CDFT-TCHO with PC-PK1 func-
tional. The solid curve denotes the fission path without constraint
on qN . For comparison, the corresponding fission path calculated by
CDFT-OCHO is also shown as a dashed curve.

deformations for the equilibrium state, indicating that the
relativistic correction to the bulk properties of the ground
state is small. However, there are significant differences in
the scission configurations predicted by CDFT, showing larger
elongation for symmetric fission and a more intricate structure
for asymmetric fission. These disparities arise from variations
in the underlying single-particle levels, particularly the spin-
orbital splitting that can be self-consistently handled within
the relativistic framework. The distinct scission configurations
may have implications for the description of fission observ-
ables such as fragment yields, TKEs, excitation energies of
fragments, and more.

The fission yield distribution calculated by
TDGCM+GOA is shown in Fig. 9 and compared with
the experimental data [69], while the initial state is prepared
by simulating the initial state as a Gaussian superposition
of collective eigenmodes in an extrapolated first potential

FIG. 9. Mass distributions of the nascent fragments of 240Pu
calculated by TDGCM+GOA based on OCHO and TCHO, in com-
parison with the experimental data [69].
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FIG. 10. The density distributions of 240Pu along z axis for the
scission point and beyond. The black solid line denotes the density
for scission point and the other lines from inside to outside indicate
those for the configurations, with the distance between the mass
centers of the left and right nascent fragments gradually increasing
to 19.18, 21.34, 22.96, 24.30 fm.

well, and the average energy lies 1 MeV higher than the inner
fission barrier. The fission yield distribution presents double
peaks, and both the peak values and peak positions are in
good agreement with the experimental data. In the area with
large mass asymmetry, two weak peaks are predicted in the
calculation based on OCHO, which may be due to the too soft
PES at the region with both large β2 and β3. Obviously, this
has been modified in the calculation based on TCHO.

IV. DENSITY CONSTRAINT CALCULATION
FOR POSTSCISSION

In a general fission process, starting from the excitation
of the mother nucleus, scission usually occurs within 10−20

seconds. Then, the fragments are far away from each other,
and the fast neutron is emitted after about 10−17 seconds.
The huge difference between the two timescales allows us to
assume that the configurations of the two nascent fragments
will not change much in a short time after scission. Therefore,
to simulate the splitting process of the nascent fragments
beyond scission, we will introduce a density constraint in the
new CDFT framework:

〈Etot〉 + Cρ

(∫
ρ(r⊥, z) − ρ0(r⊥, z)dr

)2

, (34)

where Cρ is the corresponding stiffness constant, and ρ and
ρ0 are the calculated and target densities of the nucleons,
respectively. The target density can be chosen as the one of
scission configuration, but splitting the two fragments by a
certain distance along the z direction with the center of mass
fixed at z = 0. Figure 10 displays the variation of the density
distribution of 240Pu along the z axis from scission point to
large separation. Obviously, this method can simulate the fis-
sion procedure smoothly after scission and keep the properties
of nascent fragments at scission. This is almost impossible in
CDFT-OCHO since the two fragments are separated.

FIG. 11. The potential energy curve of 240Pu along the optimal
fission path including both prescission and postscission configu-
rations. Contour plots of density distributions for some selected
configurations are also shown.

Figure 11 displays the potential energy curve of 240Pu
along the optimal fission path including both prescission
and postscission configurations. Contour plots of density dis-
tributions for some selected configurations are also shown.
Prescission configurations correspond to those denoted by the
orange curve in Fig. 7(b), while the postscission configura-
tions are obtained by density constraint calculation. Starting
from the ground state with ellipsoidal deformation, the nu-
cleus passes through two fission barriers, drops rapidly to the
scission point, and finally separates under Coulomb repulsion.
This provides a full space to analyze the generation and evo-
lution of the angular momentum of the fragments during the
whole fission procedure, a work that is currently in progress.

V. SUMMARY AND OUTLOOK

We have extended the point-coupling CDFT to be based on
the TCHO basis and performed illustrative calculations for the
PESs and induced fission dynamics of two typical examples:
226Th and 240Pu. A more reasonable PES is obtained in the
new framework compared to that based on OCHO with the
same basis space, especially for the outer fission barriers and
large elongated configurations, with an optimization of about
0.2–0.3 MeV. When compared to nonrelativistic calculations,
CDFT predicts significant differences in the scission config-
urations for the benchmark nucleus 240Pu: Larger elongation
for symmetric fission and a more intricate structure for asym-
metric fission. These disparities arise from variations in the
underlying single-particle levels, particularly the spin-orbital
splitting that can be self-consistently handled within the rela-
tivistic framework. Using the PESs, mass tensor, and scission
configurations as inputs, we have also simulated the dynamics
for the induced fission of 226Th and 240Pu in the frame-
work of TDGCM+GOA. The dynamical simulations based on
CDFT-TCHO show an improved description of fission yields.
Finally, we also introduced a density constraint into the new
framework to simulate the postscission procedure by separat-
ing the two frozen fragments from the scission point. This
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provides a full space to analyze the generation and evolution
of the angular momentum of the fragments during the whole
fission procedure, a work that is currently in progress.

The newly developed CDFT-TCHO optimizes the elon-
gated configurations, improves the calculation efficiency, and
provides a basis for large-scale multidimensional constraint
calculation. Very recently, we performed a fully three-
dimensional (3D) calculation to generate the 3D PES for the
fission of compound nucleus 236U using CDFT-TCHO with
constraints on the axial quadrupole and octupole deformations
(β2, β3) as well as the nucleon number in the neck, qN [70].
By considering the additional degree of freedom qN , the PES
broadens up to form a wide “estuary” in the (β2, qN ) subspace
for qN < 6: the energy surface is very shallow across a large
range of quadrupole deformations. This leads to a fluctuation
for the estimated total kinetic energies by several to ten MeV
and for the fragment masses by several to about ten nucleons.
Of course, this is just a simple estimation for the fluctuation of
the fission observables. More precise analysis should be done
by performing 3D TDGCM+GOA calculation based on the
3D PES.

Furthermore, the cluster formation and emission within
the relativistic framework is an interesting issue. It has
been demonstrated that the relativistic functionals are char-
acterized by deep single-nucleon potentials, which predict
the occurrence of much more pronounced cluster structures
when compared to non-relativistic functionals that yield sim-
ilar ground-state properties (binding energy, deformation,
radii) [71]. Recently, time-dependent density functional the-
ory based on a relativistic energy density functional was used
to analyze the final phase of the process of induced fission of
240Pu, and showed that the timescale of neck formation coin-
cides with the assembly of two α-like clusters, which could
also be linked to ternary fission [45]. The newly developed
CDFT-TCHO model enables more efficient calculations for
a wide array of configurations, making it a valuable tool for
studying phenomena such as cluster emission, ternary fission,
and other related physical processes. Moreover, the relativistic
effects on fission, cluster emission, and ternary fission could
be explored by reducing the relativistic framework to a non-
relativistic framework [72,73].
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APPENDIX: DETERMINATION OF THE PARAMETERS
IN TCHO BASIS

In Sec. II B, we introduced the TCHO basis and the ex-
pansion of Dirac equation in detail. Here, we will briefly

FIG. 12. The total binding energies for some selected configures
of 226Th optimal fission path calculated by CDFT-TCHO using dif-
ferent basis parameters z1 and b1. All energies are normalized with
respect to the binding energy of the corresponding global minimum.
The energy difference between adjacent contour lines is 0.05 MeV.
The stars denote the basis parameters determined by Eqs. (A1)
and (A2).

introduce how to determine the two parameters z1 and b1 in
the TCHO basis. Figure 12 displays the total binding ener-
gies for some selected configurations of the 226Th optimal
fission path calculated by CDFT-TCHO using different basis
parameters z1 and b1. All energies are normalized with respect
to the binding energy of the corresponding global minimum.
Obviously, we can observe some regions with lowest binding
energies in the z1-b1 plane, and these regions move to large z1

but stay around b1 ≈ 3.3 fm as the deformation increases. For
the convenience of practical application, we have comprehen-
sively considered the symmetric fission path and the optimal
fission path, and summarized the following formulas for the
two parameters:

z1 =
{

0, β2 < 1,

3.05
√

1.68β2 − 1.40 − 1.60, β2 > 1,
(A1)

b1 =
⎧⎨
⎩

bz, β2 < 0,

(bz − 3.3)β2
2 + (6.6 − 2bz )β2 + bz, 0 < β2 < 1,

3.3, β2 > 1,

(A2)

where bz is the corresponding characteristic length related
to the frequency of the spherical harmonic oscillator h̄ω =
41A−1/3. For configurations with small deformations, TCHO
reduces to OCHO (z1 = z2 = 0). As the nucleus elongates and
the two fragments are forming, the basis employed gradually
changes from one center to two center, ensuring consistency
with the evolving density distribution. The efficiency of these
formulas has also been confirmed in the calculations for a
number of heavy nuclei.
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