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An accurate way to incorporate long-range Coulomb interaction alongside short-range nuclear interaction has
been a challenge for theoretical physicists. In this paper, we propose a methodology based on the reference
potential approach for constructing inverse potentials for charged particle scattering. The central idea is to
obtain the inverse potential directly from the expected scattering phase shifts by comparing them with those
obtained by solving the phase equation for a chosen reference potential. The design of the reference potential is
key to incorporating the Coulomb interaction successfully. Here, a combination of two smoothly joined Morse
functions, one regular followed by an inverted one, is considered. While the former takes care of short-range
nuclear and Coulomb interactions, the latter accounts for expected barrier height due to the long-range Coulomb
part that dominates once nuclear interaction subsides. The final step is to incorporate the phase equation within
an iterative loop of an optimization algorithm to obtain the model parameters for the reference potential by
minimizing the mean absolute percentage error between the obtained and expected scattering phase shifts. We
have applied the methodology to the α − α system and constructed the inverse potentials for its S, D, and
G states with mean absolute percentage errors of 0.9, 0.5, and 0.4 respectively. Their respective resonances
(experimental), in MeV, are found to be at 0.1240 (0.0918), 2.95 (3.03), and 11.89 (11.35). One can conclude
that the reference potential approach using a combination of smoothly joined Morse functions is successful
in accurately accounting simultaneously for the short-range nuclear and the long-range Coulomb interactions
between charged particles in nuclear scattering studies.

DOI: 10.1103/PhysRevC.109.064004

I. INTRODUCTION

The key to scattering phenomena is to model the underly-
ing interaction potential that gives rise to the scattering phase
shifts (SPS) that are responsible for the observed experimental
scattering cross sections. The theoretical approaches [1–3]
most often utilized rely upon determination of the scatter-
ing phase shift from the wave function that is obtained by
solving the time independent Schrödinger equation (TISE).
The potential is chosen by modeling the interactions primarily
due to nuclear and Coulomb forces and, in some cases, by
adding perturbation terms due to the interplay of spin, isospin,
and orbital angular momentum. These potentials are typically
represented by various mathematical functions that best rep-
resent the nature of the interaction as can be elicited from
the phase shift values and the trends they follow at different
laboratory energies [4]. An alternative approach is to rephrase
the second order TISE as a first order nonlinear Ricatti equa-
tion for different � channels as in the phase function method
[5,6]. One advantage of this latter method is that it deals with
the interaction potential directly, eliminating the requirement
for a wave function. This enables the construction of inverse
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potentials directly from the available experimental data, as in
inverse scattering theory [7].

Theoretically, constructing inverse potentials [8] requires
not only information regarding all the bound state energies
En (n = 0, 1, . . . , N ) along with their related normalization
constants Cn but also the phase shifts for all scattering energies
E > 0 ranging to infinity. Most often, phase shift data are
available for only certain energies within a limited range and
hence a rigorous solution of the quantum mechanical inverse
problem is extremely difficult to compute. The inverse prob-
lem is akin to the machine learning (ML) paradigm wherein
one obtains the model of interaction from large amounts of
available data. Typically, one prefers neural-network-based
models [9], when the number of available experimental data
is very large, say �1000. Otherwise, it is more appropriate
to use metaheuristic algorithms [10–12] as part of these ML
models and enhance their performance by incorporating the
knowledge of the problem from the physics that underlies the
phenomenon.

Selg [13] proposed using Morse functions as the zeroth
reference to obtain the scattering phase shift, and went on
to solve the Marchenko integral equation that gives rise to
the inverse potential. We proposed a computational approach
to construct inverse potentials [4,7] for nucleon-nucleon by
utilizing a single Morse function as a reference. Although this
method is effective in calculating the inverse potentials for
scattering in scenarios where the projectile or target particles
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are both neutral, charged systems necessitate the addition of
a Coulomb potential. Incorporating the long-range Coulomb
interactions remains a challenge to theoretical physicists even
today. Most often, screened Coulomb potentials are utilized,
since in experiments an isolated charge is generally sur-
rounded by residual particles due to polarization.

Taylor [14] presented a comprehensive method of incorpo-
rating Coulomb scattering by considering

V ρ
c (r) = γ

r
αρ (r),

where the screening function αρ for a given ρ must go to zero
as r tends to ∞ and must approach 1 as ρ tends to ∞ with r
fixed. As long as ρ is very large, such a potential meets the
conditions of scattering theory and produces findings that are
independent of both properties of screened potentials: their
nature/shape and screening radius. Ali-Bodmer [15], Buck
[16] and Odsuren [17] utilize an erf() function to model
the Coulomb interaction [18]. Laha et al. utilize screened
Coulomb interaction based on the atomic Hulthen [19] po-
tential. Previously, while studying p-p [20], p-d [21], p-α
[22], and α − α [18,23] systems, we also chose to incorporate
the erf() based Coulomb potential. To get accurate scatter-
ing phase shifts, we cut off the erf() at a certain distance
r f abruptly, which is a major limitation of this approach.
Recently, we undertook a study of α − α scattering using
various phenomenological potentials by utilizing the atomic
Hulthen potential as the screened Coulomb potential [24]. It
was observed that the screening radius had to be varied for
different � channels to obtain a good match with experimental
data. Hence, there is a need for an Ansatz that can effectively
incorporate the long-range Coulomb potential in charged par-
ticle scattering.

To solve this crucial issue we focused on the α − α

scattering reaction, which has great importance in stellar as-
trophysics [25] and also in understanding the Hoyle state
in 12C [26]. Current research on α − α scattering involves
nuclear lattice effective field theory (NLEFT) alongside lat-
tice QCD calculations [26,27]. To account for long-range
Coulomb interaction in α − α scattering [25], a Coulomb-
modified effective range expansion from next-to-leading order
(NLO) onwards is utilized and lattice calculations are per-
formed in a box of 100–120 fm3 [25,26] using the adiabatic
projection method, by assuming that it is far beyond the strong
interaction range. Even these ab initio calculations are still
having difficulties dealing with long-range Coulomb interac-
tion, which tends to tremendously increase the computational
time due to large box sizes [28].

A further review of the literature revealed an interesting
approach suggested by Selg [29,30], where the molecular
interaction potentials were obtained by considering a combi-
nation of two or three Morse functions. The key advantage of
this approach is the low number of analytically distinct com-
ponents required to provide a decent match with the original
potential across a broad distance range. In this paper, our goal
is to obtain the inverse potential without taking recourse to
Coulomb interaction.

The specific objective of this study is to develop in-
verse potentials by examining elastic scattering of charged α

particles with 4He having orbital angular momentum l =
0, 2, 4 at energies up to 28.5 MeV, utilizing a combination of
two Morse potentials across two distinct regions.

II. REFERENCE POTENTIAL APPROACH

Selg [13,31] suggested a combination of smoothly joined
Morse potentials as a starting point to solve the time-
independent Schrödinger equation for its energy eigenvalues,
scattering phase shifts, and also Jost function, from which one
can obtain the inverse potential [30].

In this paper, we utilize only two Morse components to
prepare the reference potential.

VRPA(r) =
{

VNC if r � X,

VCL if r � X,
(1)

where

VNC = V1 + D1[e−2α1(r−r1 ) − 2e−α1(r−r1 )]. (2)

VNC is a regular Morse component, which accounts for short-
range nuclear and Coulomb interactions, and

VCL = V2 − D2[e−2α2(r−r2 ) − 2e−α2(r−r2 )]. (3)

VCL is a reversed Morse component for incorporating long-
range Coulomb interaction.

Here Dk are potential depths at equilibrium distances rk ,
and αk reflect shape parameters of Morse functions respec-
tively. Vk are constants added to the total potential. These
functions are smoothly joined at boundary points X . The
number of distinct Morse-type components that may be added
is almost unlimited. Naturally, the more components one in-
cludes, the better the match with the experimental data, but
also the more challenging the analytical solution to the prob-
lem gets. Note that as r2 tends to infinity the Coulomb barrier
height approaches zero.

To ensure smoothness of potential at the boundary point X ,
in between the two functions, the functions and their deriva-
tives must be continuous at X . That is

VNC(r)|X = VLC (r)|X ,

dVNC(r)

dr

∣∣∣
X

= dVLC (r)

dr

∣∣∣
X
. (4)

Using these equations, two of the eight parameters were de-
termined as

D1 = (V2 − V1)α2 f2

α2 f3 f2 − α1 f4 f1
, (5)

D2 = (V1 − V2)α1 f1

α2 f3 f2 − α1 f4 f1
, (6)

where

f1 = e−2α1(r−r1 ) − e−α1(r−r1 ),

f2 = e−2α2(r−r2 ) − e−α2(r−r2 ),

f3 = e−2α1(r−r1 ) − 2e−α1(r−r1 ),

f4 = e−2α2(r−r2 ) − 2e−α2(r−r2 ).

Now, observing Eqs. (5) and (6), one can see that not choosing
V1 and V2 would have led to two homogeneous equations and
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determination of D1 and D2 would not have been feasible.
The reference potential is a family of curves with a total of
seven parameters, including boundary point X . While Selg
[32] obtains analytical expressions for energies and phase
shifts by solving radial Schrodinger equation for molecular
potentials, we take an alternative computational approach by
employing the phase function method.

III. PHASE FUNCTION METHOD

The phase function method is one of the important
tools in scattering studies for both local [5] and nonlo-
cal interactions [33,34]. The second-order time-independent
Schrödinger equation for a potential U (r),

∂2ψ (r)

∂r2
+ 2m

h̄2 [E − U (r)]ψ (r) = 0, (7)

is recast into a first-order nonlinear differential equation of
Riccati type,

dδl (k, r)

dr
= − U (r)

k
{ ĵl (kr) cos[δl (k, r)]

− η̂l (kr) sin[δl (k, r)]}2, (8)

where kc.m =
√

2μEc.m/h̄2, U (r) = 2μV (r)/h̄2, and ĵl (kr)
and η̂l (kr) are the Riccati-Bessel and Riccati-Neumann func-
tions, respectively. For the α − α system, h̄2/2μ = 10.44217
MeV fm2.

This gives phase shift information at various energies
by directly taking the potential as input. For � = 0, 2, 4
states, the corresponding phase equations [18] can be obtained
by substituting the appropriate �th-order Riccati-Bessel and
Riccati-Neumann functions as

(1) � = 0:

δ′
0(k, r) = −U (r)

k
sin2[δ0 + kr]; (9)

(2) � = 2:

δ′
2(k, r) = − U (r)

k

[
− sin (δ2 + kr) − 3 cos (δ2 + kr)

kr

+ 3 sin (δ2 + kr)

kr2

]2

; (10)

(3) � = 4:

δ′
4(k, r) = − U (r)

k

[
sin (δ4 + kr) + 10 cos (δ4 + kr)

kr

− 45 sin (δ4 + kr)

kr2
− 105 cos (δ4 + kr)

kr3

+ 105 sin (δ4 + kr)

kr4

]2

. (11)

These equations are solved using the fifth-order Runge-
Kutta (RK-5) method by choosing the initial condition as
δ�(0, k) = 0. The final integration point is chosen in such a
way that total potential becomes negligible at large distances.
The model parameters of the chosen potential are optimized
by iteratively solving the phase equations for various energies

FIG. 1. Flowchart of the optimization procedure.

and minimizing mean absolute percentage error (MAPE), be-
tween computed and experimental scattering phase shifts. In
our work, we have utilized a genetic algorithm to converge to
the best solutions.

IV. OPTIMIZATION PROCEDURE

One can optimize the model parameters of the chosen
potential by iteratively solving the phase equations for various
energies and minimizing a cost function. Typically, one can
employ mean squared error, mean absolute percentage error
(MAPE), χ2 error, etc., between computed and experimental
scattering phase shifts, as cost functions. In our work, we have
utilized a genetic algorithm, as it can converge to a global
minimum and not get stuck in local minima regions [11,35].
The flowchart for the optimization procedure followed by us
is shown in Fig. 1.

(1) Initialization Step: First arrays for the energies and
corresponding scattering phase shifts are created.
Then, the bounds for various model parameters that
need to be optimized are chosen. One can also simul-
taneously give as input one of the previously obtained
parameter sets to be included in the population.
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(2) Genetic algorithms [36]: These typically create ran-
dom populations [11,37], which represent possible
candidate solutions called parents, from the sample
space specified by the chosen bounds for various
model parameters.

(3) Determination of potential: The reference potentials
corresponding to each of the parameters generated as
parent class are determined.

(4) Solving phase equation for various energies: For each
of the input potentials the phase equation, correspond-
ing to a particular orbital angular momentum �, is
solved using the the fifth-order Runge-Kutta method
for different energies. The obtained scattering phase
shifts are utilized to determine the cost function,
which is compared with expected phase shifts from
experiments.

(5) Termination criteria: If after many iterations, there is
no further improvement in the minimization of cost
function due to all considered candidate solutions, the
genetic algorithm exits and provides the best possible
solution. Otherwise, it creates new candidate solutions
by adding a mutation and crossover based on fitness
assignment and the iterations continue till the end [37].

This type of optimization procedure is typically referred
to as a metaheuristic algorithm and is often used in machine
learning paradigms where one obtains the model from the
available data. These genetic algorithms have the best parallel
capabilities and provide a solution for a problem that improves
over time. It helps in optimizing various problems such as
discrete functions, multi-objective problems, and continuous
functions. This is the motivation for choosing genetic algo-
rithms over traditional algorithms.

Since the optimization procedure involves the generation
of random populations, the runs might lead to slightly dif-
ferent model parameters on convergence to a similar MAPE
value. Hence, it is necessary to run the code with the same
initial bounds for various model parameters multiple times.
and their average values and respective uncertainties are com-
puted [36].

V. RESULTS

A. Experimental data

The updated database for α − α scattering by Anil et al.,
[18] had included the Chein and Brown data [38] for en-
ergies up to 25.5 MeV only, wherein � = 4 has only four
data points. Since there are seven model parameters, we have
selected experimental data points, for all the � channels, up to
28.5 MeV, which is just about the threshold binding energy of
α particles.

B. Physical considerations

While constructing inverse potentials for α − α system, the
following physical considerations play an important role:

(1) The Coulomb barrier VCB for the � = 0 potential needs
to be close to 0.0918 MeV, the resonant scattering due
to the pseudobound state.

(2) After accounting for centrifugal potential, the depth of
the � = 2 potential must be lower than that of the � =
0 potential, and the Coulomb barrier height VCB must
be on the order of resonance energy, which has been
measured to be ≈3 MeV.

(3) Similarly, the depth of the � = 4 potential must be less
than that of � = 2 and VCB of ≈12 MeV.

C. Optimization of model parameters

(1) In our current analysis, we have opted to use a combi-
nation of two Morse potentials over the entire region of
interest. For the first part of the region, 0 � r � X , it is
a regular Morse with four parameters, and the second
part for larger distances, X � r � r f , has an inverse
Morse function with another four parameters. These
two together have to produce a smooth-shaped po-
tential that accounts for the observed scattering phase
shifts. So, employing continuity conditions as given in
Eqs. (4), one obtains the two parameters D1 and D2 in
terms of the rest of the parameters as given by Eqs. (5)
and (6). This reduces the number of parameters re-
quired to 6 but one needs to fix the point X as well. So,
observing that the relative difference V1 − V2 appears
in both Eqs. (5) and (6), we chose to set V2 = 0. In
fact, we initially ran the optimization routine by fixing
different values of X and observed that V2 always came
out to be of the order of 10−8. So, in this way, we came
to the conclusion that only six parameters need to be
determined.

(2) Initially, the bounds on each of the six parameters are
chosen to cover a wide range, and the final integration
distance r f is set to 80 fm. Then, we execute the
optimization code, which iteratively calls the RK-5
routine for determining SPS, till the mean absolute
percentage error converges to a minimum value. It was
observed that the potentials die down to zero within
40 fm. Hence, we set r f = 40 fm for the rest of the
runs.

(3) Then, the bounds are adjusted to ensure that the
resultant inverse potential is physically relevant sat-
isfying the conditions, as stated above. In this sense,
our machine-learning-based heuristic algorithm not
only utilizes the phase equation that governs the
scattering phenomenon but also takes input on the
bounds that need to be set for the model parame-
ters to result in a physically acceptable interaction
potential.

(4) By fixing these bounds, the optimization code was run
for various initial seeds. The convergence achieved in
these runs resulted in interaction potentials that are
very close to each other. The mean absolute percentage
error values obtained at convergence differ only at the
third decimal place. Thus, the stability and reliability
of the code is established.

(5) The final optimized parameters with average values
along with uncertainties for various � channels are
given in Table I. The MAPE values shown are only
to the first decimal place.
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TABLE I. Optimized model parameters for α − α scattering. The ± values given are obtained by multiple runs of the code.

Model Parameters � = 0 � = 2 � = 4

α1 0.1289 ± 0.0291 0.7693 ± 0.0812 0.2968 ± 0.0867
r1 4.5649 ± 0.0500 1.4975 ± 0.1028 0.4562 ± 0.2652
α2 0.3884 ± 0.0077 2.5310 ± 0.1338 0.8197 ± 0.0031
r2 11.9329 ± 0.0187 4.6301 ± 0.0419 7.7862 ± 0.0318
X 6.0825 ± 0.0501 4.5239 ± 0.0580 2.6297 ± 0.0250
MAPE 0.9 0.5 0.4

D. Scattering phase shifts and inverse potentials

The obtained SPS using the model parameters in Table I,
along with the expected SPS from [18,38], have been plot-
ted in Fig 2. One can observe that all the obtained SPS are
well within the error bars of the expected ones. The MAPE
values for SPS of � = 0, 2, 4 channels are found to be 0.9,
0.5, and 0.4 respectively, and are currently the best fits to the
expected data.

The constructed inverse potentials for � = 0, 2, 4 channels
are plotted without and with centrifugal potential in Figs. 3(a)
and 3(b) respectively. The important features of these po-
tentials are their depth Vd at r1 which specifies maximum
attraction and Coulomb barrier height VCB at r2. These are
referred to as interaction parameters. It is to be noted that the
optimized model parameters do not directly reflect the nature
of the interaction. The values of interaction parameters Vd and
VCB are obtained from the potential that includes the centrifu-
gal term at distances r1 and r2 respectively. The determined Vd

FIG. 2. α − α scattering phase shifts for � = 0, 2, and 4 channels
obtained using the Reference Potential Approach (RPA) along with
expected data [18,38].

and VCB for � = 0, 2, 4 channels are presented in Table II. The
scattering phase shift for � = 0 becomes negative beyond 20
MeV. This is reflected in the value of the repulsive core with
Vr = 85–95 MeV. This value obtained by other Ansätze for the
screened Coulomb potential based on erf() [18] and atomic
Hulthen potential [24] was found to be 406 and 619 MeV
respectively, which are very large. The Coulomb repulsion
giving rise to barrier height for � = 0 is shown as an inset
in Fig. 3(a). One can also observe that the experimentally
observed resonance at 0.0918 MeV falls within the range of
VCB values obtained by the reference potential approach. This
clearly brings out the pseudobound state structure of 8Be. The
potential goes close to zero, to an order of 10−4 MeV, at a
distance rc, called a cutoff, and is found to be 33.77 MeV. The
NLEFT procedure used a spherical wall radius of 36 fm.

After adding the centrifugal term, the depth Vd for � = 2
is significantly less than that of � = 0, which is typically not
observed in case of other Ansätze for the screened Coulomb
potential [18,24]. One can observe a repulsive interaction at
very short distances, which is due to the downward trend of
SPS beyond the peak at 10.88 MeV. The observed experimen-
tal resonance energy Er = 3.03 MeV is again well within the
Coulomb barrier height VCB of 4.9 MeV. The cutoff distance
for the potential is obtained at 9.6 fm.

Finally, in the case of � = 4, even though the scattering
phase shifts seem have an increasing trend, on close obser-
vation one can see a small shift at higher energies towards
peaking. In fact, at even higher energies than those considered
in this work, one would find scattering phase shifts to peak
and have a decreasing trend [39], as observed in case of the
� = 2 channel. So, one would expect that there would be
a relatively small repulsive behavior that would set in even
for this channel and is observed in the case of the reference
potential approach. Once again, the resonance energy of Er =
11.75 MeV is observed to be within the range of VCB values
[11.17, 11.16] MeV obtained by us.

E. Partial cross section and resonance

The resonances using the dδ/dE approach from the ob-
tained scattering phase shifts are found to be 0.1240, 2.95, and

TABLE II. Interaction parameters for α − α scattering obtained from inverse potentials after adding the centrifugal term.

Model Parameters � = 0 � = 2 � = 4

Vd −10.8604 ± 0.2581 −4.3951 ± 0.2785 −0.0127 ± 0.2149
VCB 0.0839 ± 0.0059 4.9653 ± 0.1103 11.1652 ± 0.0057

064004-5



SASTRI, SHARMA, AND AWASTHI PHYSICAL REVIEW C 109, 064004 (2024)

FIG. 3. Inverse potentials for � = 0, 2, 4 (a) without and (b) with centrifugal potential term added.

11.89 MeV for S, D, and G states respectively. The full width
at half maximum [FWHM (�′)], for D and G are determined
to be 1.36 and 3.76 MeV respectively. The computed phase
shifts are used to determine partial cross sections using

σl = 4π

k2
(2l + 1) sin2 δl (E ). (12)

In the case of � = 0, there is a sharp resonance behavior
very close to 0, and it appears almost like a delta function.
As a result, we skipped plotting the partial cross-section for
this case. In Fig. 4, the partial cross sections for � = 2 and
4 channels are displayed and are seen to be in Breit-Wigner

FIG. 4. Partial cross sections for � = 2 and 4 for different center-
of-mass energies.

form. We obtain the resonance peaks and FWHM Er (�) for
� = 2 and 4 at 3.25 (1.23) MeV and 12.52 (2.96) MeV respec-
tively, as compared to experimental values of 3.03 (1.51) and
11.35 (3.50) [40]. There is a good match between obtained
and experimental values as given in Table III.

VI. DISCUSSION

It is important to mention that the previous efforts to model
the Coulomb interaction by incorporating screening by erf()
[15–18,23] and the atomic Hulthen [19,24,41] Ansätze have
given reasonably accurate potentials with only four parame-
ters as compared to the reference potential approach which
uses six for the purpose. However, the approximations used
in both the erf() [15–18,23] and atomic Hulthen [19,24,41]
Ansätze have resulted in erroneous function parameters. In
the case of the erf() [15–18,23] based Ansatz, the integration
distance r f was abruptly cut off to get the best possible inverse
potential. We have observed that this is not an appropriate way
to obtain the results, as changing r f even by just 1 fm gave
very large changes in final phase shifts.

In the case of the atomic Hulthen [19,41] screened po-
tential, the resultant potential for various � channels depends
on the choice of screening parameter. Also, this Ansatz was
unable to pick up the peak in the � = 2 channel accurately.
It should also be mentioned that considering five-parameter
potentials did not enhance the results [24]. So, the constructed
inverse potentials in both cases are not independent of the
model parameters. On the other hand, the inverse potentials
constructed using the reference potential approach in this pa-
per are not at all dependent on the final integration distance.
Of course, utilizing six model parameters made a greater span

TABLE III. Obtained resonance energy and full width half maximum using different procedures.

� channels Er([40]) (MeV) �([40]) (MeV) Er (dδ/dE) (MeV) �′ (MeV) Er(Fig. 4) (MeV) �(Fig. 4) (MeV)

� = 0 0.0918 0.0056 0.124
� = 2 3.03 1.51 2.95 1.36 3.25 1.23
� = 4 11.35 3.50 11.89 3.76 12.52 2.96
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of curves available for optimization and hence gave more
accurate results as well.

VII. CONCLUSION

The long-standing challenge of incorporating the long-
range coulomb interaction alongside the short-range nuclear
interaction for constructing an appropriate scattering potential
has been finally solved using a combination of two Morse
functions as a reference potential. This could be achieved as a
result of our following choices.

(1) Utilizing the phase function method which directly
takes potential as input for determining phase shifts.

(2) Due to the nature of the Morse function which has all
the features observed in scattering phenomena such as
strong repulsion at extremely short distances, an at-
tractive nature at intermediate distances, and a quickly
decaying tail for the long range.

(3) The ingenuity of Selg [29,42] to join two Morse func-
tions, with the second one being inverted to create a
class of curves that cover all possible scenarios for
molecular potentials that have Coulomb barrier.

(4) Last but not least, a machine-learning-based heuristic
algorithm for obtaining global convergence by careful

choice of bounds for the model parameters that result
in physically acceptable inverse potentials.

This methodology has been successfully applied to study
α − α scattering of � = 0, 2, 4 channels, resulting in the
best possible interaction potentials for the available data. We
are now looking at other higher channels. Hence, we con-
clude that the reference potential approach is ideally suited
for accurately describing the long-range Coulomb interaction
alongside the short-range nuclear interaction for scattering in-
volving charged particles such as α − 3He, α − 3m, α − 12C,
p − 16O, etc. This procedure could overcome the limitations
of previously employed Ansätze for the Coulomb interaction.

All codes used in this work are available freely at
GitHub [43].
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