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In this paper we study the valence mirror symmetry between the Sn (Z = 50) isotopes and N = 82 isotones,
in the frameworks of the nuclear shell model (NSM) and its nucleon-pair approximation (NPA). The NPA energy
spectra and electromagnetic properties for yrast states are well consistent with the shell-model results as well
as available data in experiments. Remarkable correspondences of the energy spectra and electromagnetic matrix
elements between the even-even Sn isotopes and N = 82 isotones are emphasized in both the experimental data
and theoretical calculations. The asymmetry of E2+

1
values are explained in terms of the evolution of single-

particle energy splitting between the 1g7/2 and 2d5/2 orbits for the N = 82 isotones.

DOI: 10.1103/PhysRevC.109.064306

I. INTRODUCTION

Isospin symmetry is a fundamental concept in nuclear
physics. With this symmetry, the nuclear force is charge in-
dependent and thus exhibits identical behavior for neutrons
and protons [1]. This leads to the fact that energy spectra
and electrodynamic properties of one-pair mirror nuclei, one
with Z protons and N neutrons and the other with N protons
and Z neutrons, display remarkable similarities. Similar to
the symmetry of mirror nuclei, Refs. [2–6] suggested another
regular pattern, the so-called valence mirror symmetry in one
pair of nuclei, with valence particles in the same valence space
but outside different magic cores. This symmetry is especially
pronounced in nuclei pairs that are singly magic, and the best
examples are the Sn (Z = 50) isotopes and N = 82 isotones,
because they have very long chains, thus providing us with
the unique opportunity to study the valence mirror symmetry.
However, previous studies of valence mirror symmetry for
the Sn isotopes and corresponding N = 82 isotones focused
on cases with relatively larger valence nucleons (pair number
larger than 5), partly due to the unavailability of experimental
data for relevant nuclei 20 years ago.

In last two decades, the Sn isotopes have been of both
experimental [7–16] and theoretical [17–26] interest; the low-
lying states of N = 82 isotones were studied theoretically in
terms of the nucleon-pair approximation (NPA), the nuclear
shell model (NSM), and the relativistic quasiparticle ran-
dom phase approximation (QRPA) [27–33], and the seniority
structure of the N = 82 isotones is of particular interest in
shell-model calculations [34–39]. However, few studies dis-
cussed the valence mirror symmetry between them, if any.

*Corresponding author: ymzhao@sjtu.edu.cn

Therefore it is both timely and interesting to revisit the
low-lying structure of the Sn isotopes and N = 82 isotones
on the same footing, and, meanwhile, to investigate the va-
lence mirror symmetry between these two chains. This paper
is organized as follows. In Sec. II, we explain briefly the
framework of the NPA, including the parametrizations of the
Hamiltonian and the nucleon-pair basis. In Sec. III, we present
our NSM and NPA calculations for the low-lying states of
both even-even and odd-mass Sn isotopes and for those of
corresponding N = 82 isotones. The symmetry and asymme-
try in these valence mirror nuclei are discussed extensively. In
Sec. IV, we give the summary and conclusion of this paper.

II. THEORETICAL FRAMEWORK

The NPA is a powerful tool of truncating the gigantic
shell model configuration space. There have been a number
of widely used NPA forms, such as the generalized seniority
scheme [40], the broken pair approximation [41], and the
fermion dynamical symmetry model [42,43]. The NPA has
also been used to study the microscopic foundations of the
interacting-boson model (IBM) [44]. In 1997, a generalized
NPA formalism was proposed by Chen [45]; since then a
number of versions of the NPA were suggested, and here we
mention a few [46–51]. A comprehensive review of the NPA
can be found in Ref. [52].

In the NPA calculations, the collective nucleon pairs with
angular momentum r and projection M are defined as

Ar†
M =

∑
j j′

y( j j′r)(C†
j × C†

j′ )
(r)†
M . (1)

Here C†
j is the creation operator of single- j orbit and r de-

notes the angular momentum of the nucleon pair. y( j j′r) are
usually called structure coefficients. The nucleon-pair basis is
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constructed by successively operating Ar† on the vacuum state
in the valence space. If one considers all possible nucleon
pairs, the NPA is equivalent to the NSM. In most cases, only
one-type nucleon pairs for one given spin are adopted to
minimize the configuration space, as in the IBM.

In this work, we use collective S, D, G, G′, I , and F
pairs, with spins and parities r = 0+, 2+, 4+, 4+, 6+, and
3−. Their structure coefficients are obtained as follows. For
S pairs, we diagonalize the Hamiltonian H in the (S†

j )N |0〉
space, while j runs over all the single-particle levels. By using
the χ2-fitting procedure, we obtain the structure coefficients
with the (S†)N |0〉 state reaching the maximum overlap with
the lowest-energy wave function in the (S†

j )N |0〉 subspace. For

non-S pairs, we diagonalize the H in (S†
j )N−1Ar†

j1 j2
|0〉 space

(Ar†
j1 j2

is the non-S pair with spin r �= 0), with j1 and j2 running
over all single-particle levels. The structure coefficients of cor-
responding non-S pairs are obtained based on the energetically
lowest eigenstates. Here we consider two types of G pairs with
the lowest energy in order to reproduce well the second 4+
states of even-even nuclei.

The Hamiltonian in this paper includes the spherical
single-particle energy term H0, the residual monopole pairing
interaction HP0, the residual quadrupole pairing interaction
HP2 and the quadrupole-quadrupole interaction HQ:

H = H0 + HP0 + HP2 + HQ, (2)

with

H0 =
∑

j

ε jC
†
j Cj,

HP0 = −G0P (0)† · P (0),

HP2 = −G2P (2)† · P (2),

HQ = −κQ · Q,

where ε j is the single-particle energy, G0, G2, κ are the
two-body interaction parameters of monopole, quadrupole
pairing, and quadrupole-quadrupole interactions between va-
lence nucleons (valence neutrons for Z = 50 isotopes and
valence protons for N = 82 isotones). In this paper these
two-body parameters are assumed to be unified and are taken
as G0 = 0.19, G2 = 0.025, κ = 0.041 to reproduce the exper-
imental spectra of of yrast states. The pairing operators and
quadrupole operators are defined as follows:

P (0)† =
∑

j

√
2 j + 1

2
(C†

j × C†
j )(0)

0 ,

P (2)† =
∑

j j′
q( j j′)(C†

j × C†
j′ )

(2)
M ,

Q =
∑

j j′
q( j j′)(C†

j × C̃j′ )
(2)
M ,

where q( j j′) = (−) j+1/2√
20π

ĵ ĵ′C20
j 1

2 , j′− 1
2
〈nl|r2|nl ′〉.

The single-particle energies in our calculations are pre-
sented in Table I. The neutron single-particle energies of the
g7/2 and d5/2 levels for Sn isotopes are taken as experimental
excitation energies of 101Sn, while other single-particle orbits

TABLE I. Single-particle energies ε j (in MeV) for Z = 50 iso-
topes (taken from Refs. [22,53]) and N = 82 isotones (taken from
Refs. [53,54]). The single-particle energy of the d5/2 is adjusted in a
simple manner for N = 82 isotones with proton number Z = 62 and
64, as explained in the text.

εs1/2 εd3/2 εd5/2 εg7/2 εh11/2

Z = 50 1.550 1.660 0.000 0.172 3.550
N = 82 2.990 2.440 0.962 0.000 2.792

are adopted from a previous shell model calculation [9] as
in Ref. [22]. For N = 82 isotones with Z � 60, the proton
single-particle energies are extracted from the experimental
data of 133Sb [53], except that the unmeasured εs1/2 is taken
from Ref. [54].

It is worthwhile to discuss the mechanism of the difference
between the proton and neutron single-particle energies in
Table I. For this purpose, we present here a schematic picture
based on the difference of inert cores for Sn isotopes and
the N = 82 isotones, in Fig. 1, where the energy difference
between the single-particle energies of valence protons for
N = 82 isotones and those of valence neutrons for Sn isotopes
is attributed to the proton-neutron interaction between the va-
lence protons and the extra part of neutron core in the N = 82
isotones. To see this more clearly, we adopt the proton-neutron
part of a monopole-optimized effective interaction for Sn
isotopes [55] [denoted by VJ ( jπ jν, jπ jν )], and calculate its
monopole contribution to the shift of single-particle energy,
given by

�ε jπ =
∑

jν ,J
(2J + 1)VJ ( jπ jν, jπ jν )

2 jπ + 1
(3)

with jπ the valence-proton level and jν running over the
extra inert-neutron levels, {s1/2, d3/2, d5/2, g7/2, h11/2}, of the
N = 82 isotones. The resultant values are �εg7/2 = −2.3 MeV

FIG. 1. Schematic picture of difference between the single-
particle energies of valence protons for N = 82 isotones and those
of valence neutrons for Sn isotopes, based on the proton-neutron
interaction between the valence protons and the extra part of neutron
core in the N = 82 isotones. See the text for details.
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FIG. 2. Comparison of the experimental yrast states for (a) even-
even 104–110Sn and 136Xe – 142Nd, and (b) odd-mass 103–109Sn and
135I – 141Pr. For convenience of comparison, the levels of even-even
N = 82 isotones are shifted to put the 6+ states at the same place
as their partners in Sn isotopes. The experimental excitation energies
were taken from Ref. [53].

and �εd5/2 = −1.6 MeV. This means that the proton g7/2 level
should be lowered down by about 0.7 MeV, and become the
lowest single-particle level for N = 82 isotones. In Table I,
the change of εg7/2 from neutron to proton is about 1.1 MeV,
slightly larger than the theoretical estimation. We note the
single-particle energies of these two levels used in Ref. [55]
are reversed in comparison to the experimental data, which
could account appropriately for this discrepancy.

For electromagnetic properties, we take the effective
charges as eν = 1.28 e for neutron systems and eπ = 1.60 e
for proton systems; the effective gyromagnetic ratios are op-
timized to be glν = −0.01 μN , gsν = −3.826 × 0.7 μN for
neutron systems, and glπ = 1.10 μN , gsπ = 5.586 × 0.7 μN

for proton systems, respectively.

III. RESULTS AND DISCUSSION

In this section we present our calculated results of low-
lying states for the Sn isotopes and the N = 82 isotones. All
effective parameters in the NSM and NPA calculations are
presented in the preceding section. Based on these results
we discuss the nice symmetry manifested in the even-even
nuclei, and investigate the origin for the large differences of
2+

1 energies therein.

A. Symmetry between corresponding valence mirror nuclei

In Fig. 2 we plot experimental energy levels for yrast
states of the Z = 50 isotopes, 103–110Sn, and N = 82 isotones,

135I – 142Nd, taken from the National Nuclear Data Center
(NNDC) [53]. For convenience, to compare the relative en-
ergy intervals, we shift the levels of 136Xe, 138Ba, 140Ce, and
142Nd so that the 6+

1 states of the N = 82 isotones locate at
the “same level” as the corresponding Sn isotopes. We have
chosen the 6+

1 state as a reference because this state has a
quite pure |SnI〉 configuration in the investigated nuclei. One
sees that the yrast states with J = 4–12 for those even-even
Sn isotopes and the N = 82 isotones have nice one-to-one
correspondences, with level schemes very close to each other,
except for the energies of the 2+

1 states. This similarity in
energy spectra and the asymmetry in 2+

1 states were noted
already in Refs. [2–5]. In addition, such a level symmetry
totally breaks down in the odd-mass nuclei, as shown by the
mismatch of the order of 7

2
+
1 and 5

2
+
1 levels in particular. This

is because in the seniority picture these yrast states are dom-
inantly controlled by the unpaired nucleon, and accordingly
they are very sensitive to the single-particle energy splittings.
The asymmetry presented in the 2+

1 states will be discussed in
the next subsection.

Figure 3 plots both the NSM and the NPA results for
the low-lying energy spectra of even-even 102–110Sn and
134Te – 142Nd. The experimental data available in the NNDC
are also exhibited for comparison. One sees that the yrast
levels from the NPA calculation are well consistent with ex-
perimental values as well as the corresponding NSM results.
Most importantly, the remarkable similarities between Sn iso-
topes and and N = 82 isotones are reproduced very well.

One attractive feature in that figure is the similarity of
energy levels between non-yrast positive-parity states. In ex-
perimental data, we find that the non-yrast states energies of
0+

2 , 2+
2 , 4+

2 , 6+
2 are 2.31, 2.12, 2.46, 2.75 MeV for 110Sn,

and 2.22, 2.38, 2.44, 2.89 MeV for 142Nd. From theoret-
ical calculations, this feature is distinctly indicated by the
semidegeneracies of 0+-6+, 7+-8+, and 9+-10+ states in the
NSM results. Such a behavior is also reproduced by the NPA
calculation for 140Ce, 110Sn, and 142Nd, although the exact
level orders are not consistent with the NSM results. It thus
provides a guidance for future experimental measurements
related to the proton-rich Sn isotopes, for which relevant
experimental data connecting the valence mirror symmetry
are rare.

The negative-parity levels of our NSM and NPA calcula-
tions, however, are not well consistent with the experimental
data. According to Ref. [56], the agreement is improved by
further considering octupole pairing and octupole-octupole
interaction in the phenomenological Hamiltonian, and the
symmetry for the negative-parity levels broken in our cal-
culations is also recovered partially by the incorporation of
appropriate octupole interactions.

Figure 4 shows the theoretical and experimental results of
low-lying states for the odd-mass Sn isotopes and N = 82 iso-
tones. The calculated positive-parity levels among the NSM,
the NPA, and the experimental results are in good agreement,
except that the ground state of 109Sn is not reproduced by the
theoretical calculations. For negative-parity states, the NSM
and the NPA results are consistent with each other, but not
consistent with experimental data. Such deviations may be
partly attributed to the absence of monopole interactions; for
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FIG. 3. Low-lying energy spectra for even-even 102–110Sn and 134Te – 142Ba. Experimental data from the NNDC database [53] are plotted
in black. The shell model results (in red) and the NPA results (in blue) are obtained by diagonalizing the phenomenological pairing plus
quadrupole-quadrupole interaction.

instance, the introduction of G
∑

JM (C†
5/2×C†

11/2)(J )
M (C̃5/2×

C̃11/2)(J )
M with G = 0.4 MeV reduces the excitation energies

of 11
2

−
1 states in 107,109Sn from 2.61 and 2.31 MeV to 1.70 and

1.15 MeV, respectively, close to 1.67 and 1.27 MeV measured
in experiments. Note that this monopole interaction has very
slight contribution to the positive-parity levels. Nonetheless,
the valence mirror symmetry for the odd-mass nuclei is not
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FIG. 4. Same as Fig. 3, but for even-odd 103–109Sn and odd-even 135I – 141Pr.

clearly seen, either experimentally or theoretically. Therefore
below we focus our discussion on valence mirror symmetry in
the even-even nuclei.

As studied in Refs. [2–5], the simplest explanation
of the valence mirror symmetry would be the identical
single-particle energies and residual interactions for valence
nucleons outside magic cores. Here we also adopt the identical
two-body interaction parameters for valence mirror nuclei
with the same valence nucleon numbers (but take different
single-particle energies). In order to investigate the valence
mirror symmetry, we compare the NPA wave functions
of the corresponding states connected by this symmetry,
by neglecting the isospin part of wave functions for valence
protons and neutrons. The overlaps between wave functions of

relevant states for the Sn isotopes and the corresponding wave
functions for the N = 82 isotones are calculated, and plotted
in panels (a)–(c) of Fig. 5, respectively, where n represents
the number of valence nucleons. One sees that most of those
calculated overlaps are larger than 0.8, which demonstrate
notable similarities between corresponding states and thus the
existence of nice valence mirror symmetry for the Sn isotopes
and the N = 82 isotones. An interesting feature is that the
overlaps for non-yrast states are in general larger than for
yrast states, consistent with the tendency seen in Figs. 3 and 4.

Now we look at the electromagnetic properties of these
nuclei. In Table II, we list the calculated values of B(E2) (in
units of W.u.) for the yrast states of the even-even 102–110Sn
and 134Te – 142Nd, as well as corresponding experimental data
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FIG. 5. Overlaps of the NPA wave functions for states of the
Sn isotopes with those for corresponding states of the N = 82 iso-
tones, versus valence nucleon number n. Panels (a)–(c) correspond
to the yrast states and the non-yrast states with even J and odd J ,
respectively.

for comparison [53,57]. One sees that the NPA calculations
are well consistent with the NSM results, whereas they are
in visible disagreement with some experimental data. These
discrepancies primarily result from the simple form for resid-
ual interaction adopted in this work. In Refs. [23,34], more
complicated interactions were applied to the NPA calculations
and yielded a relatively better agreement for the considered
B(E2) values. There are also a few states of the N = 82
isotones that are experimentally known to have quadrupole
moments [53]: −0.14(7) eb for the 2+

1 state of 138Ba; 0.35(7)
and 0.34(4) eb for the 4+

1 and 6+
1 states of 140Ce. In the NPA

calculations, we obtain −0.294, −0.062 and 0.127 eb for
these three states; in the NSM calculations, the corresponding
values are −0.327, −0.037 and 0.167 eb. Nevertheless, the
phenomenological pairing plus quadrupole-quadrupole inter-
action adopted in this work describes the bulk properties of
the examined nuclei well.

Magnetic dipole moment is a sensitive probe for nuclear
structures. We have also derived this quantity from the NSM
and the NPA calculations, and present it together with data
available from the NNDC in Table III. For N = 82 iso-
tones, the NSM and the NPA results are well consistent with
each other and the experiments. For Sn isotopes, however,
the experimental data are still scarce and subject to large
uncertainties, and our calculations reproduce the general fea-
ture exhibited in these experimental magnetic moments. Yet
the differences among the NSM, the NPA, and the experi-
ments are discernible, although the present calculations yield
μ(6+

1 ) for 108Sn, close to the shell model value based on
a more sophisticated Hamiltonian [23]. More experimental
measurements of magnetic moments and calculations with a

TABLE II. B(E2; I → I − 2) (in units of W.u.) for yrast states of
even-even 102–110Sn and 134Te – 142Nd. Experimental data are taken
from Ref. [53]. The neutron effective charge is taken to be eν =
1.28 e, while the proton effective charge is taken to be eπ = 1.60 e.

102Sn 134Te

Iπ Expt. NSM NPA Expt. NSM NPA

2+
1 5.24 5.24 6.3(20) 5.09 5.09

4+
1 2.06 2.06 4.3(4) 4.04 4.04

6+
1 0.45 0.45 2.05(4) 2.24 2.24

104Sn 136Xe

Expt. NSM NPA Expt. NSM NPA

2+
1 11.9(19) 9.95 9.59 9.68(38) 8.42 7.84

4+
1 10.6 8.85 1.281(17) 6.16 5.90

6+
1 4.2(15) 0.31 0.67 0.0132(4) 3.95 4.04

8+
1 >0.6 3.09 3.68 4.14 4.07

10+
1 4.1(6) 5.22 3.15 0.30 0.21

106Sn 138Ba

Expt. NSM NPA Expt. NSM NPA

2+
1 13.1(26) 13.4 12.8 10.8(5) 9.75 9.13

4+
1 17.9 15.9 0.2873(15) 4.08 3.80

6+
1 3.1(7) 0.76 0.94 0.053(7) 1.33 1.15

8+
1 1.93 4.06 0.17 0.19

10+
1 6.4(11) 0.40 0.08 1.59(22) 3.31 3.24

108Sn 140Ce

Expt. NSM NPA Expt. NSM NPA

2+
1 14.5(12) 15.4 14.8 13.8(3) 12.2 12.0

4+
1 21.8 20.1 0.137(4) 5.18 5.43

6+
1 2.43(14) 0.29 0.42 0.29(6) 0.25 0.18

8+
1 5.67 5.70 1.35 0.41

10+
1 0.52 0.53 0.46(13) 4.02 3.75

110Sn 142Nd

Expt. NSM NPA Expt. NSM NPA

2+
1 15.9 15.7 12.03(22) 14.5 15.4

4+
1 23.1 20.8 6.53 3.24

6+
1 0.09 0.04 0.20 0.13

8+
1 6.25 5.44 6.18 6.26

10+
1 1.16 1.37 0.86 0.67

sophisticated Hamiltonian in larger configuration spaces are
thus warranted.

For one pair of mirror nuclei, the similarity of nuclear
structures leads to exact symmetry in electromagnetic prop-
erties: the magnetic moments of mirror nuclei exhibit strong
linear correlations for both the ground and excited states
[58]. This pattern might be expected to survive for valence
mirror nuclei. However, magnetic moments in Table III do
not follow this regularity. In order to investigate the reason
why this correlation disappears for one pair of valence mirror
nuclei, we calculate the reduced matrix elements of magnetic
moments in Fig. 6 for yrast states with given spin J . The
calculated ξl = 〈	||L||	〉 and ξs = 〈	||S||	〉, with |	〉 the
NPA wave function, are plotted by using squares and circles,
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TABLE III. Same as Table II, but for magnetic moment μ (in
units of μN ). Experimental data are taken from Ref. [53]. The neutron
gyromagnetic ratios are optimized to be glν = −0.01 μN and gsν =
−3.826 × 0.7 μN , while the proton gyromagnetic ratios are taken to
be glπ = 1.10 μN and gsπ = 5.586 × 0.7 μN .

102Sn 134Te

Iπ Expt. NSM NPA Expt. NSM NPA

2+
1 −0.16 −0.16 1.67 1.67

4+
1 −1.96 −1.96 3.15 3.15

6+
1 −0.30 −0.30 5.08(15) 4.74 4.74

104Sn 136Xe

Expt. NSM NPA Expt. NSM NPA

2+
1 −0.07 −0.06 1.53(9) 1.71 1.68

4+
1 −0.13 −0.27 3.2(6) 3.14 3.15

6+
1 −0.23 −0.27 4.74 4.74

8+
1 0.41 −0.33 6.37 6.37

10+
1 −0.28 −0.28 10.1 10.1

106Sn 138Ba

Expt. NSM NPA Expt. NSM NPA

2+
1 −0.03 −0.01 1.44(22) 1.76 1.74

4+
1 −0.03 −0.03 3.2(6) 3.20 3.19

6+
1 −0.84(54) −0.16 −0.20 5.88(12) 4.77 4.78

8+
1 0.46 −0.07 8.43 8.43

10+
1 −0.09 −0.22 10.1 10.1

108Sn 140Ce

Expt. NSM NPA Expt. NSM NPA

2+
1 −0.01 0.01 1.9(2) 2.07 2.05

4+
1 0.09 0.11 4.06(15) 3.92 3.87

6+
1 −0.24(12) −0.06 0.08 6.62 6.83

8+
1 0.41 0.18 7.88 7.89

10+
1 0.28 0.18 10.3(4) 11.3 11.4

110Sn 142Nd

Expt. NSM NPA Expt. NSM NPA

2+
1 0.58(22) 0.01 0.05 1.69(15) 2.48 2.40

4+
1 0.20(56) 0.04 0.14 5.76 6.14

6+
1 0.06(114) −0.00 0.32 6.80 6.86

8+
1 0.09 0.31 9.48 9.43

10+
1 0.42 0.53 7.9(24) 11.3 11.4

respectively. Panels (a)–(e) correspond to cases with valence
nucleon numbers n = 2, 4, 6, 8, and 10 respectively, with
results of the Sn isotopes in black and red and those of the
N = 82 isotones in blue and green. According to Fig. 6, the
dominant contributions to the total magnetic moments come
from the orbital angular momentum parts, while those from
spin parts are very small. Very strikingly, it is easily seen
that the magnetic moments of corresponding states for given
pair of valence mirror nuclei, given by orbital angular mo-
mentum parts, are close to each other, and are approximately
proportional to J . This means that the asymmetry in mag-
netic moments essentially originates from the difference in

FIG. 6. Matrix elements of magnetic dipole moment for the yrast
states of even-even Sn isotopes (in black and red) and those of N =
82 isotones (in blue and green), with the valence nucleon number
n = 2–10. The orbital parts (ξl ) and spin parts (ξs) are represented by
using squares and circles, respectively.

gyromagnetic ratios for valence protons and neutrons (glν =
−0.01 μN and glπ = 1.10 μN in this paper).

A simple scenario of the regular pattern for ξl can be
understood in the framework of the NPA by two steps. First
let us look at the case of two identical nucleons, in which case
the matrix element of magnetic moments is already derived in
Ref. [52] as follows:

〈s1, J ′
1‖L‖r1, J1〉 = (−)tδs1,r′

1
δJ ′

1,L1〈s1, J ′
1|r′

1, L1〉,
= (−)tδs1,r′

1

∑
j j′

2y( j j′s1)y′( j′ jr′
1), (4)
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where y( j j′s1) is the structure coefficient, and r′
1 represents a

new collective pair,

r′
1 ≡ A

r′
1†

M =
∑

j j′
y( j j′r′

1)(C†
j × C†

j′ )
r†
M , (5)

where y′( j′ jr′
1) is defined as

y′( j′ jr′
1) = z( j′ jr′

1) − θ ( j′ jr′
1)z( j j′r′

1), (6)

z( j′ jr′
1) =

√
3r̂1

∑
k

y( jkr1)q(k j′1)

{
r1 1 r′

1

j′ j k

}
, (7)

with θ ( j′ jr′
1) = (−) j′+ j+r′

1 and

q( j j′1) = δll ′ (−1)l+1/2+ j′
√

l (l + 1)

3
ĵ ĵ′ l̂

{
j j′ 1

l l 1
2

}
(8)

the structure coefficient of the operator L. The absolute values
of nondiagonal elements in ql ( j j′1) are very small compared
with the diagonal elements. By assuming that q( j j′1) = 0
when j �= j′, y′( j′ jr′

1) in orbital parts is reduced to

y′( j′ jr′
1) = y( j j′r1) f ( j′ jr1), (9)

with

f ( j′ jr1) = r̂1

(
(−1)l ′+1/2+ j′

√
l ′(l ′ + 1)(2 j′ + 1)l̂ ′

×
{

l ′ l ′ 1
j′ j′ 1

2

}{
r1 r1 1
j′ j′ j

}

+ (−1)l+1/2+ j
√

l (l + 1)(2 j + 1)l̂

×
{

l l 1
j j 1

2

}{
r1 r1 1
j j j′

})
. (10)

Empirically, by many numerical experiments, we find an ap-
proximate identity: the function inside the bracket of the right
hand side in the above equation equals −1 in very high pre-
cision, regardless of l , l ′, j, j′, or r1. Substituting all these
results in Eq. (4), one obtains

〈s1, J ′
1‖L‖r1, J1〉 
 δJ ′

1,J1δs1,J ′
1
δr1,J1 J1. (11)

This means that for n = 2 the matrix elements of L are ap-
proximately given by J1. The second step of the scenario is
that the above comments for the n = 2 case are also applicable
for n > 2. This is readily known for the single- j case. In
Ref. [59], Talmi pointed out that, in the single- j orbit, only
non-S pairs contributed to the magnetic moments in a many-
particle system. In the NPA calculations, the yrast low-lying
states of semimagic even-even nuclei are well described by
the optimized pair basis states, most of which are generalized
seniority-2 states [23,34]. In the yrast states of nuclei with
n > 2, similar to the single- j case, only one non-S pair con-
tributes to the magnetic moments. As a result, the orbital parts
in Fig. 6 take almost the same values for nuclei with n > 2
as those with n = 2. As low-lying states of even-even N = 82
isotopes are dominated by a configuration of one broken pro-
ton pair, for which the magnetic moments are essentially given
by the orbital part, the simple pattern of magnetic moments
discussed here is expected to be very useful to predict the

magnetic moments of those neutron-rich even-even N = 82
isotopes for which experimental results of magnetic moments
are not yet available. We note without details that this simple
pattern is well consistent with other calculations in the shell
model and interacting boson model [26,60].

B. Asymmetry for the 2+
1 states

In the above subsection, we demonstrate the symmetric
aspects of the corresponding valence mirror nuclei, the Sn
isotopes and N = 82 isotones. In this subsection, we come
to the asymmetric aspect, and try to interpret the most in-
teresting behavior related to the 2+

1 states of corresponding
valence mirror nuclei. In Refs. [2–5], it was suggested that
core excitations are responsible for energy difference between
the valence mirror 2+

1 states. Here we revisit this issue, and
suggest an alternative, i.e., this asymmetry is simply given
by different single-particle energies of corresponding valence
mirror nuclei.

As indicated by the calculated E2+
1
, B(E2; 2+

1 → 0+
1 ), and

μ(2+
1 ) in respectively Fig. 3 and Tables II and III, the NPA

can exactly reproduce the 2+
1 state in the shell-model valence

space. Therefore in this subsection we adopt the NPA and use
it to calculate E2+

1
of the systems towards the half-filled shell.

The configuration space for these 2+
1 states is constructed from

S pairs and one D pair for simplicity. There are also previous
studies showing the appropriateness of this subspace for the
estimation of properties such as E2+

1
, B(E2), and magnetic

moments [21,22]. The Hamiltonian is same as the one we used
in the preceding subsection.

Here, we investigate the evolution of E2+
1

versus valence
nucleon number n, for both Sn isotopes and N = 82 isotones.
For convenience, we take the E2+

1
values with n = 2 as the

references and plot the difference �E2+
1

in Fig. 7. Results from
the NPA and other theoretical calculations [9,30,31] are also
shown for comparison. One sees that our NPA calculations
reproduce the changes of �E2+

1
very well. One also sees that

�E2+
1

values of N = 82 isotones exhibit a kink at n = 8 and
a sharp jump at n = 14, which are very different from the
evolutions of �E2+

1
for Sn isotopes and are related to the shell

closure of the Z = 64 proton subshell.
In order to understand the origin of these differ-

ences, we decompose the NPA results of �E2+
1

into four
parts corresponding to the single-particle, monopole-pairing,
quadrupole-pairing, and quadrupole-quadrupole terms in the
Hamiltonian, and plot the evolution of these contributions
versus n in Fig. 8. It is easy to see that �E2+

1
versus n for

the single-particle term of N = 82 isotones changes more
significantly than that of Sn isotopes, while the changes of
other terms versus n are very close to each other for these
corresponding valence mirror nuclei. This shows that the
asymmetry for 2+

1 state energies is essentially given by the
single-particle energy term.

It is therefore necessary to look more closely at the single-
particle energies ε j individually for N = 82 isotones and Sn
isotopes. For N = 82 isotones with 52 � Z � 60, our single-
particle energies are fixed as the values listed in Table I.
For those with Z = 62 and 64, ε2d5/2 is assumed to decrease
smoothly to reflect the subshell closure. Namely, the energy

064306-8



VALENCE MIRROR SYMMETRY BETWEEN Z = 50 … PHYSICAL REVIEW C 109, 064306 (2024)

FIG. 7. �E2+
1

(n) versus valence nucleon number n, for even-
even Z = 50 isotopes (a) and N = 82 isotones (b). Experimental
data are extracted from Ref. [53]. Other theoretical results of
Refs. [9,30,31] are included for comparison.

FIG. 8. Evolution of various interaction terms (denoted by H0,
HP0, HP2, and HQ) in the 2+

1 state with respect to cases of two-nucleon
systems, denoted by �E for short, for the Sn isotopes and N = 82
isotones, versus valence particle number n. H0 corresponds to the
single-particle energy term, HP0 and HP2 correspond to monopole
and quadrupole pairing interactions, and HQ corresponds to the
quadrupole-quadrupole interaction. Panels (a) and (b) correspond to
Z = 50 isotopes N = 82 isotones, respectively.

FIG. 9. �E2+
1

(in MeV) versus valence nucleon number n, for
even-even N = 82 isotones calculated with different ε2d5/2 and ε1g7/2 .
�E2+

1
extracted from experimental data are represented by solid cir-

cles in black. Solid circles in red correspond to calculated results with
ε2d5/2 of Eq. (12). Open triangles in olive correspond to calculated
results with fixed value of ε2d5/2 in Table I. Inverted triangles in
orange correspond to calculated results with the g7/2 orbit artificially
upshifted by 0.962 MeV and degenerate with the d5/2 orbit.

difference between 2d5/2 and 1g7/2 (denoted by �ε = ε2d5/2 −
ε1g7/2 ) is significantly reduced around 146Gd [61]: the �ε

value decreases from ≈1.0 to ≈0.4 MeV. For completeness,
here we refer to works regarding this subshell: The emer-
gence of subshell closure Z = 64 and the shell quenching near
the neutron-drip line in N = 82 isotones have been studied
both theoretically and experimentally [61–66]. In Ref. [62],
the study of high-spin isomers along N = 82 isotones sug-
gested that the subshell gap of Z = 64 increased from 2.0 to
2.4 MeV as the number of valence protons increased from 11
to 15. In the relativistic mean-field approaches, the relativis-
tic Hartree-Fock theory well described the Z dependence of
�ε values after including the nonlocal exchange terms, and
indicated that the value of �ε decreases roughly by half as
the number of valence protons increased from 8 to 14 [63].
The shell model calculations in Refs. [67,68] also employed
small �ε values for the N = 82 isotones around 164Gd, with
�ε equaling 0.6 MeV and 0.4 MeV, respectively. By using
the experimental results in Ref. [61], we obtain the optimized
value of ε2d5/2 (in unit of MeV) as follows:

ε2d5/2 =
{

0.962, n � 10,

0.962 − 0.137(n − 10), 10 < n � 14,
(12)

where n is the valence proton number. Namely, ε2d5/2 =
0.962 MeV for n � 10 and ε2d5/2 = 0.414 MeV when n = 14.
This lowering of the 2d5/2 single-particle level leads to a
pronounced subshell closure at proton number Z = 64.

The sharp increase of �E2+
1

in N = 82 isotones is highly
related to the single-particle energies and in particular the
subshell at Z = 64. Figure 9 shows the theoretical �E2+

1
of
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N = 82 isotones calculated with different values of ε2d5/2 .
Solid circles in black represent experimental results, and solid
circles in red represent results calculated by the NPA with
ε2d5/2 of Eq. (12). Open triangles in olive correspond to results
calculated with ε2d5/2 = 0.962 MeV, i.e., the value of Table I;
in this case the sudden increase of the calculated �E2+

1
at

n = 14 would not arise. This means that the subshell closure
is responsible for the sudden increase of E2+

1
for the 146Gd

nucleus.
We note that the values of single-particle energies for the

two orbits, g7/2 and d5/2, are very important to account for
the asymmetry of the E2+

1
of the corresponding valence mirror

nuclei. For even-even Sn isotopes, g7/2 and d5/2 orbits are
nearly degenerate, which results in the calculated very small
�E2+

1
for the Sn isotopes in this paper, as shown in Fig. 7(a).

For even-even N = 82 isotones, �E2+
1

increases with n (when
n � 14), as shown in Fig. 9(b). We note that the sharp increase
of �E2+

1
at n = 14 disappears if we artificially require ε2d5/2 =

ε1g7/2 and all other single-particle levels are lowered by
0.962 MeV, namely, we shift up the 1g7/2 orbit by 0.962 MeV
while other single-particle energies are the same as in Table I;
note that the inverted open triangles in orange in Fig. 9, are
very close to the corresponding results for Sn isotopes given
in Fig. 7(a).

Finally we comment on the evolution of the single-particle
splitting between the 2d5/2 and 1g7/2 orbits, related to the
emergence of the Z = 64 subshell. A simple picture was
provided by Casten in Ref. [4] in terms of the residual neutron-
proton interactions between valence protons and neutrons in
the 50–82 shell. For N = 82 isotones, the N = 50–82 shell
is closed, and according to Ref. [4] the residual neutron-
proton interactions between this closed shell and the open
proton shell lowers the proton 1g7/2 orbit relative to the 2d5/2

orbit, because the neutron-proton interaction strength of the
1g7/2 orbit is relatively larger than that of the 2d5/2 orbit,
and furthermore there are more valence neutrons in the 1g7/2

orbit than in the 2d5/2 orbit. Thus the residual neutron-proton
interactions lead to a larger splitting between the the 2d5/2 and
1g7/2 orbits of valence protons for N = 82 isotones than that
of valence neutrons for Sn isotopes, for which the 2d5/2-1g7/2

splitting is very small. The difference of the 2d5/2-1g7/2 split-
ting for valence neutrons of even-even Sn isotopes and that for
valence protons of the even-even N = 82 isotones is necessary
to account for the asymmetry in the 2+

1 states for correspond-
ing valence mirror nuclei studied in this paper.

IV. SUMMARY

In this paper, we study the so-called valence mirror symme-
try of low-lying states, for Z = 50 isotopes and corresponding
N = 82 isotones, using both the nuclear shell model (NSM)
and its nucleon-pair approximation (NPA). The comparison
between the NSM and the NPA results shows that the NPA
is essentially valid for the yrast states of both the even-even
and odd-mass nuclei considered in this paper. Our calculated
energy spectra and electromagnetic properties of low-lying
positive-parity states are in good agreement with accessi-
ble experimental data. Remarkable correspondences between
low-lying states of valence mirror partners with even protons
and neutrons are seen, both experimentally and theoretically.

Among a number of features for low-lying states, we study
in details the matrix elements of nuclear magnetic moments
for yrast states, and find that those matrix elements of even-
even Sn isotopes are very close to those of corresponding
valence mirror nuclei, namely, N = 82 isotones. We provide
a simple explanation of this feature in terms of seniority
scheme. The simple pattern exhibited in the matrix elements
of those valence mirror nuclei are useful in evaluating relevant
magnetic moments which are still unavailable in experimental
measurements.

We also study in detail the asymmetry for the E2+
1

values
of corresponding valence mirror nuclei, and point out that
the asymmetry of calculated E2+

1
values originates essentially

from the difference in the adopted single-particle energies, in
particular, two lowest orbits 2d5/2 and 1g7/2. We have dis-
cerned that this asymmetry is dominated by the single-particle
energy term of the shell model Hamiltonian. The evolution of
single-particle splitting between the 2d5/2 and 1g7/2 orbits for
N = 82 isotones is related to the neutron-proton interactions
between valence protons and neutrons in the 50–82 major
shell, as suggested in Ref. [4].
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