Erratum: Near-threshold resonances in ¹¹C and the ¹⁰B (p, α) ⁷Be aneutronic reaction [Phys. Rev. C 107, L021305 (2023)]

J. Okołowicz, M. Płoszajczak, and W. Nazarewicz

(Received 12 February 2024; published 20 May 2024)

DOI: 10.1103/PhysRevC.109.059902

Due to the convergence problem related to the direct integration at very low energies above the proton emission threshold $(E \le 15 \text{ keV})$, the proton single particle width of $1s_{1/2}$ state and the proton partial width of $5/2^+_2$ resonance given in the original Letter were incorrect. The corrected code gives the proton single particle width of $5/2^+_2$ resonance: $\Gamma_p^{s.p.} = 2.4 \times 10^{-13} \text{ eV}$ and $1.7 \times 10^{-13} \text{ eV}$ at the energy 9.6 keV [1] and 9.4 keV [2], respectively.

This result affects the models considered in the original paper. In the shell model embedded in the continuum (SMEC), there is a natural limit on the maximal continuum coupling strength $|V_0|$ when the width of a many body state exhausts the single particle value. For the $5/2_2^+$ resonance, this limit is reached at $V_0 = -112$ MeV fm³ which eliminates the variants k = 1 and 3 of the models considered in original Letter. The variant k = 2 of the shell model, remains unchanged. Consequently, the k = 1 shell model (SM) results and k = 3 SMEC results shown in Fig. 1 of original Letter should be discarded. Similarly, in Fig. 2, the dashed line which denotes the k = 3 SMEC results shown in the Letter (see Table I).

TABLE I. The proton $s_{1/2}$ and $d_{5/2}$ spectroscopic factors of the $7/2_1^+$, $5/2_2^+$, and $5/2_3^+$ states in the vicinity of the proton emission threshold in ¹¹C are obtained for different variants of calculation: $S^{(2)}$ is the SM value for a variant k = 2 of original Letter; $S^{(R)}$ is the SMEC result for $V_0 = -33$ MeV fm³ which reproduces the $5/2_2^+$ resonance width of Ref. [4]; and $S^{(4)}$ is the SMEC result for $V_0 = -112$ MeV fm³ which corresponds to the single-particle limit of the $5/2_2^+$ proton partial width.

	$\mathcal{S}^{(2)}_{s1/2}$	$\mathcal{S}^{(R)}_{s1/2}$	$\mathcal{S}^{(4)}_{s1/2}$	${\cal S}^{(2)}_{d5/2}$	$\mathcal{S}^{(R)}_{d5/2}$	$S_{d5/2}^{(4)}$
J^{π}	SM	SMEC		SM	SMEC	
$7/2^+_1$	0.0870	0.0874	0.0920	0.3738	0.3742	0.3784
$5/2^+_2$	0.3200	0.3207	0.3270	0.1928	0.1929	0.1940
$5/2_3^+$	0.0555	0.0543	0.0438	0.0062	0.0059	0.0034

All physical conclusions of the original Letter concerning the low-energy proton continuum in ¹¹C remain unchanged, i.e., the improved SMEC analysis shows that the proton continuum is determined mainly by the near-threshold resonance $5/2_2^+$ and, to a smaller extent, by the subthreshold level $7/2_1^+$. The calculated proton spectroscopic factor for the $5/2_2^+$ resonance remains almost unchanged with respect to the one given in the original paper and is in a qualitative agreement with the phenomenological value [3]. In summary, our proton partial width of the $5/2_2^+$ resonance is consistent with the *R*-matrix estimates [2,4,5]: $\Gamma_p \simeq 2 \times 10^{-14}$ eV (see also [6]) and reproduces the $5/2_2^+$ width of Ref. [4] for the continuum-coupling strength for $V_0 = -33$ MeV fm³.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013365 (Michigan State University).

^[1] National Nuclear Data Center, http://www.nndc.bnl.gov/.

^[2] C. Spitaleri *et al.*, Measurement of the ${}^{10}B(p, \alpha_0)$ ⁷Be cross section from 5 keV to 1.5 MeV in a single experiment using the Trojan horse method, Phys. Rev. C **95**, 035801 (2017).

^[3] M. Wiescher, R. J. deBoer, J. Görres, and R. E. Azuma, Low energy measurements of the ${}^{10}B(p, \alpha)$ ⁷Be reaction, Phys. Rev. C **95**, 044617 (2017).

- [4] M. Wiescher, R. N. Boyd, S. L. Blatt, L. J. Rybarcyk, J. A. Spizuoco, R. E. Azuma, E. T. H. Clifford, J. D. King, J. Görres, C. Rolfs, and A. Vlieks, ¹¹C level structure via the ¹⁰B(p, γ) reaction, Phys. Rev. C 28, 1431 (1983).
 [5] B. V. Kolk *et al.*, Investigation of the ¹⁰B(p, α)⁷Be reaction from 0.8 to 2.0 MeV, Phys. Rev. C 105, 055802 (2022).
- [6] A. M. Mukhamedzhanov, Proton 0.01 mev resonance width and low-energy s factor of $p + {}^{10}B$ fusion, Phys. Rev. C 108, 054603 (2023).