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Clusterization and localization of multi-� hyperisotopes
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The influence of hyperons on localized clusters is studied in deformed nuclei 20Ne and 28Si and the spherical
nucleus 40Ca by employing the deformed Skyrme-Hartree-Fock approach and the localization function. It is
found that hyperons in the p state initially tend to occupy the orbitals with shapes similar to that of the core
nucleus. The nucleus 20Ne exhibits a robust prolate configuration characterized by an α −12 C − α cluster,
while 28Si displays a less pronounced oblate ringlike cluster. A spherical shell-like cluster structure is possessed
by the nucleus 40Ca, and this spherical shape is also maintained in its hyperisotopes. For 28

8�Ne, the cluster
structure retains sufficient strength to maintain its prolate shape even with an enhanced hyperon-nucleon (Y N)
interaction. In contrast, the cluster structure of 36

8�Si is comparatively weak, and only a slight enhancement of the
Y N interaction leads to its cluster structure and deformation collapse.
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I. INTRODUCTION

The clusterization of nuclei is an intriguing phenomenon
that has attracted significant attention in both theoretical and
experimental fields [1–4]. The most widely investigated clus-
ter is the α particle [5]. Unstable nuclei in the heavy region
tend to undergo α decay, indicating the existence of α particles
within these nuclei. Due to the relatively small number of
nucleons in light nuclei, the occurrence of localized structures
can significantly influence their shape and the other proper-
ties [6–11]. Therefore, the research on the clusterization in
light- and medium-mass regions provides a novel perspective
to understanding nuclear shape.

As an important issue for nuclear physics, the mecha-
nism of cluster formation in nuclei has been extensively
investigated. The majority of theoretical research aimed at
quantitatively describing cluster structures often relies on the
α priori assumption regarding the existence of such struc-
tures [12–15]. It is common to construct Gaussian wave
functions centered at given positions in space and the effective
interactions are adjusted to reproduce the binding energies
and scattering phase shifts associated with these configura-
tions [16,17]. However, the cluster and similar models are
constrained by their initial assumptions about the existence
of clusters and many shell-model configurations are beyond
their reach [18].

The energy density functional theory (EDFT) provides
an alternative approach to describe cluster configurations
[11,19–21]. Unlike other cluster models, this framework does
not presume the existence of cluster structures, but both
cluster and mean-field-type states are allowed to be treated
simultaneously. A notable advantage of EDFT is its ability to
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describe a global characterization of cluster states in nuclei,
where these states have a simple interpretation in terms of
quasimolecular states within this framework [22]. The nuclear
structure calculations based on independent-particle density
functionals manifest the cluster substructure as marked con-
centrations of density within the overall total nuclear mass
density [5,7,23,24]. However, dealing with the entanglement
of these substructures in single-particle orbitals is challenging,
since Hartree-Fock single-particle states are usually delo-
calized and distributed throughout a nucleus. Furthermore,
identifying clusters and shell structures based on mass density
may be oversimplified because it ignores other aspects of the
many-body system.

To provide a more detailed understanding of the underlying
structure, Reinhard and collaborators introduced the concept
of the localization function into nuclear physics [25], which
was originally developed for electronic calculations [26–29].
This function is based on the inverse of the conditional prob-
ability of finding a fermion of type q (= n, p, or �) in the
vicinity of another fermion of the same type and with the same
spin or signature quantum number σ (↑ and ↓), given that
the latter particle is located at position r [30]. The nucleon
localization function serves as an excellent tool to reveal shell
and cluster effects in nuclei due to its negligible computational
cost and its ability to provide a spatial coordinate function to
determine the locations of α particles [22,31–33].

In recent years, an increasing number of studies have
revealed that α clustering significantly influences the struc-
ture of lighter nuclei, such as cluster-nucleon correlations of
9B [34], α-cluster structures of Be [35–37], isoscalar dipole
excitations in 16O [15], and the α + 16O cluster structure of
20Ne [14]. In addition to the existence of clusters in nuclei,
clusters also exist in hypernuclei. The multi-� systems in-
volving more than two � particles are particularly intriguing.
In this case, the � hyperon is not merely considered as a
minor “impurity,” but rather as a third constituent of the

2469-9985/2024/109(6)/064301(8) 064301-1 ©2024 American Physical Society

https://orcid.org/0009-0008-3172-5457
https://orcid.org/0000-0003-0884-7743
https://orcid.org/0000-0001-5127-8449
https://ror.org/02n96ep67
https://ror.org/03rc6as71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.064301&domain=pdf&date_stamp=2024-06-03
https://doi.org/10.1103/PhysRevC.109.064301


LI, CHEN, ZHOU, AND REN PHYSICAL REVIEW C 109, 064301 (2024)

nuclear many-body system, giving another dimension to the
nuclear chart [38–42]. The clusters of hypernuclei have been
discussed in some theoretical calculations [43–47]. Hiyama
investigated the clustering structure of the double-� hyper-
nucleus 11

��Be within the framework of the αα + � + � + n
five-body cluster model [46]. The light double-� hypernu-
cleus 6

��He has been studied as a three-body ��α-cluster
system in halo/cluster effective field theory at the leading or-
der, and it has been found that the ��d in the spin-0 channel
does not exhibit a limit cycle whereas the ��d system in
the spin-1 channel and the ��α system in the spin-0 channel
do [47]. In Ref. [44], it was demonstrated that � hyperons in
12
4�Be tend to localize around the two α clusters of 8Be. Tan-
imura conducted a study on deformed multi-� hypernuclei
using a relativistic mean-field model [48]. It is noteworthy that
his calculations did not include �� pairing correlations.

This study aims to investigate the clustering properties
of nuclei and multi-� systems within the framework of the
Skyrme-Hartree-Fock (SHF) model, incorporating the ��

pairing correlation. Previously, this model has been employed
to explore hyperon pairing and deformation in multi-� sys-
tems [49,50]. However, Ref. [50] primarily focuses on the
shape variations of multi-� hypernuclei, but it lacks a dis-
cussion regarding the internal cluster composition within both
the core nuclei and the hypernuclei. Clusterization effects are
widely recognized as significant contributors to the structure
of N = Z nuclei, leading to a molecular-type phenomenon.
This work considers clusters as intrinsic factors in the defor-
mation of both the nuclei and hypernuclei, and it primarily
investigates the effects of different numbers of hyperons on
the cluster within the hypernuclei. Therefore, 20+n

n�Ne, 28+n
n�Si,

and 40+n
n�Ca are selected as the candidate hyperisotope chains,

where n = 2, 4, 6, and 8.
This article is organized as follows. Section II gives a

brief introduction to the Skyrme-Hartree-Fock model and the
localization measure employed in this work. The results are
presented in Sec. III. Finally, the summary and outlook are
given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Skyrme-Hartree-Fock approach

In the framework of the SHF approach, the total energy of
a hypernucleus can be written as [51–54]

E =
∫

d3rε(r), ε = εNN + ε�N + ε��, (1)

where εNN , ε�N , and ε�� account for the nucleon-nucleon,
hyperon-nucleon, and hyperon-hyperon interactions, respec-
tively. The energy density functional depends on the one-body
density ρq(r), the kinetic density τq(r), and the spin-orbit
current Jq(r),

ρq(r) =
Nq∑
i=1

ni
q

∣∣φi
q(r)

∣∣2
, τq(r) =

Nq∑
i=1

ni
q

∣∣∇φi
q(r)

∣∣2
,

Jq(r) =
Nq∑
i=1

ni
qφ

i∗
q

(∇φi
q(r) × σ

)/
i, (2)

where φi
q (i = 1, . . . , Nq) are the self-consistently calculated

single-particle wave functions of the Nq occupied states for
the different particles q = n, p, and �. They satisfy the
Schrödinger equation, which is derived by the minimizing
of the total energy functional in Eq. (1) according to the
variational principle,[

∇ · 1

2m∗
q (r)

∇ − Vq(r) + iW q(r) · (∇ × σ)

]
φi

q(r)

= ei
qφ

i
q(r), (3)

in which W q(r) is the spin-orbit interaction part for the nucle-
ons as given in Ref. [41], while the spin-orbit force for the �

hyperon is very small [55–57] and it is ignored in the present
study. The central mean-fields Vq(r), which are corrected by
the effective-mass terms following the procedure described in
Refs. [53,54], are denoted as

VN = V SHF
N + ∂εN�

∂ρN

+ ∂

∂ρN

(
m�

m∗
�(ρN )

)(
τ�

2m�

− 3

5

ρ�

(
3π2ρ�

)2/3

2m�

)
, (4)

V� = ∂ (εN� + ε��)

∂ρ�

−
(

m�

m∗
�(ρN )

− 1

)(
3π2ρ�

)2/3

2m�

. (5)

For the nucleonic part εNN , we employ the Skyrme forces
SLy5 [58] and SkI4 [59], which are fitted in a wide nuclear
region. The hyperonic parts εN� [54,60] and ε�� [41] are
parametrized as (densities ρ given in units of fm−3, energy
density ε in MeV fm−3):

εN�(ρN , ρ�) = −(
ε1 − ε2ρN + ε3ρ

2
N

)
ρNρ�

+ (
ε4 − ε5ρN + ε6ρ

2
N

)
ρNρ�

5/3, (6)

ε��(ρ�) = −ε7ρ
2
��(N� > 1), (7)

together with

m∗
�

m�

(ρN ) ≈ μ1 − μ2ρN + μ3ρ
2
N − μ4ρ

3
N . (8)

The parameters ε1, . . . , ε6 in Eq. (6) and the � effective-mass
μi in Eq. (8) were obtained by performing BHF calculations
on hypernuclear bulk matter with the Nijmegen potential
NSC97f [54,60], while the empirical expression parameter
ε7 (labeled EmpC) has been determined by fitting the bound
energy of 6

��He in the Ref. [41].
The occupation probabilities ni

q for nucleons in Eq. (2) are
determined by the inclusion of pairing effects within a BCS
approximation. In this study, the pairing interaction is taken
as a density-dependent δ interaction [61],

Vq(r1, r2) = V (q)
0

[
1 − ρN (�)[(r1 + r2)/2]

0.16 fm−3

]
δ(r1 − r2), (9)

with the pairing strength V (N )
0 = −1000 MeV fm3 for both

neutrons and protons as in Ref. [62].
Although Ref. [42] indicates that the �� pairing effect

can generally be neglected in most hypernuclei, it must be
emphasized that the �� pairing should be taken into account
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in the hypernuclei under examination in our study, as they
involve a significant number of hyperons. For � hyperons, we
take the strength of the pairing interaction V (�)

0 as 4/9 of that
for nucleons [42,49].

In our approach, we assume the axial symmetry of
the mean field and solve the deformed SHF Schrödinger
equation using cylindrical coordinates (r, z) within the axi-
ally deformed harmonic-oscillator basis [63]. The geometric
quadrupole deformation parameter of the nuclear core is ex-
pressed as

β2 ≡ 4π

5A

∫
d3rr2Y20ρ

(0.93A1/3)2
, (10)

where A is the number of nucleons and 0.93A1/3 is the average
radius of the corresponding nucleus.

B. Localization function

The localization measure was originally introduced in
atomic and molecular physics to characterize chemical bonds
in electronic systems [28,29,64] and was subsequently intro-
duced to nuclear systems [25,65,66]. The localization function
is related to the spatial two-body correlation between two
like-spin fermions of the same kind and can be applied
to different fermion systems, including nuclei and hypernu-
clei [22,48,65,66]. It can be written as the probability of
finding the second particle located within a shell of small
radius around the assumed particle at r with the same spin
σ (↑ and ↓) and isospin q (= n, p, or �) [25,64]:

Rqσ (r, δ) ≈ 1

3

(
τqσ − 1

4

[∇ρqσ ]2

ρqσ

− J2
qσ

ρqσ

)
δ2 + O(δ3), (11)

where the particle density ρqσ , the kinetic energy density τqσ ,
and the current density Jqσ can be referred in Eq. (2) with spin
σ , and the density gradient ∇ρqσ is given by

∇ρqσ (r) = 2
Nq∑
i=1

ni
q Re

[
φi∗

q (r)∇φi
q(r)

]
. (12)

The expression shown in Eq. (11) can serve as the definition
of a localization measure,

Dqσ (r) =
(

τqσ − 1

4

[∇ρqσ ]2

ρqσ

− J2
qσ

ρqσ

)
. (13)

However, the localization measure defined by Eq. (13) is
a reverse relation, and it is customary to define a reverse-
normalized localized measure [25],

Cqσ (r) =
⎡
⎣1 +

(
ρqσ τqσ − j2

qσ − 1
4 [∇ρqσ ]2

ρqσ τTF
qσ

)2
⎤
⎦

−1

, (14)

where τTF
qσ = 3

5 (6π2)2/3ρ5/3
qσ is the Thomas-Fermi kinetic en-

ergy density.
For a more detailed discussion on the physical meaning

of the localization function can be found in Refs. [25,66].
We focus on Cqσ (r) ≈ 1 for all nucleonic states (qσ ) = (n ↑,

n ↓, p ↑, p ↓,� ↑,� ↓), indicating a complete overlap of the

four nucleons. This implies a significant localization of an
α cluster at the designated position. It should be noted that
Cqσ (r) ≈ 1 simultaneously for all the spin-isospin combina-
tions is a minimal necessary condition of α clusterization [25].
This feature is calculated at the mean-field level without
α priori assumption. Owing to the minor distinctions between
bound and free α particles within atomic nuclei, Cqσ can be
interpreted as a quantitative measure representing the extent
of localization within atomic nuclei.

III. RESULTS AND DISCUSSION

In general, the deformation of both nuclei and hypernuclei
can be explained by considering the single-particle energy
levels occupied by nucleons close to the Fermi surface. Fur-
thermore, the energy density functional method provides an
understanding of this phenomenon by utilizing the nucleon
density distribution. However, the nucleon density distribution
is the result of the accumulation of all occupied single-particle
energy levels, and thus it loses much more detailed infor-
mation. In this paper, we utilize the localization function to
provide a more comprehensive analysis of the nuclear lo-
calization structure. For light N = Z even-even nuclei, the
localization distributions of protons (Cp) and neutrons (Cn),
as well as spin-up (C↑) and spin-down (C↓) states, exhibit con-
siderable similarity due to the small Coulomb interaction and
fully occupied single-particle energy levels. Consequently, a
singular parameter, Cp↑, adequately describes all previously
mentioned parameters including Cp↑, Cp↓, Cn↑, and Cn↓.

Due to the above convenience, the current study utilizes
the localization distribution of spin-up neutrons Cn↑ as their
nucleon localization distribution C to investigate the structure
of localized clusters in 16O, 20Ne, 28Si, and 40Ca. The density
distributions of these nuclei and their corresponding hyperiso-
topes are calculated using the deformed Skyrme-Hartree-Fock
+ BCS formalism with the NSC97f �N parameter [54,60].

Figure 1 illustrates a cut through the profile of the den-
sity and localization function. As mentioned in Ref. [67], the
density distribution of 16O displays a dip at its center, which
may not be readily discernible in the density distribution due
to the consistently high density at the nucleus center, and it
becomes significantly pronounced in the localization distribu-
tion. Notably, the results with different parameters (SkI4 and
SLy5) demonstrate a high degree of consistency, indicating
the robustness of the localization distribution. To facilitate
subsequent calculations, we adopt the SkI4 parameter.

To comprehensively explore the impurity effects of multi-
� in different nuclei, we have selected three nuclei with
distinct stable shapes as candidate cores: prolate 20Ne, oblate
28Si, and spherical 40Ca. The distributions of the localization
function and the density for the ground state of each core
are presented in Fig. 2. The upper panels display the local-
ization distributions C, while the lower panels illustrate the
corresponding neutron density distributions ρ. For 20Ne, two
regions with high localization are evident at the outer ends of
the symmetry z axis, accompanied by a slightly enhanced lo-
calization ring at the central position along the r axis. This can
be interpreted as a quasimolecular α −12 C − α configuration,
consistent with the relativistic mean-field studies [48,68]. It
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FIG. 1. The nucleon density and localization function distribu-
tions of the 16O nucleus are presented with different interaction
parameters SkI4 and SLy5, respectively. Different interaction pa-
rameters give similar density and localization distributions. The
localization distribution provides a clearer depiction of the internal
structure of 16O and more distinctly reveals the dip at the center of
16O compared to the density distribution.

is notable that studies emphasizing cluster structure suggest
that 20Ne exhibits an asymmetric cluster structure associated
with α + 16O [69,70]. In this work, we employ the mean-field
method to obtain the density distributions of nuclei and hyper-
nuclei by considering only quadrupole deformation, without
any α priori assumption. Taking into account the octupole de-
formation of the α + 16O configuration effectively reproduces
the negative-parity bands of 20Ne and offers better corrections
for its positive-parity bands. However, focusing solely on
quadrupole deformation projection still yields a satisfactory
positive-parity band, indicating an underlying α + 12C +α

structure [71].

FIG. 2. Color map plots depicting the localization (upper panel)
and neutron density (lower panel, in fm−3) distributions for Z = N
nuclei 20Ne, 28Si, and 40Ca, respectively. The prolate deformed α −12

C − α structure of 20Ne, the oblate deformed ringlike cluster of 28Si,
and the spherical shell-like cluster of 40Ca are presented.

In cases where maximum values of C deviate from the
symmetry axis, as observed in 28Si, our computational results
indicate the existence of a ringlike distribution of local-
ized structures on the nuclear surface, characterized by axial
symmetry around the z axis. For the closed-shell nucleus
40Ca, the distribution of its localization structures exhibits
a layered shell-like pattern. Although a small region in the
central area exhibits the characteristics of clusterization, its
extent is significantly smaller than the radius of an α particle
(≈1.7 fm). Therefore, it can be inferred that the cluster struc-
ture of 40Ca is predominantly concentrated on its surface.
The nucleon density and localization function distributions of
28Si and 40Ca imply that the nucleonic cluster configuration
in these nuclei does not manifest as localized α clusters.
Instead, it demonstrates a nonlocalized cluster arrangement
distributed across the region with maximum radius on the
surface. The comparatively weaker cluster structure observed
in 28Si may potentially account for its softer deformation in
intrinsic states. Nevertheless, it is crucial to acknowledge that
this explanation is speculative, and further theoretical investi-
gations are necessary to validate this assumption. It is evident
that the structural arrangements of the localized function C,
whether in the form of α clusters or nonlocalized cluster
structures, provide a more intuitive depiction of information
compared to its density distribution. In previous studies, the
exploration of impurity effects induced by hyperons primarily
concentrated on assessing their influence on the core nucleus.
However, a single-hyperon hypernucleus does not provide an
ideal target to investigate the influences of hyperons on the
core nuclei. This limitation arises from the significant dis-
parity between the number of hyperons and nucleons present.
They give rise to minimal shape modifications and influences,
comparable to the effects caused by hyperons themselves, let
alone their impact on the cluster structure of core nuclei. Fur-
thermore, it has been observed that the presence of multiple
hyperons results in a more diverse array of impurity effects.
This phenomenon is not only associated with the deformation
of the nucleus but also relies on the single-particle orbitals
occupied by hyperons. Therefore, the research presented in
this paper is dedicated to analyzing the impurity effects of
hyperons in multi-� hyperisotopes.

The density distributions of the lowest s and p single-
particle orbitals, occupied by � hyperons, are shown in Fig. 3,
where 48

8�Ca is employed as an example. Due to the negligible
contribution of the spin-orbit force for � hyperons, the two
oblate deformed [101] orbitals are degenerate, with only the
[110] orbital exhibiting prolate deformation. The strength of
the hyperon-nucleon interaction potential is determined by
the degree of density overlap. Consequently, the filling se-
quence of p orbitals for hyperons varies based on the distinct
ground-state shapes of hypernuclei. In particular, the [101]
orbital exhibits lower energy in oblate deformation, whereas
the [110] orbital displays lower energy in the case of prolate
deformation. This shape-dependent filling order of hyperon
orbitals results in diverse trends in the morphological varia-
tions of multi-� hypernuclei.

The density distributions of nucleons and � hyperons in
hyperisotopes characterized by distinct ground-state shapes,
namely, prolate 20Ne, oblate 28Si, and spherical 40Ca, are
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FIG. 3. Density distributions for the occupied s and p single-
particle orbitals of � hyperons in 48

8�Ca at β2 = 0 as functions of
r (z = 0) and z (r = 0). The z axis is the symmetry axis. The spin-
orbit force of � hyperons is small to neglected; therefore, the two
oblate [101] orbitals are degenerate and only one prolate [110] orbital
exists.

illustrated in Fig. 4. The ground state of 20Ne displays a
distinct prolate deformation, and the introduction of hyperons
results in notable modifications in the density distribution
within the cores of the corresponding hyperisotopes. Further-
more, it is noteworthy that the shape of hyperons in these

FIG. 4. The density distributions of neutrons and hyperons on the
zr plane in the Ne, Si, and Ca hyperisotopes, respectively. Hyperons
in the p orbitals tend to initially fill orbitals with a shape similar to
that of the core nuclei, thereby enhancing the prolate deformation in
24
4�Ne and the oblate deformation in 32

2�Si and 34
4�Si.

hyperisotopes is heavily influenced by the initial prolate shape
of 20Ne. In the double-� hypernucleus 20

2�Ne, the density
of hyperons reflects the deformation of the core, as the two
additional hyperons occupy the spherical orbital [000]1/2+.
Upon adding 4� hyperons, there is a discernible tendency for
the hyperons to favor a specific shape of p orbital, which is
strongly influenced by the deformation of the core. Due to
the prolate deformation of 20Ne, the hyperons are initially
filled in the prolate [110]1/2− orbital. With the introduction of
more hyperons, they occupy the two degenerate oblate orbitals
[101]1/2− and [101]3/2−. Hence, 24

4�Ne exhibits the highest
degree of deformation among its hyperisotopes. Nevertheless,
with the addition of more � hyperons, the occupation of
oblate orbitals contributes to a reduction in the degree of
deformation. When the hyperon count in 28

8�Ne reaches eight,
the distribution of hyperons transitions back to a spherical
shape.

For the hyperisotopes corresponding to 28Si and 40Ca, the
filling order of hyperon orbitals and their respective shape
modification effects are distinct. In 28Si hyperisotopes with
oblate deformation, the hyperons initially occupy the two
degenerate oblate [101] orbitals. Therefore, the deformation
can be increased until accommodating 6� hyperons, at which
the maximum deformation is reached. Then hyperons will
fill into the prolate [110] orbital, causing a reduction of the
deformation. However, in the spherical hyperisotopes corre-
sponding to 40Ca, � hyperons do not exhibit any preference
for oblate or prolate p orbits. As a consequence, the shape
of these hypernuclei remains spherical throughout the entire
hyperisotope range.

In the calculations of multi-� hyperisotopes, the �� pair-
ing correlation is included. However, this correlation becomes
ineffective when the hyperon count reaches the magic num-
bers, and the hyperon pairing gaps are significantly smaller
than those of nucleons. In deformed nuclei, the pairing cor-
relation is further weakened. For 24

4�Ne, the pairing energy of
hyperons (1.475 MeV) constitutes less than 10% of the total
pairing energy (11.379 MeV). Therefore, although the pairing
effect of hyperons is included in our work, it has little effect
on the results such as the density distribution of hyperons.
Therefore, as described in Ref. [42], the �� pairing effect can
usually be neglected in most hypernuclei, even in hypernuclei
with a large numbers of hyperons.

The detailed quadrupole deformation parameters β2 and
root-mean-squared radii 〈r〉 are listed in Table I. For hyper-
nuclei with two or eight hyperons, it can be seen that the
deformation parameter β2 is smaller than that of their corre-
sponding core nuclei, and the density of hyperons tends to be
spherical. The sudden drop of 2� separation energies, along
with the vanished average pairing gaps and pairing energies,
implies −S = 2 and −S = 8 also serve as the hyperon magic
numbers [49]. However, due to the negligible spin-orbit inter-
action, the hyperon magic numbers differ from conventional
nucleon magic numbers, and they also do not inherently im-
ply a spherical shape for hypernuclei. This deviation arises
from the weak interaction between hyperons, and the shell
formation based on the hyperon magic numbers tends to-
wards a spherical shape due to the complete filling of hyperon
orbitals, rather than mutual attraction between hyperons.
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TABLE I. Quarupole deformation parameters β2 and root-mean-squared radii 〈r〉 of the Ne, Si, and Ca hyperisotopes, where the subscripts
N and � represent the nucleon and the � hyperon, respectively. β2 is the deformation parameter for all baryons in (hyper)nuclei. N� is the
number of � hyperons.

Ne hyperisotopes Si hyperisotopes Ca hyperisotopes

N� β2N β2� β2 〈rN 〉 〈r�〉 β2N β2� β2 〈rN 〉 〈r�〉 β2N β2� β2 〈rN 〉 〈r�〉
0 0.567 0.567 2.882 −0.484 −0.484 3.155 0.000 0.000 3.329
2 0.480 0.193 0.454 2.856 2.496 −0.482 −0.244 −0.468 3.152 2.663 0.000 0.000 0.000 3.325 2.788
4 0.603 0.652 0.614 2.884 3.036 −0.488 −0.381 −0.472 3.154 3.098 0.000 0.000 0.000 3.324 3.148
6 0.467 0.266 0.402 2.857 3.170 −0.495 −0.416 −0.477 3.158 3.235 0.000 0.000 0.000 3.323 3.363
8 0.323 0.102 0.236 2.840 3.211 −0.458 −0.155 −0.373 3.141 3.291 0.000 0.000 0.000 3.324 3.321

The main interaction experienced by hyperons comes from
the attractive forces exerted by nucleons. Therefore, when the
hyperon count reaches the magic numbers, the shape of the
hypernuclei remains close to the original shape of the core
nuclei.

The 20Ne chain reaches its maximum deformation with
4�, while 28Si achieves its maximum with 6�. However, it is
noteworthy that in the case of 36

8�Si, despite the hyperon den-
sity distribution approaching spherical, it fails to overcome the
deformation of neutrons. This differs from the results reported
in Ref. [48], where the addition of eight � hyperons to 28Si
was found to overcome the nucleons’ deformation, resulting
in a spherical system. The potential energy surface of 28Si is
somewhat soft, and one might expect a large harmonic effect
of collective vibration [72]. The predicted deformations of the
Si hyperisotopes may depend on the model used.

We also examined the localization distributions of nucleons
within hypernuclei and found a high degree of consistency
with Fig. 2. This observation indicates that although the addi-
tion of hyperons to the core does lead to shape modifications,
these alterations have minimal impact on the internal cluster
structure of the nucleus. To gain deeper insights into the re-
lationship between the cluster structure and the nuclear shape
of hypernuclei, we artificially intensified the Y N interaction,
and the results are shown in Fig. 5. By increasing the in-
teraction strength to 1.12 times its initial value, the cluster
structure of 36

8�Si undergoes a collapse, resulting in a spherical
nuclear shape. In contrast, when the interaction strength of
Ne is increased to 2 times its original value (a stronger Y N

FIG. 5. The localization function distributions for 28
8�Ne and 36

8�Si
at different Y N interaction strengths, respectively. Note that all 28

8�Ne
are prolate deformed, while 36

8�Si changes from oblate to spherical
when the Y N interaction strength reaches 1.12.

interaction strength will lead to a cluster collapse with an
unreasonably large nucleon density distribution in the central
area), the core nucleus still maintains its original deformed
state. This indicates that the cluster structure of 20Ne is highly
developed and is resistant to disruption by hyperons. It is
well known that a � particle reduces the intercluster distance
between α and d in 6Li [73–75]. This occurs because, when a
� hyperon is introduced into a relatively light nucleus like 6Li,
it occupies the s-state orbital located at the geometric center.
This leads to a pronounced shrinkage effect on the surround-
ing clusters due to the larger overlap between the hyperon
and the cluster. However, in the heavier nucleus 20Ne, which
contains numerous nucleons, the shrinkage effect of a single
hyperon is limited. Consequently, it is hard for a hyperon to
reduce the intercluster distance between α and other nucleons
in the nucleus. In the case of 28

8�Ne, hyperons are not solely
concentrated at the geometric center. The distribution range of
the hyperons becomes wider due to the attraction of the clus-
ters, and then the shrinkage effect of the hyperons becomes
dispersed. Therefore, in nuclei with robust cluster structures,
the influence of hyperons is minimal. Conversely, in nuclei
with softer potential surfaces, the addition of hyperons can
disrupt the cluster structure. The cluster structure of the core
nucleus plays a crucial role in maintaining its deformation,
and significant changes occur in the shape of the core nucleus
when it is completely disrupted.

IV. SUMMARY

Within the framework of the deformed Skyrme-Hartree-
Fock + BCS formalism and utilizing the localization function,
we investigate the presence of localized clusters in the de-
formed nuclei 20Ne and 28Si and the spherical nucleus 40Ca.
Additionally, we explore the impurity effects of multi-� hy-
perons on their respective hyperisotopes by employing an
effective �N interaction with modified �� interaction con-
sidering the impact of �� pairing correlations.

The inclusion of 2� or 8� hyperons generally leads to
a decrease in the deformation of the nuclear core, while the
presence of 4� and 6� hyperons enhances nuclear deforma-
tion. These phenomena are explained at the microscopic level
through an analysis of the density distributions of the occupied
�p orbitals. The analysis demonstrates that hyperons in the
p state tend to initially occupy orbitals with a shape similar
to that of the core nucleus. The nucleus 20Ne exhibits a pro-
late shape, and in its hyperisotopes, hyperons in the p state
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initially occupy the prolate [110] orbital. This occupancy pat-
tern contributes to an increase in the prolate core deformation,
reaching its maximum with the addition of 4� hyperons.
Conversely, the nucleus 28Si displays an oblate shape, and
the hyperons are filled into the degenerate pair of oblate
[101] orbitals initially, leading to an increase in the oblate
core deformation. The maximum degree of deformation is
achieved with the introduction of 6� hyperons. In contrast,
hyperons in the spherical core of 40Ca do not show any pref-
erences for the shape of the p orbitals and maintain a spherical
configuration.

The distribution of clusters within the nucleus, as deter-
mined by the localization function, provides a more intuitive
representation of its shape characteristics compared to the
density distribution. This indicates that the shape of the nu-
cleus is primarily influenced by its internal cluster structure.
The localization function distribution reveals that 20Ne ex-
hibits two highly localized regions at the outer ends of the
symmetry axis, implying an α −12 C − α configuration. A

weak ringlike cluster and a shell-like cluster (not an α cluster)
are found in the oblate 28Si and the spherical 40Ca cases,
respectively. The presence of clusters plays a crucial role in
maintaining the deformation of these nuclei during the ad-
dition of � hyperons. The cluster structure of 28

8�Ne exhibits
sufficient strength to maintain a prolate shape even under an
enhanced Y N interaction. Conversely, the cluster structure of
36
8�Si undergoes collapse and transitions to a spherical shape
with only slightly enhancing the Y N interaction. Based on
comparative analysis, it can be concluded that the strength of
clusters within a deformed nucleus indicates the degree of its
shape softness or hardness.
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