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Accurate and precise quantum computation of valence two-neutron systems
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Developing methods to solve nuclear many-body problems with quantum computers is an imperative pursuit
within the nuclear physics community. Here, we introduce a quantum algorithm to accurately and precisely
compute the ground state of valence two-neutron systems leveraging presently available noisy intermediate-
scale quantum devices. Our focus lies on the nuclei having a doubly magic core plus two valence neutrons in
the p, sd , and p f shells, i.e., 6He, 18O, and 42Ca, respectively. Our ansatz, quantum circuit, is constructed in
the pair-wise form, taking into account the symmetries of the system in an explicit manner, and enables us to
reduce the number of qubits and the number of CNOT gates required. The results on a real quantum hardware by
IBM Quantum Platform show that the proposed method gives very accurate results of the ground-state energies,
which are typically within 0.1% error in the energy for 6He and 18O and at most 1% error for 42Ca. Furthermore,
our experiments using real quantum devices also show the pivotal role of the circuit layout design, attuned to the
connectivity of the qubits, in mitigating errors.

DOI: 10.1103/PhysRevC.109.064305

I. INTRODUCTION

Electrons inside atoms, molecules, and solids, and nucle-
ons inside atomic nuclei, called quantum many-body systems
altogether, obey the Schrödinger equation. Once one was able
to solve the equation, one could, in principle, obtain most
properties of such systems. As one attempts to simulate the
rich dynamics and behavior inherent in such systems, the
limitations of classical computational methods become ap-
parent as the number of degrees of freedom to be considered
increases.

Quantum computing, with its inherent capacity to har-
ness quantum mechanical principles for computation, offers
a promising pathway to overcome the computational bottle-
necks associated with traditional methods. While the number
of qubits and the coherence time of the qubits are still
limited, which leads to the term noisy intermediate-scale
quantum (NISQ) devices, many-body systems are providing
good test grounds for quantum computing, algorithms, and
error mitigation techniques. A representative algorithm to
solve many-body systems is the variational quantum eigen-
solver (VQE) [1]. In the VQE, the ground state of a given
Hamiltonian is derived by minimizing the expectation value
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of the Hamiltonian with respect to a parametrized trial wave
function (also called the ansatz). Afterward, many variants of
the VQE algorithm have been proposed and applied to various
systems, see, e.g., [2] and references therein.

The nucleus, a system composed of strongly interacting
nucleons, is a striking example of a complex many-body
system that is difficult to compute. When one tries to apply
the full configuration interaction (CI) method or valence CI
method, the so-called shell-model calculation, it is not un-
common to encounter dimensions exceeding 1015 (see, e.g.,
[3–5]). To tackle such large dimensional problems, variants
for CI methods, which enable us to go beyond the current
limitation of the dimension of exact diagonalization ≈1011,
are proposed (e.g., Monte Carlo shell model [6,7], importance
truncation scheme [8], symmetry-adopted methods [4], quasi-
particle vacua shell model [9]). In parallel with this direction,
emulators or surrogate models for CI methods, utilizing
the eigenvector continuation [10,11], are proposed [12–14].
However, it is still demanding to develop computationally
more efficient methods to tackle cutting-edge calculations
for, e.g., nuclei around driplines and/or larger systems. Thus,
nuclear physics also offers a good test ground for quantum
computing and algorithms.

There are several pioneering applications of quantum algo-
rithms to nuclear many-body problems, mostly on the Lipkin
model [15–17] and on shell-model Hamiltonians [18–22].
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However, this is still developing, and further research is
needed to usher in the era of quantum computers for a more
general class of nuclear many-body problems.

This study explores how to solve the valence two-neutron
systems accurately and precisely with the present NISQ de-
vices. By taking into account the symmetries of the system in
an explicit manner, and selecting appropriate ansatz (circuits),
the optimization method, and the error mitigation technique,
we will show that the proposed method is proven to give very
accurate results of the ground-state energies with fewer CNOT
gates than the previous works utilizing, e.g., unitary coupled
cluster (UCC) ansatz and its variants [18–22].

The target systems are the nuclei having doubly magic core
plus two valence neutrons, such as 6He, 18O, and 42Ca. Within
the so-called M scheme, even nuclei are described by only
the configurations coupled to M ≡ ∑

jz = 0, where jz is the
projection of the total angular momentum j on the z axis.
Besides, the J = 0 states of two neutrons are expressed as the
superposition of the configurations with a time-reversal pair
of nucleons. Accordingly, the creation (annihilation) operators
of two nucleons are combined into one creation (annihilation)
operator in the second quantized form, which we call the
“pair-wise” form. For the two-protons systems or two-hole
systems, the same procedure can be applied. With the help
of the mapping of nucleon operators to the pair-wise opera-
tors, one can significantly reduce the number of CNOT gates
needed to prepare wave functions and measure energies.

Using IBM Quantum (IBMQ) devices, we will show that
the proposed method gives accurate and precise results of
the ground-state energies of the target systems with It is also
shown that the circuit layout design, attuned to the connectiv-
ity of the qubits, plays a pivotal role in mitigating errors.

This paper is organized as follows. Section II is devoted to
explain the basics of shell-model calculations and the adopted
circuit to encode the problems onto quantum circuits. The
results on both simulators and real devices for the target two-
neutron systems are shown in Sec. III. Then, the summary
follows in Sec. V. Implementation and experiments for this
work are performed using the Qiskit [23] and IBM Quantum
Platform [24].

II. METHODOLOGY

A. Shell-model calculation

The shell model Hamiltonian is written as

H =
∑

i

εiâ
†
i âi + 1

4

∑
i jkl

Vi jkl â
†
i â†

j âl âk, (1)

where i denotes the single-particle state having {n, l, j, jz, tz},
εi is the single-particle energy, and Vi jkl is the two-body matrix
element. Here, n is the principal quantum number, l is the
orbital angular momentum, j is the total angular momentum,
jz is the projection of j on the z axis, and tz is the isospin
projection. When we refer to merely orbital, it means the
single-particle state classified by {n, l, j, jz, tz}, and the term
“ j j-coupled orbital” will be used to refer to the single-particle
states having the same {n, l, j, tz}. If one lets the summation to

TABLE I. Exact ground-state energies for the target nuclei and
interactions.

Nucleus Interaction Eg.s. (MeV)

6He Cohen-Kurath (ckpot) [25] −3.90981
18O USDB [26] −11.93179
42Ca GXPF1A [27] −19.73368

be canonically ordered1 and the factor
√

(1 + δi j )(1 + δkl ) for
proton-proton and neutron-neutron interactions is absorbed
into the definition of Vi jkl , the factor of 1/4 can be omitted
in numerical calculations.

In shell-model calculations, the Hamiltonian is given in the
adopted model space and diagonalized in the model space by
means of, e.g., Lanczos method. In this work, we use such
exact diagonalization results as the reference values to be
compared with the results of the quantum calculation.

The systems of interest are the ground states of two-
neutron systems within the p, sd , and p f shell, i.e., 6He, 18O,
and 42Ca, respectively. Table I summarizes the exact results
for these nuclei with phenomenological effective interactions,
Cohen-Kurath (p shell) [25], USDB (sd shell) [26], and
GXPF1A (p f shell) [27]. One can obtain the corresponding
interaction files and reproduce these results with shell-model
codes such as KSHELL [28] and NuclearToolkit.jl [29]. For
these nuclei, the calculation with a classical computer is easy,
but it is still a good test ground for the quantum computer and
error mitigation techniques.

B. Pair-wise form of shell model Hamiltonian

For two-neutron systems, the states having J = 0 are ex-
pressed as the superposition of the configurations with a
time-reversal pair of nucleons. By mapping those pair-wise
configurations to the qubit states, the wave function and
Hamiltonian can be written with less number of qubits than
the number of single-particle states.

Let us introduce the following pair creation, pair annihila-
tion, and pair occupation number operators:

A†
ĩ

= c†
i c†

ī
, (2a)

Aĩ = cīci, (2b)

Nĩ = c†
i ci + c†

ī
cī. (2c)

Here, ī denotes the time-reversed state of i, and let a single
index ĩ denote the pair i and ī (> i). Note that we assume that
the index i in the Hamiltonian (1) is assigned to the single-
particle state with harmonic oscillator quanta, {n, l, j, jz, tz},
and is indexed in ascending order of n, l , j, and jz. These
operators satisfy the following relations [30]:

[Aĩ, A†
j̃
] = δĩ j̃ (1 − Nĩ ), (3a)

[Nĩ, A†
j̃
] = 2δĩ j̃A

†
j̃
. (3b)

1We call the summation to be canonically ordered if the summation
is done in the following order: i � j, k � l , i � k, and j � l if i = j.

064305-2



ACCURATE AND PRECISE QUANTUM COMPUTATION OF … PHYSICAL REVIEW C 109, 064305 (2024)

If one considers only the pair-wise (pw) configurations, the
Hamiltonian Eq. (1) can be written as

Hpw =
∑

i

h̄iA
†
i Ai +

∑
i� j

V̄i jA
†
i A j, (4)

where the tilde on the index is omitted for simplicity.
Each term has the following relations with the original
Hamiltonian:

∑
i

h̄iA
†
i Ai =

∑
i

(εia
†
i ai + εīa

†
ī
aī ), (5a)

∑
i� j

V̄i jA
†
i A j =

∑
i� j

Viī j j̄a
†
i a†

ī
a j̄a j, (5b)

where i < ī is assumed in the right-hand sides of the above
equations. To encode the Hamiltonian of the target system,
Eq. (4), into the quantum circuit, one needs to transform the
Hamiltonian into the form of Pauli operators. The transformed
form of Eq. (4) is to be [31]

Hpw
qubit =

∑
i

h̄i + V̄ii

2
(Ii − Zi ) +

∑
i< j

V̄i j (XiXj + YiYj ), (6)

where Ii, Xi, Yi, and Zi are, respectively, the identity operator,
Pauli X , Y , and Z operators acting on ith qubit.

C. Circuit for wave functions

Here, in this subsection, we introduce our ansatz, the cir-
cuit for the wave function of valence two-neutron systems. In
the following, we restrict ourselves to the cases of 6He and
18O, but it is straightforward to extend to 42Ca or other nuclei
having either two neutrons or two protons in the valence
space.

Throughout this work, we work on two-neutron systems
and the qubits correspond to not the single-particle states
but the pair-wise configurations. For the 6He, the valence
space is 0p1/2 and 0p3/2, and the total number of the pair-
wise configurations is three. The qubits are assigned to the
pair-wise configurations in the ascending order of l and j,
and the descending order of | jz|. For the 6He case, the three
qubits, |0〉0, |0〉1, and |0〉2, are assigned to the pair-wise
configurations of 0p1/2(| jz| = 1/2), 0p3/2(| jz| = 3/2), and
0p3/2(| jz| = 1/2), respectively. Similarly, the six qubits for
18O on the sd shell are assigned to the neutron pairs in 1s1/2,
0d3/2(| jz| = 3/2, 1/2), and 0d5/2(| jz| = 5/2, 3/2, 1/2), re-
spectively. In a similar manner, the ten qubits are needed for
the 42Ca case.

The circuits for the 6He and 18O are shown, respectively, in
Figs. 1 and 2. One can realize the particle number conserving
wave function with the combination of CNOT and Ry gates
like these circuits. While the qubits in a circuit are ordered
from the right to the left in Qiskit [23], we express the qubits in
the same order as the corresponding circuit, i.e., the bitstring
“100” corresponds to the state |1〉0 ⊗ |0〉1 ⊗ |0〉2. With the
number of pair-wise configurations N and the fact that the
controlled-Ry gate is decomposed into two CNOT gates and

|0〉0 X

|0〉1 Ry(2θ1) • •

|0〉2 Ry(2θ2) •

FIG. 1. Circuit for 6He. The three qubits, |0〉0, |0〉1, and |0〉2,
are assigned to the pair-wise configurations of 0p1/2(| jz| = 1/2),
0p3/2(| jz| = 3/2), and 0p3/2(| jz| = 1/2), respectively.

Ry gates, the number of CNOT gates required for the ansatz is
3N − 5. This value is much smaller than the number of CNOT
required for, e.g., the UCC ansatz. In terms of the number of
CNOTs alone, it is possible to further reduce the number of
CNOTs by using the technique proposed by Ref. [32], but for
the sake of simplicity, a simple circuit will be used in this
work.

D. Measurement of energy

The expectation value of the first term of Eq. (6), which
contains only the I and Z operators, can be obtained by the
measurements of the ansatz circuit. On the other hand, another
circuit is required for evaluating the second term. We consider
two methods (A and B) of the measurement whose difference
mainly lies in the measurement of the second term of Eq. (6).

The method A is to directly evaluate the expectation value
of the Pauli operators such as I, Z and ones associated with
XX and YY terms. To this end, one can measure the ansatz
circuit plus the gates operating XX or YY over two qubits.

On the other hand, the method B is based on the so-called
computational basis sampling technique, which was intro-
duced in Ref. [33]. Under this method, the expectation value
of the Hamiltonian is given as

〈ψ |H |ψ〉 =
N∑

m,n=0

〈ψ |m〉〈m|H |n〉〈n|ψ〉,

=
N∑

m,n=0

|〈m|ψ〉|2|〈n|ψ〉|2 〈m|H |n〉
〈m|ψ〉〈ψ |n〉 , (7)

where N is the number of configurations. The first two factors
in the above equation, |〈m|ψ〉|2 and |〈n|ψ〉|2, correspond to
the amplitudes of each configuration m and n, e.g., |100〉 for

|0〉0 : X

|0〉1 : Ry(2θ1) • •
|0〉2 : Ry(2θ2) • •
|0〉3 : Ry(2θ3) • •
|0〉4 : Ry(2θ4) • •
|0〉5 : Ry(2θ5) •

FIG. 2. Circuit for 18O. The six qubits, |0〉0, |0〉1, . . . , |0〉5,
are assigned to the pair-wise configurations of 1s1/2, 0d3/2(| jz| =
3/2, 1/2), 0d5/2(| jz| = 5/2, 3/2, 1/2), respectively.
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FIG. 3. The amplitude of each configuration 〈Ni〉 ≡
|〈0 . . . 1i . . . 0|ψ〉|2 for 6He. Each color corresponds to the
pair-wise configurations having the same {n, l, j, tz} quanta, 0p1/2

(blue) and 0p3/2 (orange). Note that the expectation values for the
sim. NISQ/Real cases are re-normalized after the removal of the
configurations violating the particle number conservation.

6He. As a postprocessing step, one can remove the configu-
rations violating particle number conservation, such as |110〉
for 6He. Hence this gives variational estimates. These ampli-
tudes and the denominator of the third factor, 〈m|ψ〉〈ψ |n〉, are
evaluated by measurements of the quantum circuits, and the
numerator 〈m|H |n〉 is evaluated in a classical manner. More
precisely, we evaluate the expectation value for XX and YY
terms through the sign of those terms:

〈ψ |Xj ⊗ Xk|ψ〉 =
√

σ 2
j σ

2
k sgn[σ jσk] (8)

= √〈Nj〉〈Nk〉sgn[〈XjXk〉], (9)

where σi ≡ 〈0 . . . 1i . . . 0|ψ〉 is the projector onto the ith qubit,
and Ni = |σi|2 is the pair-occupation number operator defined
in Eq. (2c). Besides the ansatz circuit to create trial wave
functions, one needs to prepare another circuit to measure
the sign of XX term. This can be achieved by measuring the
circuit with Hadamard gates added to all qubits of the ansatz
circuit. While the method A gives energy estimates as the
mean value of measurements, the method B, which is inher-
ently variational, gives the energy estimate as the minimum
one among the measurements.

III. RESULTS

Here, in this section, we show the results of the quantum
computation of the ground-state energies of 6He, 18O, and
42Ca using the proposed ansatz and methods.

FIG. 4. The counterpart of Fig. 3 for 18O. The colors correspond
to 1s1/2 (blue), 0d3/2 (orange), and 0d5/2 (green) orbitals.

FIG. 5. The counterpart of Fig. 3 for 42Ca. The different colors
correspond to 1p1/2 (blue), 1p3/2 (orange), 0 f5/2 (green), and 0d7/2

(red) orbitals.

Since the nuclei of interest are two-neutron systems in the
valence space, one can determine the angle of the Ry gate by
diagonalizing the Hamiltonian of Eq. (4) directly by classical
computers. Throughout this study, we restrict ourselves to the
case that the circuit parameters are fixed to such ones giving
the exact ground-state energies. The exception can be found
in the Appendix discussing the optimization of the circuit
parameters starting from random initial values.

Experiments are performed using the noise-free simulators
(denoted as sim. FTQC), noisy simulators mimicking IBMQ
devices (sim. NISQ), and real quantum device from IBM
Quantum Platform (Real). We use the ibm_brisbane device
having 127 qubits for sim. NISQ/Real calculations. For the
results with the simulators, the number of shots is set to 105,
and the number of shots for the real device is set to 2 × 104

throughout this study.

A. Measurements of pair occupation numbers

In what follows, we show the amplitudes of each con-
figuration, i.e., the expectation value of pair occupation
number Eq. (2c), obtained as a result of the measurements
of the ansatz circuits. In Figs. 3–5, the relative amplitude
of each configuration is shown for 6He, 18O, and 42Ca,
respectively.

From noise-free results (sim. FTQC) in these figures, one
can see that the expectation values of the states occupying
the same j j-coupled orbital are identical within a statistical
error. This sim. FTQC results is by construction identical to
the exact results. As a whole, ground-state wave functions
of the nuclei of interest concentrate on the configurations
occupying the lowest j j-coupled orbital, which is usually to
be the orbital with the highest angular momentum j among
the adopted valence orbitals, i.e., 0d5/2 (0 f7/2) for the sd (p f )
shell.

On the other hand, the state preparation on the noisy sim-
ulators (sim. NISQ) and the real device (Real) show certain
deviations from the exact results. It should be noted that sim.
NISQ and Real results may vary depending on the quantum
device employed and its calibration status.

Here, we discuss how the noise affects the results from the
viewpoint of particle number conservation. Since we now con-
sider two neutron systems and their pair-wise configurations,
the ideal result is to observe the configurations in which only
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TABLE II. The breakdown of the configurations measured on
a real quantum device. The N̄occ denotes the average of the pair
occupation numbers obtained through five independent experiments
on the ibm_brisbane device. The values in parentheses are the results
with slightly modified circuits. See Sec. IV for more details.

Percentile (%)

Nucleus N̄occ = 1 (target) N̄occ = 0 N̄occ = 2 N̄occ = 3 others

6He 92 2 6 <1 N/A
18O 63 (90) 3 (3) 29 (4) 4 (3) <1
42Ca 30 (53) 8 (3) 38 (28) 18 (11) <5

a single bit is set to one. The noise-free simulator, of course,
gives the expected results, and even with the noisy simulator,
we get particle number-conserved configurations for roughly
80–90 % of all shots. However, the probability to obtain par-
ticle number conserving configuration on ibm_brisbane drops
to ≈60% for measurements of 18O and it becomes even worse,
≈30%, for 42Ca.

In the Table II, we summarize the observed distribution of
the particle numbers in the results on the ibm_brisbane device.
The N̄occ denotes the average number of the pair occupation
number among five different experiments. As a general trend,
the configurations with N̄occ = 2 and Nocc = 3, in that order,
are observed. Various factors such as decoherence, cross talk,
gate errors and readout errors are expected to contribute to the
deviations. In Sec. IV, we will introduce the error mitigation
technique modifying the circuits to improve the ratio to obtain
the configurations with Nocc = 1.

B. Measurements of ground-state energies:
Noise-free simulator (sim. FTQC) case

In Fig. 6, the sim. FTQC results of measured ground-state
energy are shown by the histograms for 100 different runs.
From left to right, the target nucleus is 6He, 18O, and 42Ca. The
results of methods A and B are shown in panels (a) and (b),
respectively. Panels (c) show the enlarged views of panels (b)
around the exact result. The percentile in panels (c) means the
window of the energy range with respect to the exact ground-
state energy.

Regarding the results of method A measuring the Pauli
strings directly, one can see that the measured energies are dis-
tributed around the exact ground-state energy, and the width
becomes narrower as the number of shots increases.

The method B utilizing Eqs. (7)–(9) gives variational en-
ergy estimates, and thereby the interpretation of the results
by multiple measurements is straightforward. That is, the en-
ergy estimates by quantum circuits are given by the lowest
energy among the measurements. As the number of shots
increases, results concentrate on the vicinity of the exact
ground-state energies.

C. Measurements of ground-state energies:
Noisy simulator (sim. NISQ) case

Figure 7 shows the sim. NISQ results, i.e., measurements
on noisy simulators. Unlike the noise-free case, the results by
method A show systematic deviations from the exact ground-
state energy. On the other hand, one can see that the method
B can estimate the exact ground-state energy well even with
the noisy simulator. This is partly because the unphysical

FIG. 6. Energy estimation of ground states of 6He, 18O, and 42Ca by noise-free simulators. (a) Histogram of the energy estimation by
method A, (b) histogram of the energy estimation by method B, and (c) enlarged view of (b) around the exact ground-state energy. The
percentile in (c) means the window of the energy range with respect to the Eexact. In (a) and (b), the bin width is set to 20 keV, while 50 bins
are used in (c) within the energy range given by the percentiles.
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FIG. 7. Energy estimation of ground states of 6He, 18O, and 42Ca by noisy simulators mimicking the ibm_brisbane device. The bin width
and meaning of the panels and percentiles are the same as in Fig. 6.

states with wrong occupation numbers are removed by the
postselection.

It should be noted that the estimated energy of 18O by
method B is distributed at slightly higher than the exact
ground-state energy as shown in panel (c) of Fig. 7, and the en-
ergy estimation is not necessarily improved as the number of
shots are increased after 104. This systematic error originates
from various errors such as the gate errors, readout errors, and
so on, which are simulated based on the calibration informa-
tion of the adopted real device. For 6He, the exact ground state
is the superposition of the pair-wise configurations in p shell
and both p1/2 and p3/2 orbitals have modest contributions.
On the other hand, in the case of 18O, the exact ground state
is dominated by the pair in 0d5/2 and the 1s1/2 orbital takes
the second place. While the single-particle energies of the
1s1/2 and 0d5/2 orbitals are relatively close to each other, the
0d3/2 orbital with the largest single-particle energy has a large
gap from those and thereby only small occupation. In such
systems having large gaps in single-particle energies, esti-
mating energies would be more susceptible to measurement
errors in the relative amplitudes of the configurations. Even
if a small amount of extra occupation leaks into 0d3/2 due to
measurement errors or other reasons, one may underestimate
the binding energies. From this point of view, the result of
42Ca, where the dominant contribution is the one occupying
the 0 f7/2 orbital and the gaps in the single-particle energies
are larger, is expected to be more sensitive to the noise. In
Table III, we summarize the single-particle energies (SPEs)
of the adopted conventional shell model interactions. As is
already mentioned, 1s1/2 and 0d5/2 orbitals in the sd shell are
close to each other, and 0 f7/2 orbital in the p f shell is the
lowest in energy and having large gap from the others.

In summary, for the systems of interest, the method B is
superior to the method A because it is more robust against

noise. We achieved the accuracy of at worst 0.5% with the
method B on the NISQ simulator. Besides, the method B gives
the narrow distribution of the energy estimates, demonstrating
that the present method is not only accurate but also precise.
Hence, we will use the method B, utilizing computational
basis sampling technique [33], for real device experiments in
the following.

D. Measurements of ground-state energies
on real devices: Real case

We performed several measurements of the ground-state
energies on real devices, for 6He, 18O, and 42Ca. Among the
five independent experiments, the error of 6He was at most
0.1%, and the typical errors for 18O and 42Ca were about 5%
and 10%, respectively. Since the 6He results are as accurate
as the ones on simulators, let us focus on 18O and 42Ca and
discuss the origins of the errors.

In Fig. 8, the exact result and the five different re-
sults on real devices are plotted, and the breakdown of the

TABLE III. Single-particle energies (SPEs) of the adopted con-
ventional shell model interactions.

interaction (nucleus) orbital SPE (MeV)

CKpot (6He) 0p1/2 2.4190
0p3/2 1.1290

USDB (18O) 1s1/2 −3.2079
0d3/2 2.1117
0d5/2 −3.9257

GXPF1A (42Ca) 1p1/2 −4.1370
1p3/2 −5.6793
0 f5/2 −1.3829
0d7/2 −8.6240
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FIG. 8. The breakdown of contributions to the energy, (a) for
18O and (b) for 42Ca. The dashed and dotted lines correspond to
the exact energy expectation values from the first (“1st” in legend)
and second (“2nd”) term of Eq. (6), respectively. The “sgn OK/sgn
NG” in the legend means whether the sign of the second term
was measured correctly or not, and the following relation holds:
E2nd term = E2nd: sgn OK − E2nd: sgn NG.

contributions to the binding energy is shown by different
colors. Since the target Hamiltonian can be diagonalized with
a classical computer, one can obtain the reference value for
the breakdown as shown in the “Exact” column. The blue
bar denotes the expectation value of the first term of Eq. (6),
and the orange one is for the second term. For the results
of Runs 1–5, the breakdown is shown in two ways. The left
ones (colored in blue and orange) are the same breakdown as
the exact results. Besides, the right bars (in green and red)
show additional breakdown of the second term of Eq. (6),
ones where measurements of the sign of XX and thereby YY
term was correct (sgn OK in the legend) and not (sgn NG).
Here, correct means that the sign of the measured XX and
YY terms was consistent with the exact and FTQC result.
Fixing these signs by hand, the measured energies were to
be the lower ends of the red bars in Fig. 8. The first term
of Eq. (6) is determined by the occupation numbers of each
pair-wise configuration, i.e., having single-particle nature, and
the second term is affected by both occupation numbers and
the relative phase factors among the pair-wise configurations.
This breakdown illustrates some origins of the errors in the
measurements of the ground-state energies.

For the 18O case, the error has multiple origins. At first
glance of Fig. 8, one may conclude that the first term is moder-
ately estimated, and only the second term is the source of the
underestimation of the binding energy. However, this is not
the case. Looking at Fig. 8, we can see that the contribution
colored in red, “2nd: sgn NG”, is small. This means that the
error comes not from the measurement of the sign of XX and
YY terms but from the amplitudes of each configuration. It can

be seen from Fig. 4 that the occupation numbers leak from
0d5/2 (green) orbitals to 1s1/2 (blue). This behavior can be
attributed to the fact that the occupation of the 0d3/2 (orange)
orbital is small and rather well estimated even on the real
device, and the single-particle energies of the 1s1/2 and 0d5/2

orbitals are relatively close to each other, ≈0.7 MeV. In short,
the origin of the error in the 18O case is the misestimation of
the relative amplitude between 1s1/2 and 0d5/2 orbitals.

On the other hand, the error in the 42Ca case is apparently
dominated by the first term in Eq. (6), and the error from the
second term is minor. This can be understood from, for ex-
ample, Fig. 5, where the “Real” result corresponds to “Run1”
in panel (b) of Fig. 8. Under the adopted effective interaction,
the ground state of 42Ca is dominated by the configuration
occupying the 0 f7/2 orbital. The underestimation of the first
term is due to the leaking of f7/2 occupations to p1/2, p3/2,
and f5/2 orbitals having large single-particle energy gap from
the f7/2 orbital. Simultaneously, different experiments show
underestimation of the contribution from the first term of
Eq. (6), leading to the large error in the ground-state energy.

IV. MITIGATION OF MEASUREMENT ERROR BY
CIRCUIT MODIFICATION

In the previous subsections, we found that the errors in the
amplitudes of each configuration is one of the major sources
of the underestimation of the binding energy. In this section,
we consider a possible error mitigation strategy for the current
target systems by reducing the circuit depth while keeping the
equivalency of the circuit to the original one. We will slightly
modify the circuit for the wave function and demonstrate that
the accuracy of the results can be improved by this modifica-
tion. Although the method here is not an exhaustive trial of
error mitigation techniques on the market [34], we will show
below that it is sufficiently effective for the systems of interest.

The circuit used up to this point, Figs. 1–2, had a structure
that is to be mapped to an unbranched chain of qubits. Let
us consider the equivalent circuits for 18O and 42Ca with
less circuit depth. Another criterion when modifying the cir-
cuit is that the quantum circuit should match the layout of
the adopted quantum device. In real quantum hardware, e.g.,
IBMQ devices adopted in this study, the qubits have the so-
called heavy hexagon structure with the T connectivity. If the
mapping is not suited to the layout of the adopted device,
one needs auxiliary qubits to implement the desired circuit.
In such cases, it is expected that the error increases due to the
decoherence of the qubits involved.

In Figs. 9 and 10, the modified circuits are shown in the
left side. For 18O, the circuit is modified so that the relative
weights between the different j j-coupled orbitals are calcu-
lated in earlier stage of the circuit. Then, the weights and
phases within the same j j-coupled orbitals are calculated.
This would prevent the leakage of the number of occupancies,
such as between 1s1/2 and 0d5/2 orbitals, and thereby improve
the accuracy of the results. As shown in the right side of Fig. 9,
such layout is achieved on real devices like the ibm_brisbane
device in a straightforward manner. This redesigned circuit
turns out to improve the accuracy of the ground-state en-
ergy significantly. The ratio of valid shots, i.e., obtaining the
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FIG. 9. Example of the circuit for 18O mitigating the error (left side), and a possible layout of qubits on the ibm_brisbane device (right
side). The numbers such as 4, 5, 15, 21, 22, and 23 in the right side figure are the qubit indices of the ibm_brisbane device, and the small
numbers associated with them are the qubit indices in the circuit.

configurations satisfying the particle number conservation, are
increased from 60% to 90%, and typical error of the energy
is reduced to about 0.1%. This value is even better than the
results using the original circuit with the noisy simulator,
shown in Fig. 7. In fact, the results of the modified circuit
on the noisy simulator become comparable to or better than
0.1%.

For 42Ca, the circuit is modified as shown in Fig. 10. Unlike
the 18O case, one cannot map the circuit to a chain of qubits
that determines the relative weights of the four orbitals simul-
taneously. Therefore, we consider the circuit to determine the
relative weights between the 0 f7/2 orbital and the 1p1/2 first,
and then the relative weights within the j j-coupled orbitals
are evaluated as in the 18O case. By doing this, we were able
to increase the percentage of the valid shots from 30% to 50%
and thereby reduce the energy error to about 1%.

The impacts of this modification are shown in Fig. 11. The
results with modified circuits, drawn by the hatched bars, are
compared with the original ones, Fig. 8. One can see that the
measurement errors are mitigated, and results become much
closer to the exact values.

It must be noted that five different runs with and without
the error mitigation, plotted by bars side by side, are com-
pletely independent experiments. Hence, the comparison of
each pair is not meaningful. The important point is that the
error of the energy is significantly reduced by modification of
the circuit layout, and the improvement is not accidental, but
obtained consistently in all the independent experiments.

The error mitigation methods we are considering now are
oriented to the system under consideration, but the results here
imply that it is important, as naturally expected, to explicitly
consider symmetries and layouts of qubits in order to obtain
accurate results on NISQ devices.

V. SUMMARY AND OUTLOOK

In this work, we have proposed an ansatz for the ground
state of valence two-neutron systems and its application to
6He, 18O, and 42Ca on noise-free and noisy simulators and
real quantum devices.

For simulator results, we have shown that the proposed
ansatz with the computational basis sampling technique [33]
gives accurate and precise measurements of the ground-state
energies of these systems.

Regarding the results on real devices, we have seen some
deviations from the estimated results on noisy simulators for
18O and 42Ca. We analyzed the origin of this error and it turned
out that the error comes largely from the misestimation of
the amplitudes (occupation numbers) of each configuration.
Then, we proposed an error mitigation technique to improve
the accuracy of the results. By considering the symmetry of
the system and the layout of qubits on real quantum devices,
we have designed the modified circuits that yield more ac-
curate measurements for 18O and 42Ca on the ibm_brisbane
device. For the 18O system, we have shown that the redesigned
circuit, which calculates the relative weights between different

FIG. 10. Counterpart of Fig. 9 for 42Ca.
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FIG. 11. Breakdown of independent experiments for 18O (a) and
42Ca (b) with and without error mitigation. The legends and the
breakdown of the contributions are the same as Fig. 8, and the
hatched bars correspond to the results with the modified circuits.

j j-coupled harmonic oscillator orbitals earlier in the circuit,
leads to a significant improvement in the accuracy of the
results. The typical error of the energy was reduced to about
0.1%. Similarly, for the 42Ca system, we have modified the
circuit to first determine the relative weights of the 0 f7/2 and
the others to decrease the number of the circuit layers. This
modification increased the ratio of the valid shots and reduced
the energy error to about 1%.

By considering these factors, we have achieved accurate
measurements of ground-state energies for two-neutron sys-
tems. Our results demonstrate the importance of explicitly
considering symmetries and qubit layouts in obtaining ac-
curate measurements, especially on near-intermediate-scale
quantum devices.

The target systems discussed in this work are two-neutron
systems in the valence space, which are rather simple. The
extension of this work to the systems with more valence nucle-
ons is important, and is left for future work. For multineutron
systems, in particular even number systems as in [21,22], the
UCC ansatz can be rather simplified using the Givens rota-
tion, which is essentially to consider only the excitations and
de-excitations of the time-reversal pairs of the single-particle
states, and that is shown to be a good approximation for oxy-
gen isotopes on the sd shell. Even for that case, the number
of CNOT gates is still large, and the error for the two-neutron
system 18O is about 3% on the IonQ device [21]. Our direc-
tion, exploring a system-oriented ansatz, is complementary to
the works utilizing the UCC ansatz.

The “pair-wise” form used in this work has been used
in quantum chemistry referred to as the “antisymmetrized
geminal power (AGP)” to be used as a reference state of
the coupled cluster calculation for the strongly correlated
systems to describe two-particle correlation more properly
than a single Slater determinant [30,31,35–40], where a gem-

inal is a two-body correspondence of a one-body orbital.
The operator of the geminal is quite similar to the Bardeen-
Cooper-Schrieffer (BCS) one and, actually, it is pointed out
in Ref. [38] that the AGP wave function is strongly related
to the particle-number conserving BCS wave function [41]. It
should be noted that the ground-state wave function of the
BCS state can also be written by a Pfaffian, instead of as
Slater determinant [43–45]; a Pfaffian wave function and an
AGP one are also based on the same philosophy. As an recent
example, Ref. [40] discusses the AGP wave function beyond
zero-seniority configurations. Therefore, it is natural to use
this AGP ansatz for even-even nuclei as a starting point since
the valence nucleons of even-even nuclei form Cooper pairs
[42]. The number of degrees of freedom involved is differ-
ent between nuclear physics and quantum chemistry, but the
extension of AGP-like ansatz and the techniques developed
in quantum chemistry to nuclear many-body problems is an
interesting direction to explore.

At the same time, it is interesting to test various hardwares
and error mitigation techniques available in the market. The
execution time and the decoherence time of NISQ devices
are trade-off, i.e., superconducting devices like IBM machines
adopted in this work have the faster execution time but the
shorter decoherence time, while the trapped-ion devices have
the slower execution time but the longer decoherence time. To
know the features of each device facilitates for further explo-
ration of the suitable circuits, error mitigation techniques, and
the algorithms for the systems of interest.
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APPENDIX: OPTIMIZATION
OF CIRCUIT PARAMETERS

In this work, we used the fixed circuit parameters, which
were obtained to reproduce the exact results. However, for
future quantum simulations addressing nuclear many-body
problems, which necessitate leveraging the full capabilities
of quantum computing, obtaining exact circuit parameters
through classical computing methods will be unfeasible. Con-
sequently, it becomes imperative to investigate methods for
optimizing the parameters in the circuit, especially in relation
to the chosen ansatz.

In this Appendix, using noise-free/noisy simulator, we
show that the proposed circuit for two-neutron systems can
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FIG. 12. Results of optimizing the circuit parameters on noise-
free and noisy simulators. The numbers of parameters are 2, 5, and
9 for 6He, 18O, and 42Ca, respectively. Each iteration corresponds to
an update of a single parameter.

be optimized through measurements. Of course, this is not
full optimization of the circuit parameters using real de-
vices, so it is only a partial verification of feasibility of
optimization, but it provides encouraging results for future
applications.

We followed the optimization method proposed in
Ref. [46]. The loss function, which corresponds to the expec-
tation value of the Hamiltonian, is written in the following
form:

L(θ) =
∑

k

wk〈ϕ|U †(θ)HkU (θ)|ϕ〉, (A1)

where k is the index of the Hamiltonian terms [such as I , Z ,
XX , YY terms in Eq. (6)], wk is the coefficient for kth term,
|ϕ〉 is the initial state, and U (θ) is the unitary transformation
corresponding to the circuit.

Let us take the case of 18O in Fig. 9, as an example. For the
first parameter θ1, which is associated with the Ry gate, the
loss function becomes the form of

L(θ1) = A cos (θ1 − B) + C. (A2)

Then, the optimal value of θ1 is determined by three measure-
ments of L(θ1) at, e.g., B, B ± π/2. For the other parameters
θ j ( j > 1), which are associated with the controlled-Ry gates,
we can write down the loss function to be minimized in the
following form (see, Sec. II D of Ref. [46]):

L(
θ j

) = A cos θ j + B sin θ j + C cos 2θ j + D sin 2θ j + E .

(A3)

By measuring five different points, θ j , θ j + π/5, . . ., θ j +
8π/5, the coefficients can be calculated via discrete Fourier
transformation and the parameter, which is to be explored
next, can be easily determined.

In Fig. 12, we show the results of optimization of the circuit
parameters as a function of the number of iteration, where
the y axis shows the relative errors 100 × |	E/Eexact|%. The
noise-free case (sim. FTQC) is drawn by the solid lines, while
the dashed lines show the results of noisy simulator (sim.
NISQ). Both results are obtained by the same circuit with
105 shots starting from the same initial random parameters.
Since the source of errors for sim. FTQC is only the statistical
error, the large number of shots leads to the accurate results.
On the other hand, the sim. NISQ case has other sources
of errors, such as the gate errors and the readout errors of
the quantum device. Note that the results for 18O and 42Ca
are given by the circuits with the error mitigation discussed
in Sec. IV. It should be noted that the results of the sim.
NISQ case depends not only on the circuit, but also on the
calibration status of the quantum device at the time of the
experiment.

Each iteration corresponds to the update of a single param-
eter in the circuit. For each nucleus, 15 sweeps of optimization
were performed and all parameters are optimized only once
per sweep. The order in which the parameters are selected for
updating is chosen randomly. The sim. NISQ results are worse
than the sim. FTQC cases by a few orders of magnitude as
expected, but one can see that the optimization of the circuit
parameters successfully reduces the error and finally reaches
acceptable errors, less than 0.1%.
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