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Electrical conductivity of a warm neutron star crust in magnetic fields: Neutron-drip regime
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We compute the anisotropic electrical conductivity tensor of the inner crust of a compact star at nonzero
temperature by extending a previous work on the conductivity of the outer crust. The physical scenarios, where
such crust is formed, involve protoneutron stars born in supernova explosions, binary neutron star mergers, and
accreting neutron stars. The temperature-density range studied covers the transition from a semidegenerate to a
highly degenerate electron gas and assumes that the nuclei form a liquid, i.e., the temperature is above the melting
temperature of the lattice of nuclei. The electronic transition probabilities include (i) the screening of electron-
ion interaction in the hard-thermal-loop approximation for the QED plasma, (ii) the correlations of the ionic
component in a one-component plasma, and (iii) finite nuclear size effects. The conductivity tensor is obtained
from the Boltzmann kinetic equation in relaxation time approximation accounting for the anisotropy introduced
by a magnetic field. The sensitivity of the results towards the matter composition of the inner crust is explored
by using several compositions of the inner crust, which were obtained using different nuclear interactions and
methods of solving the many-body problem. The standard deviations of relaxation time and components of the
conductivity tensor from the average are below � 25% except close to crust-core transition, where nonspherical
nuclear structures are expected. Our results can be used in dissipative magnetohydrodynamics simulations of
warm compact stars.
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I. INTRODUCTION

The knowledge of transport properties of hot baryonic
matter is important for large-scale magnetohydrodynamics
description of astrophysical phenomena associated with com-
pact stars. One such setting offer binary neutron star (BNS)
mergers, such as the GW170817 event [1]: matter is expected
to be heated both in the postmerger and premerger phases. In
the postmerger phase, the matter is heated to temperatures up
to 100–150 MeV by deposition of kinetic and gravitational en-
ergy in the matter; in the premerger phase, the matter may be
heated via the dissipation of the energy of the tidally induced
oscillations. Another longer time-scale setting is offered by
the accreting neutron stars as their crusts are heated through
the in-falling matter and the onset of nuclear reactions in
various crustal layers. The warm matter regime is of interest
also in the context of transient protoneutron stars born in
supernova explosions. In this work we focus on stellar matter
at subnuclear densities at moderate temperatures in the range
Tm � T � Ttr , where Tm � 1 MeV is the melting temperature
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of the crustal lattice corresponding to matter featuring heavy
nuclei, dripped neutrons, and relativistic electron gas in liquid
matter regime and Ttr � 5 MeV is the trapping temperature of
neutrinos.

Transport in compact star plasma has been extensively
studied in the cold and dense limit where it is dominated by
the degenerate fermionic quantum liquids over a long period;
for general reviews see Refs. [2,3]. More recently, the elec-
trical conductivity of the warm outer crust was computed in
Ref. [4] in the context of BNS mergers; it also provides a
detailed review of the previous work on the conductivity of
crustal matter in the cold regime, which we do not repeat here.
The conductivity tensor of Ref. [4] was then used to assess its
importance in the dynamics of BNS mergers [5], showing the
conditions for the breakdown of the ideal magnetohydrody-
namics limit and the importance of the Hall conductivity.

This paper extends a previous calculation of the conductiv-
ity of heated crustal matter in nonquantizing magnetic fields
[4] to the inner crust phase where along with the crustal lattice,
there is an unbound neutron component. Our focus is on the
case with spherical nuclei for which several compositions
[6–9] will be used. Our collection includes two models with
zero-range Skyrme interaction [8,9], which use modern and
accurate parametrizations of this force, see also Ref. [10]. The
two models of Ref. [7] use modern parametrizations of the
finite-range Gogny interaction. We also included the widely
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used model of Ref. [6], which is based on a density-dependent
effective Hamiltonian tuned on finite nuclei; see Sec. II for
a further discussion of these models. The conductivity of
pasta phases where the shapes and topologies of nuclei de-
viate strongly from the spherical within the layer between the
stellar core and the phase with spherical nuclei was studied
in Ref. [11]. The low-temperature regime of electrical and
thermal conductivity, where the nuclei form a lattice and
interactions are mediated by lattice phonons was studied in
Ref. [12]. We will restrict our discussion to magnetic fields
below Bc � 1014 G. Above these values, the Landau quanti-
zation of electron trajectories must be taken into account, see
Ref. [13].

The paper is organized as follows. In Sec. II we review
the compositions of the neutron star’s inner crust, which are
used in our computations of the electrical conductivity tensor.
Section III collects the relevant ingredients of the formal-
ism and key results, which have been presented in detail in
Ref. [4]. Our numerical results are discussed in Sec. IV. The
final Sec. V contains a summary of our results. We use the
natural (Gaussian) units with h̄ = c = kB = ke = 1, e = √

α,
α = 1/137, and the metric signature (1,−1,−1,−1).

II. EQUATION OF STATE, COMPOSITION AND PHYSICAL
CONDITIONS IN INNER CRUST

Above the neutron drip density ρdrip = 4.3 × 1011 g cm−3

a phase transition takes place in neutron star crusts: the low-
density phase consisting of fully ionized nuclei, which are
characterized by the nucleon number A and proton number Z ,
and relativistic electrons is replaced by a phase, which in ad-
dition to the components of the low-density phase has also un-
bound neutrons. Then, the total baryon density nB is given by

nB = Ani + n′
n, (1)

where ni is the number density of the ions (nuclei) and
n′

n = (1 − VN ni )nn, where nn is the number density of
unbound neutrons, VN is the volume of the nucleus, and
the term VN ni is the excluded volume correction [14]. The
ion-electron subsystem, viewed as Coulomb plasma, is
characterized by the parameters

� = TC

T
, TC = e2Z2

ai
, (2)

where e is the elementary charge, T is the temperature,
ai = (4πni/3)−1/3 is the radius of the spherical volume per
ion, i.e., that of the Wigner-Seitz cell. For � � 1 (T � TC)
ions are weakly coupled and because of their large mass
they form a classical Boltzmann gas. When � � 1 ions
are strongly coupled and form a solid phase with nuclei
arranged in a regular lattice for � > �m � 160. In the
opposite case � < �m the liquid phase is energetically
preferred. The temperature of melting of the crustal lattice
is given by Tm = TC/�m. The lattice plasma temperature is
defined as

Tp =
(

4πZ2e2ni

M

)1/2

, (3)

where M is the ion mass. (Note that in units where h̄ = 1,
the plasma frequency and plasma temperature coincide). The
quantum regime for ion lattice (under which the quantization
of oscillations of the lattice is required) occurs for T � Tp.

For numerical computations, we will adopt five differ-
ent density-dependent compositions of stellar matter for the
inner crust of a neutron star, which we label as NV [6],
D1M and D1M∗ [7], Bsk24 [8], and Sly9 [9]. These com-
positions were computed at T = 0. Reference [6] starts with
the density-dependent Hartree-Fock theory and performs den-
sity matrix expansion to write down a Hamiltonian, which
depends on the densities of protons and neutrons and their
gradients. The model of the inner crust is then obtained by
minimizing the energy per nucleon of spherically symmet-
ric configurations of nucleons in a Wigner-Seitz unit cell
with a uniform background gas of degenerate electrons. The
pairing correlations and shell effects were neglected. De-
spite its limitations, the model of Ref. [6] has been used
in astrophysical applications extensively, in particular, in the
studies of transport in the solid regime at low temperatures
[12]. The two models of Ref. [7] were obtained using finite-
range Gogny interactions to obtain the nuclear mean field
and pairing correlations self-consistently. The model of the
inner crust was obtained using the semiclassical variational
Wigner-Kirkwood method, which incorporated both shell and
pairing corrections, which were, respectively, computed us-
ing the Strutinsky integral and the Bardeen-Cooper-Schrieffer
(BCS) mean-field approximation. The model of Ref. [8], see
also Ref. [10], uses zero-range Bsk24 Skyrme functional from
the family of Brussels-Montreal nuclear density functionals
and computes the properties of the inner crust using the
temperature-dependent extended Thomas-Fermi method, sup-
plemented with Strutinsky integral method to account for shell
effects and BCS pairing through inclusion of BCS pairing
energy in the density functional. Reference [9] uses zero-
range Skyrme functional for unbound particles and beyond
drip-line nuclei and realistic nuclear mass and level density
tables for known nuclei in a model of a statistical distribution
of Wigner-Seitz cells. It includes phenomenological pairing
correction term that scales with mass number and the shell
effects are accounted for automatically in the experimental
data used.

We will assume below that the composition does not de-
pend strongly on the temperature in the range of temperatures
studied here so that the background composition of the inner
crust in each case will be fixed at the one derived for T = 0.
The physical conditions change significantly with the increas-
ing temperature at about Ttr � 5 MeV where the neutrinos
become trapped and β-equilibrium conditions are changed. As
the temperature is further increased the appearance of lighter
clusters—deuterons, tritons, helions, and alpha particles be-
come possible for temperatures T � 10 MeV [15–20]. Their
contribution to conductivity is left for future study.

Figure 1 shows the proton number Z and the nucleon num-
ber A of the nuclei as functions of the net mass density for
the chosen compositions of the stellar matter. Up to densities
log10 ρ [g cm−3] � 13 all predict Z = 40 semimagic proton
values. Above these densities, Bsk24 and D1M∗ predict the
same Z = 40 value, NV composition predicts the magic value
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FIG. 1. The proton number Z (top panel) and the nucleon number
A (bottom panel) of the nuclei as functions of the mass density for
five different compositions of the stellar matter labeled as NV [6],
D1M and D1M∗ [7], Bsk24 [8], and Sly9 [9].

Z = 50 (except the last point) whereas D1M and Sly9 predict
higher and lower Z values, respectively. Therefore, the matrix
elements for the electron scattering off the individual nuclei
are nearly the same for these compositions at low densities
but deviate at higher densities. However, since the transport
depends on the average number of nuclei per unit volume,
such factors as the free neutron density and the mass number
of a nucleus are important, see Eq. (1), which nontrivially
modify the predictions based on the value of Z .

Figure 2 shows the fraction of free neutrons Yn = n′
n/nB

defined as the ratio of the number of free neutrons to that of all
nucleons in the Wigner-Seitz cell and the ion number density
as functions of the mass density for all five compositions
studied. Notable deviations are seen in free neutron fractions
in the high-density range 13 � log10 ρ [g cm−3] � 14, where
the models D1M and D1M∗ predict decreasing free neutron
fractions because of the fast increase of the nuclear mass
number A at these densities. In the models Bsk24 and Sly9 Yn

remains almost constant (Yn � 0.8) at log10 ρ [g cm−3] � 13,
whereas the model NV shows somewhat intermediate behav-
ior between these two model types at log10 ρ [g cm−3] � 13.5
where the neutron fraction drops again.

Figure 3 shows the phase diagram of the matter in the inner
crust of neutron stars in the temperature-density plane for five
compositions. In the top part of the diagram where T > TC

the ionic component forms a weakly interacting Boltzmann
gas, as the thermal energy exceeds the Coulomb interaction
energy. In the bottom part of the diagram where T < Tm the
ionic component solidifies, i.e., the scattering of electrons is
(predominantly) on the phonons of the lattice. The plasma
temperature Tp is lower than the melting temperature for the

FIG. 2. (a) The fraction of free neutrons Yn = n′
n/nB and (b) the

number density of ions as functions of the mass density for five
compositions of stellar matter.

five models in Fig. 3 and is not shown. Our results apply in
the regime where T > Tm. Note the weak density and model
dependence of the curves Tm(ρ) and TC (ρ) (except the region
log10 ρ [g cm−3] � 13.5).

FIG. 3. The phase diagram of dense plasma in the inner crust of
the neutron star in the temperature-density plane for five different
compositions. The lower curves show the melting temperature Tm

below which the ionic component solidifies. Upper curves show
TC above which the ionic component forms a Boltzmann gas. The
present study covers the liquid portion of the phase diagram.
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FIG. 4. The Fermi temperature TF of the electronic component of
the stellar matter in the inner crust of a neutron star for five different
compositions shown in Fig. 1. The electron gas is becoming gradu-
ally nondegenerate above and degenerate below this temperature.

The transport in the liquid phase of a neutron star’s inner
crust is controlled by the electrons, which, to a good ap-
proximation, can be treated as a free Fermi gas except for
the collisions with ions that lead to dissipation contributing
to conductivity. (Electron-electron interaction can affect the
conductivity indirectly by modifying the density of state of
electrons, but the correction is a higher-order effect in the fine
structure constant). The electron density is obtained from the
charge conservation ne = Zni and allows us to define their
low-temperature characteristics, such as Fermi energy εF =
(p2

F + m2)1/2 and temperature εF − m ≡ TF , where m is the
electron mass and pF = (3π2ne)1/3 is the Fermi momentum.
Note that at densities considered in this paper electrons are
ultrarelativistic therefore we have, in practice, TF = εF = pF .

The Fermi temperature for five compositions is shown in
Fig. 4. It is seen that electrons are degenerate up to a quite high
temperature of several tens of MeV. This is in contrast to the
outer crust region [4], where low densities required treatment
of the transition from degenerate to the nondegenerate regime.
Nevertheless, as our setup works across from nondegenerate
to strongly degenerate limits, no additional limitations are
imposed. Overall, we see that electrons are degenerate or
semidegenerate for the temperatures relevant to BNS mergers
and core-collapse supernovas at densities relevant to compact
star inner crust. We recall that our discussion is limited to
temperatures below several MeV, as the compositions adopted
will be modified due to finite-temperature effects at larger
temperatures. In addition, to modifications of thermodynam-
ics, additional species such as alpha particles and other light
clusters will appear in the matter [15–20] and will contribute
to the conductivity. As a consequence, we will focus on the

degenerate electron regime while providing some extrapo-
lation to higher temperatures, which are suggestive of the
behavior of various quantities.

III. CONDUCTIVITY IN MAGNETIC FIELD FROM
BOLTZMANN EQUATION

In this section, we provide the key ingredients of the for-
malism presented extensively in Ref. [4], which is based on
the (quasi)particle transport of electrons in strong magnetic
fields. The kinetics of electrons is described by the Boltzmann
equation for the electron distribution function

∂ f

∂t
+ v

∂ f

∂r
− e(E + [v × B])

∂ f

∂ p
= I[ f ], (4)

where E and B are the electric and magnetic fields, v is the
electron velocity, e is the unit charge, and I[ f ] is the collision
integral, which for electron-ion collisions has the form

I = −(2π )4
∑
234

|M12→34|2δ(4)(p + p2 − p3 − p4)

× [ f (1 − f3)g2 − f3(1 − f )g4], (5)

where f = f (p) and f3 = f (p3) are the distribution functions
of the incoming and outgoing electron, g2,4 = g(p2,4) are the
distribution functions of the ion before and after a collision,
and we introduced the shorthand notation:

∑
i

= ∫
d pi/(2π )3.

As discussed above, ions form a classical liquid in equilibrium
with the Maxwell-Boltzmann distribution, i.e.,

g(p) = ni

(
2π

MT

)3/2

exp

(
− p2

2MT

)
. (6)

The range of validity of the kinetic equation (4) follows
from the common considerations of the kinetic theory [21].
Specifically, it is assumed that the collisions are instantaneous,
i.e., the distribution function is tracked only in between col-
lisions. Similarly, we assumed that the range of scattering
(effective size of screened Coulomb field d) is much smaller
than mean-free path l̄ between collisions. If the perturbations
of the system are characterized by characteristic length L
and frequency 
 (for example L could be the scale set by
gradients of electromagnetic potentials and 
 the frequency
of oscillations) the general validity condition can be written as

d � l̄ � L, t̄ � 
−1,

where t̄ is the mean-free flight time associated with l̄ , which
is of the order of the relaxation time of distribution function,
see below. Next, consider small perturbations δ f around the
equilibrium Fermi-Dirac distribution function of electrons to
linearize the Boltzmann equation: f = f 0 + δ f , δ f � f0,
where the equilibrium distribution is given by

f 0(ε) = 1

e(ε−μ)/T + 1
, (7)

with the spectrum of noninteracting electrons given by
ε =

√
p2 + m2, and μ is the electron chemical potential.

Since we are interested in the electrical conductivity we keep
only the last term on the left-hand side of Eq. (4). Substituting
f = f 0 + δ f in Eq. (4) and decomposing δ f in terms of
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independent tensor components containing the electric and
magnetic fields we obtain [4]

δ f = eτ

1 + (ωcτ )2

∂ f 0

∂ε
vi[δi j − ωcτεi jkbk + (ωcτ )2bib j]Ej,

(8)

where b ≡ B/B, ωc = eB/ε is the cyclotron frequency for
electrons, and the Latin indices label the components of
Cartesian coordinates. Here we work in the relaxation-time
approximation with the relaxation time defined by

τ−1(ε) = (2π )−5
∫

dq
∫

d p2 |M12→34|2 q · p
p2

× δ(ε + ε2 − ε3 − ε4)g2
1 − f 0

3

1 − f 0
. (9)

The electrical conductivity is then obtained by computing
the electrical current

ji = −2
∫

d p
(2π )3

eviδ f = σi jE j . (10)

Substituting Eq. (8) in Eq. (10) and we find

σi j = δi jσ0 − εi jmbmσ1 + bib jσ2, (11)

where

σn = e2

3π2T

∫ ∞

m
dε

p3

ε

τ (ωcτ )n

1 + (ωcτ )2
f 0(1 − f 0), n = 0, 1, 2.

(12)

The matrix element includes several corrections to the
bare Coulomb interaction between an electron and an ion.
The screening of the interaction is taken into account via the
hard-thermal-loop polarization tensor of QED, see Sec. IV D
of Ref. [4]. The ion-ion correlations are taken by using fits
to the structure factor S(q) of one-component plasma for
various values of plasma parameter � obtained from Monte
Carlo computations, see Fig. 4 of Ref. [4]. Finally, the finite
nuclear size of the nuclei is taken into account via a nuclear
form factor F (q), which represents Fourier transform of the

screened charge distribution of a spherically charged nucleus,
see Eq. (22) of Ref. [12] or Eq. (31) of Ref. [4]. The nuclear
form factor F (q) is evaluated with nuclear radii RN taken
directly from underlying compositions, avoiding the relation
RN = aA1/3 which is inaccurate for the inner crust composi-
tions if a = const. is assumed.

The final expression for the relaxation time reads

τ−1(ε) = πZ2e4ni

εp3

√
M

2πT

∫ ε−m

−∞
dω e−ω/2T f 0(ε − ω)

f 0(ε)

×
∫ q+

q−
dq

(
q2 − ω2 + 2εω

) (2ε − ω)2 − q2

|q2 + �L|2

× e−ω2M/2q2T e−q2/8MT S(q)F 2(q), (13)

where q± = |
√

p2 − (2ωε − ω2) ± p|, and �L � 4e2 p2
F /π is

the longitudinal component of the polarization tensor. Note
that we neglected the transverse part of the scattering in
Eq. (13) as that part is negligibly small in the regime of
interest of this work.

If the magnetic field is directed along the z axis, then the
conductivity tensor has the form

σ̂ =
⎛
⎝σ0 −σ1 0

σ1 σ0 0
0 0 σ

⎞
⎠, (14)

where the scalar conductivity is given by

σ = σ0 + σ2 = e2

3π2T

∫ ∞

m
dε

p3

ε
τ f 0(1 − f 0). (15)

In the absence of a magnetic field, the conduction becomes
isotropic with j = σE, where σ is referred below as scalar
conductivity.

At relatively low temperatures T � 5 MeV the elec-
tronic gas in the inner crust is practically in the degener-
ate state, therefore we can use the low-temperature limit
of Eqs. (12) and (15) by substituting ∂ f 0/∂ε = − f 0(1 −
f 0)/T → −δ(ε − εF ), which leads us to the well-known
Drude formulas

σ = nee2τ

ε

∣∣∣∣
ε=εF

, σ0 = σ

1 + (ωcτ )2

∣∣∣∣
ε=εF

, σ1 = (ωcτ )
∣∣
ε=εF

σ0, (16)

where the quantities τ and ωc in these equations are evaluated
at the Fermi energy εF .

IV. NUMERICAL RESULTS

Numerically, the electrical conductivity is evaluated us-
ing the relaxation time Eq. (13). With this relaxation time,
we evaluate the components of the conductivity tensor using
Eq. (12). Two different regimes of weak and strong magnetic
fields arise, which are distinguished by the scalar vs. ten-
sor nature of the conductivity, see Eq. (16). These regimes
are distinguished by the value of the Hall parameter ωcτ .
Note that as, by definition, τ and ω are energy-dependent

quantities, they should be evaluated at the Fermi energy in
the degenerate regime, which is the case for T � 5 MeV. At
high temperatures T � TF /3 where electrons are no longer
degenerate, the quantities τ and ω are evaluated at the thermal
energy ε̄ = 3T , see below (this does not apply, naturally, to
the cases where τ and ω are integrated over the energies where
the energy dependence should be kept). In the isotropic case
ωcτ � 1 one has σ1 � σ0 � σ , therefore, all three diago-
nal components of the conductivity tensor are identical, and
the nondiagonal components vanish. In the anisotropic case
ωcτ � 1 they are distinct and should be studied separately.
Below, we will study the dependence of the conductivity on
the density, temperature, and strength of the magnetic field
for the selected compositions.
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FIG. 5. The relaxation time τ and the Hall parameter ωcτ at the
Fermi energy as functions of the mass density for five compositions
as labeled in Fig. 1. The temperature is fixed at T = 5 MeV, and
the magnetic field is fixed at B12 = 100 in (b). The solid lines show
the values of these quantities averaged over the five compositions.
The solid and dashed curves in the inset show the standard deviations
of log10 τ and ωcτ , respectively.

A. Relaxation time and the Hall parameter

Figure 5 shows the relaxation time τ and the Hall parame-
ter ωcτ for five compositions as functions of the mass density
for the temperature T = 5 MeV. Because it corresponds to
the degenerate regime for electrons, τ and ωc are evaluated
at the Fermi energy. To assess the variations in the relaxation
time and Hall parameter ωcτ with the composition we use the
same approximations as in Ref. [4], to reduce Eq. (13) to the
following form first obtained by Ref. [22]:

τ−1 = 4Ze4εF

3π

∫ 2pF

0

dq

q

(
1 − q2

4ε2
F

)
S(q)F 2(q), (17)

which implies the scaling

τ ∼ Z−4/3n−1/3
i , (18)

if we neglect the effects of S(q) and F (q), where we used
εF = pF ∼ (Zni )1/3. Because the value of Z for most of
the compositions is fixed at (semi)magic number 40 or 50,
Eq. (18) suggests decreasing relaxation times with the density
as follows from Fig. 2. However, such behavior is realized
only in the low-density domain log10 ρ [g cm−3] � 12.5 ÷ 13.
At higher densities log10 ρ [g cm−3] > 13 the relaxation time
reverses from slowly decreasing function to an increasing
function of density, which is a consequence of the increasing
importance of finite size of the nuclei encoded in the nuclear
form factor. It suppresses the electron-ion scattering rates
significantly at high densities where the nuclear radii become
close to the radii of the Wigner-Seitz cell. This results in larger
relaxation times at higher densities.

FIG. 6. The relaxation time τ and the Hall parameter ωcτ as
functions of the temperature for various values of the mass density
for composition D1M∗ (τ and ωc are evaluated at ε = εF if T � TF /3
and at ε = 3T if T � TF /3, see the discussion in the text). In (b) the
magnetic field is fixed at B12 = 100.

This effect is stronger for two models D1M and D1M∗
as these models predict a significant increase in the mass
number and size of nuclei with the density in the high-density
regime, as seen from Fig. 1. Figure 8(a) shows the relaxation
time for two models D1M∗ and Bsk24, which predict the
same values of Z and very close values of ni, therefore, the
differences in the relaxation times predicted by these models
can be attributed to the difference in the values of A, which
manifests itself through the nuclear form factor. Indeed, as
seen from the figure, the relaxation times for both models are
very similar and do follow the scaling τ ∼ n−1/3

i in the case
were the factor F (q) is set to one (empty symbols) whereas
in the full calculation (filled symbols) τ increases with the
density with different slopes for different models, thus the
scaling (18) fails. The scaling (18) works qualitatively well
for outer crust matter, where the effect of the form factor is
small for nuclei with small A [4].

The solid line in Fig. 5(a) shows the average logarithmic re-
laxation time scale computed as 〈log10 τ 〉 = ∑5

i=1 log10 τi/5,
where τi are the relaxation times for the five compositions
interpolated in the density range 11.6 � log10 ρ [g cm−3] �
14.12. Similarly, the solid line in Fig. 5(b) shows the average
value of ωcτ . In addition, we show the standard deviations of
these quantities from their average values in the inset located
in Fig. 5(a). The solid line shows the standard deviation for
log10 τ , and the dashed line—that for ωcτ . We compute the
standard deviation sa of a quantity a using the formula sa =√∑5

i=1(ai − 〈a〉)2/5, where 〈a〉 is the average value over the
five compositions.

Figure 6 shows the temperature dependence of the relax-
ation time and the Hall parameter for several densities for the
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composition D1M∗. Here we extrapolate our results of low-
temperature matter to higher temperatures (up to 20 MeV)
making a crude assumption that the composition of matter
does not change significantly with the temperature at the given
density. As the matter is partially degenerate at temperatures
T � 10 MeV at low densities, we evaluate the quantities τ

and ωc at the Fermi energy at temperatures T � T ∗, and
at the thermal energy of ultrarelativistic electrons ε̄ = 3T at
T � T ∗, where T ∗ = TF /3 is the transition temperature from
the nondegenerate to the degenerate regime and corresponds
to the requirement that the Fermi energy becomes equal to
the thermal energy of a nondegenerate gas, i.e., εF � TF =
3T [4]. It is seen that τ decreases with the temperature in
the strongly degenerate regime T � T ∗ and increases in the
semidegenerate regime T � T ∗, which leads to a minimum
at T ∼ T ∗ in the conductivity. The first effect originates from
the structure factor S(q) and, at very high densities also from
the nuclear form factor F (q). In the semidegenerate regime,
the temperature dependence of τ is dominated by the energy
increase of electrons with temperature, and τ becomes in-
creasing with temperature.

From the bottom panels of Figs. 5 and 6 we see that for
magnetic field B12 ≡ B/(1012G) = 100 the factor ωcτ is of
the order of unity in the whole inner crust. This implies that
the effect of anisotropy should become important at such
values of fields. We see that the effects of anisotropy in the
inner crust are less pronounced than in the low-density outer
crust, where the anisotropy becomes important already for
B12 � 0.01 [4].

B. Conductivity in the low-field limit

We start with the results on the density dependence of the
scalar conductivity at a fixed temperature. Figure 7 shows the
scalar conductivity as a function of the density for T = 5
MeV. Despite the nonmonotonic behavior of the relaxation
time with the density, the increase of density of the states
close to the Fermi surface leads to an increase of conductivity
with matter density, as seen from the first formula of Eq. (16).
Similar to the case of the relaxation time, comparisons can
be made among the various compositions and the effects of
various factors on the conductivity. Given that for most of the
compositions Z is fixed at a (semi)magic number, and the ion
number density ni has similar values, the dependence of σ on
the density for any given composition is controlled mainly by
the dependence of the values of A on density, which affects
the conductivities by means of the nuclear form factors, as
mentioned above. Figure 8(b) shows the conductivity for two
models D1M∗ and Bsk24 and two cases with F (q) = 1 and
full F (q), which confirm the statements above. We see that for
F (q) = 1 the scalar conductivity would increase as a power
low with the density following the universal approximate scal-
ing σ ∝ ρ1/4, whereas for full F (q) a much faster increase of
the conductivity at high densities is observed. The slopes are
composition dependent.

In addition, we show in Fig. 7 the (logarithmic) conduc-
tivity averaged over the five compositions and the standard
deviation for log10 σ in the inset. As expected, the standard
deviation rises with density as the differences between the

FIG. 7. Dependence of the scalar conductivity on density for five
compositions. The temperature is fixed at T = 5 MeV. The solid
line shows the logarithm of the conductivity averaged over the five
compositions, and the inset shows the standard deviation for log10 σ .

compositions with regard to predicted values of Z , A, and
ni increase with density. The deviations rise sharply beyond
log10 ρ [g cm−3] � 13, but the overall deviation remains be-
low 25%, except close to the crust-core interface, where
nonspherical nuclei are expected.

FIG. 8. (a) Dependence of the relaxation time and (b) the scalar
conductivity on density for two models evaluated with full nuclear
form factor F (q) (filled symbols) and with F (q) = 1 (empty sym-
bols). The temperature is fixed at T = 5 MeV.
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FIG. 9. The temperature dependence of the scalar conductivity
for various values of the density for composition D1M∗. The dotted
lines show the corresponding values of σ in the case where the effect
of the nuclear form factor is neglected.

The temperature dependence of the conductivity at fixed
values of the density is shown in Fig. 9. This figure allows for
extrapolation to larger temperatures where the compositions
of the matter used are not realistic as they have been derived
at zero temperature and assuming matter without neutrinos. In
the range of temperatures where the compositions are realistic
0 � T � 5 MeV (and beyond up to 10 MeV) the temperature
dependence of the conductivity is very weak, except at very
high densities and models with very large values of A, where
the nuclear form factor plays the key role in the scattering
rates as discussed in the previous subsection. To illustrate
this, we show in Fig. 9 the corresponding values of σ in
the case where the effect of nuclear form factor is neglected,
i.e., F (q) = 1. We clearly see that the form factor affects
not only the magnitude of the conductivity at high densities,
but also modifies its temperature dependence by making it
much steeper than at low density. Numerically we find that for
the model D1M∗ the form factor increases the conductivity
by factors of 1.4, 2.3, and between 15 and 30 at densities
ρ = 1012, ρ = 1013, and ρ = 1014 g cm−3, respectively, and
for 5 � T � 1 MeV. These factors are similar for the model
D1M, which predicts very large values of A at ρ � 1013 g
cm−3 as well. The remaining models are characterized by
smaller values of A, therefore the modifications due to the
nuclear form factor are less pronounced for ρ � 1014 g cm−3.

C. Conductivities in the high-field limit

We now consider the density dependence of the conductiv-
ity in the anisotropic case where the magnetic fields are large.
Figure 10 shows the density dependence of the σ0 compo-
nent for two values of the magnetic field (B12 = 10, 100) for

FIG. 10. Dependence of σ0 component of the electrical conduc-
tivity tensor on density for five compositions. The labeling of the
curves is as in Fig. 7. The values of the temperature and the magnetic
field are indicated in the plot. The solid lines in each panel show
the averages of log10 σ0 over the five compositions. The solid and
dashed curves in the inset show the standard deviation of log10 σ0 for
B12 = 10 and B12 = 100, respectively.

compositions considered. The temperature is fixed at T =
5 MeV. The same for the component σ1 is shown in Fig. 11.

For the magnetic field B12 = 10 we have ωcτ � 1, which
implies essentially isotropic conduction. In this case, the com-
ponent σ0 is almost identical to the scalar conductivity σ as
seen from Figs. 7 and 10, and the values of σ1 are much
lower. For B12 � 30 the anisotropy already sets in, as can be
seen from Fig. 12, and for the value B12 = 100 the transverse
components of the conductivity σ0 and σ1 have the same order
of magnitude, as already ωcτ ∼ 1. The averages of log10 σ0

and log10 σ1 and their standard deviations are also shown in
Figs. 10 and 11.

We show the magnetic field dependence of the components
of conductivities for fixed values of temperature and density in
Fig. 12. According to Eq. (16) σ1 is proportional to the mag-
netic field in the isotropic regime whereas σ0 is independent
of it; these features are seen in Fig. 12. In general, we see
that the effect of the magnetic field on the conduction in the
inner crust up to the limit of nonquantizing fields B12 � 100 is
not as significant as it was the case for the outer crust, which
becomes totally anisotropic for B12 � 10 [4].

The temperature dependence of the conductivity compo-
nents σ0 and σ1 is shown in Fig. 13 for fixed magnetic field
B12 = 100. These components depend weakly on the tem-
perature, because the temperature dependence of the scalar
conductivity σ and that of the product ωcτ partially cancel
each other.
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FIG. 11. Dependence of σ1 component of the electrical conduc-
tivity tensor on density for four compositions. The labeling of the
curves is as in Fig. 7. The values of the temperature and the magnetic
field are indicated in the plot. The solid lines in each panel show
the averages of log10 σ1 over the five compositions. The solid and
dashed curves in the inset show the standard deviation of log10 σ1 for
B12 = 10 and B12 = 100, respectively.

D. Remarks on electron-neutron scattering

In addition to the Coulomb scattering of electrons off the
nuclei studied in detail above, electrons will be scattered
by neutrons due to their anomalous magnetic moment gn =
−1.91. The ratio of the respective relaxation times can be
estimated from the transition probabilities Wep and Wen for
electron-proton and electron-neutron scattering, which were
computed in Ref. [23] and are given by their Eqs. (48) and
(49). The ratio of the corresponding relaxation times, up to a
factor O(1), is given by

τen

τep
∼ WepZ

WenN
� 1

2g2
n

(
mN

pF

)2 Z

N
, (19)

where mN is the neutron mass and N is the number of neutrons
in a Wigner-Seitz cell. For an estimate, we use the model
D1M and Table II of Ref. [7] in the range 0.006 � nB � 0.06
[fm−3] (which corresponds to the mass density range 12 �
log10 ρ [g cm−3] � 14). We then find that 0.185 � Z/N �
0.04 and 1175 � (mN/pF )2 � 138, assuming bare neutron
mass mN = 939 MeV, and

30 � τen

τep
� 0.8. (20)

From this elementary estimate, we conclude that the electron-
neutron interaction can appreciably contribute to the conduc-
tivity close to the crust-core transition, but is subdominant at
lower densities.

FIG. 12. The dependence of σ0 and σ1 components of the elec-
trical conductivity tensor on the magnetic field at fixed temperature
and for various values of the density indicated on the plot by their
logarithm for composition D1M∗.

V. CONCLUSIONS

In this work, we extended the study of the finite-
temperature conductivity of the outer crust of compact stars
in the liquid regime in magnetic fields [4] to the inner crust
characterized by a neutron drip component that forms a sep-
arate fluid. Because of higher densities, the electrons in the

FIG. 13. The dependence of σ0 and σ1 components of the electri-
cal conductivity tensor on the temperature at fixed magnetic field for
various values of the density indicated on the plot by their logarithm
for composition D1M∗.
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inner crust are mostly in the degenerate regime within the
range of temperatures in which the composition of the inner
crust computed at zero temperature can still be applied (T �
Ttr � 5 MeV). Nevertheless, our extrapolation beyond this
range shows that there is a minimum in the conductivity at the
transition from the degenerate to the nondegenerate regime,
which was also the case in the outer crust. Of course, a self-
consistent computation of the conductivity of multicomponent
nuclear plasma in this regime is required to draw definitive
conclusions.

To assess the uncertainties in the conductivities due to
the composition we have taken an average over the five
adopted compositions (NV, Bsk24, D1M, D1M∗, and Sly9)
and computed the standard deviation. The deviations are be-
low 10% for densities log10 ρ [g cm−3] � 12.5 and increase
up to 25% for higher densities. Exceptions are very high den-
sities log10 ρ [g cm−3] � 14 where standard deviations can
increase up to 40%, but one anticipates nonspherical nuclei
at such densities. Our analysis shows that this scatter among
different compositions affects the transport quantities through
the nuclear form factor (i.e., finite nuclear size). It is the dom-
inant agent that determines the behavior of the conductivity at
high densities.

The anisotropy of transport becomes sizable for magnetic
fields B12 � 30 and low densities as well as for larger fields
B12 � 50 at higher densities. The field diminishes the σ0 com-
ponent of the conductivity and the nondiagonal component σ1

becomes of the order of σ0 at B12 � 100.
Dissipation through conductivity may or may not be im-

portant depending on the effectiveness of the other channels
of dissipation appearing in the relativistic fluid dynamics de-
scription of BNS mergers, supernovas, and protoneutron stars.
Recent microscopic work shows that the bulk viscosity is a
potentially important channel of dissipation [24–26] as can
be seen from the estimates of relevant damping time scales
[27,28] and implementations in the relativistic hydrodynamics
simulations [29,30].

Looking ahead, it would be interesting to apply the formal-
ism used in this work to study the conductivity of the star’s
core. At low temperatures, the core is superconducting, and
conductivity and screening are affected by heterogeneities on
the scales of the order of 102–104 fm, which are introduced by

the flux tubes [31] in the case of type-II and normal domains
in the case of type-I superconductivity [32].

To conclude, we have quantified the conductivity of the
warm inner crust of a compact star within the Boltzmann
quasiparticle transport of electrons in the liquid phase of inner
crust matter taking into account the screening of electron-ion
interaction, finite nuclear size, ion structure factor, and mag-
netic fields. Five different compositions were studied to assess
the dependence of the results on adopted composition. In the
future, this study can be extended to higher temperatures by
adopting compositions that have been derived at finite tem-
perature and account for the multi-ion composition of matter,
which includes α particles and other light clusters.
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APPENDIX: TABLES OF TRANSPORT PARAMETERS

In this Appendix we provide numerical results for the
density dependence of the components of conductivity tensor
along with relaxation time and anisotropy parameter for the
five models studied in this work. Tables are given for fixed
temperatures T = 1 and T = 5 MeV, which bracket the range
to which the current study is applicable and fixed value of
magnetic field B12 = 100. Table I is computed with model
NV, Table II with model D1M, Table III with model D1M*,
Table IV with model Bsk24 and Table V with model Sly9.

TABLE I. Model NV and B12 = 100.

T = 1 MeV T = 5 MeV

log10 ρ log10 τ ωcτ log10 σ log10 σ0 log10 σ1 log10 τ ωcτ log10 σ log10 σ0 log10 σ1

11.825 −19.482 1.128 22.115 21.757 21.810 −19.532 1.005 22.108 21.754 21.800
12.001 −19.491 1.039 22.158 21.839 21.857 −19.542 0.925 22.150 21.836 21.844
12.167 −19.491 0.994 22.198 21.898 21.897 −19.542 0.883 22.188 21.894 21.882
12.425 −19.497 0.934 22.234 21.961 21.932 −19.549 0.829 22.222 21.956 21.915
12.795 −19.632 0.592 22.224 22.093 21.867 −19.672 0.540 22.219 22.087 21.858
12.985 −19.624 0.547 22.316 22.202 21.941 −19.665 0.498 22.306 22.192 21.925
13.173 −19.620 0.512 22.387 22.285 21.996 −19.662 0.464 22.372 22.274 21.973
13.533 −19.579 0.469 22.584 22.497 22.169 −19.627 0.420 22.557 22.477 22.127
13.900 −19.105 1.070 23.290 22.959 22.988 −19.237 0.790 23.172 22.948 22.860
14.120 −18.364 4.654 24.236 22.880 23.548 −18.767 1.838 23.841 23.186 23.458
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TABLE II. Model D1M and B12 = 100.

T = 1 MeV T = 5 MeV

log10 ρ log10 τ ωcτ log10 σ log10 σ0 log10 σ1 log10 τ ωcτ log10 σ log10 σ0 log10 σ1

11.825 −19.421 1.285 22.186 21.759 21.870 −19.477 1.128 22.182 21.757 21.861
12.001 −19.424 1.223 22.219 21.819 21.908 −19.481 1.071 22.212 21.817 21.897
12.167 −19.427 1.162 22.255 21.882 21.949 −19.485 1.016 22.246 21.879 21.935
12.425 −19.425 1.072 22.331 21.997 22.029 −19.485 0.932 22.315 21.993 22.007
12.795 −19.400 0.965 22.495 22.208 22.194 −19.468 0.826 22.464 22.201 22.156
12.985 −19.369 0.937 22.616 22.341 22.313 −19.443 0.790 22.572 22.331 22.262
13.173 −19.307 0.963 22.775 22.489 22.474 −19.393 0.790 22.715 22.479 22.404
13.533 − − − − − −19.352 0.687 22.951 22.767 22.624
13.700 − − − − − −19.198 0.871 23.205 22.944 22.899
13.900 − − − − − −19.002 1.192 23.517 23.118 23.205
14.001 − − − − − −18.907 1.383 23.669 23.191 23.340
14.120 − − − − − −18.807 1.606 23.839 23.273 23.485

TABLE III. Model D1M* and B12 = 100.

T = 1 MeV T = 5 MeV

log10 ρ log10 τ ωcτ log10 σ log10 σ0 log10 σ1 log10 τ ωcτ log10 σ log10 σ0 log10 σ1

11.825 −19.402 1.349 22.199 21.745 21.878 −19.461 1.178 22.196 21.744 21.868
12.001 −19.423 1.234 22.214 21.810 21.903 −19.480 1.081 22.208 21.807 21.892
12.167 −19.426 1.172 22.250 21.872 21.943 −19.484 1.025 22.241 21.870 21.929
12.425 −19.424 1.081 22.325 21.986 22.022 −19.485 0.941 22.309 21.983 22.002
12.795 −19.401 0.972 22.487 22.196 22.185 −19.468 0.833 22.456 22.189 22.148
12.985 −19.366 0.953 22.609 22.327 22.307 −19.440 0.804 22.566 22.318 22.256
13.173 −19.307 0.977 22.764 22.472 22.463 −19.392 0.802 22.705 22.462 22.395
13.533 −19.069 1.340 23.203 22.755 22.883 −19.206 0.978 23.083 22.771 22.779
13.700 −18.891 1.810 23.476 22.845 23.103 −19.077 1.178 23.304 22.907 22.992
13.900 −18.666 2.668 23.814 22.903 23.330 −18.930 1.451 23.561 23.051 23.223
14.001 −18.541 3.324 23.996 22.915 23.437 −18.855 1.613 23.692 23.121 23.337
14.068 −18.460 3.828 24.119 22.924 23.507 −18.809 1.714 23.779 23.170 23.411
14.120 − − − − − −18.735 1.947 23.889 23.195 23.491

TABLE IV. Model Bsk24 and B12 = 100.

T = 1 MeV T = 5 MeV

log10 ρ log10 τ ωcτ log10 σ log10 σ0 log10 σ1 log10 τ ωcτ log10 σ log10 σ0 log10 σ1

11.655 −19.514 1.054 22.078 21.752 21.776 −19.560 0.947 22.067 21.750 21.762
11.962 −19.538 0.923 22.119 21.850 21.817 −19.584 0.831 22.106 21.847 21.800
12.320 −19.568 0.779 22.176 21.969 21.862 −19.613 0.702 22.160 21.963 21.840
12.627 −19.598 0.649 22.245 22.092 21.905 −19.643 0.586 22.226 22.082 21.877
12.934 −19.628 0.525 22.340 22.234 21.955 −19.672 0.474 22.318 22.220 21.921
13.240 −19.644 0.426 22.472 22.399 22.030 −19.689 0.384 22.446 22.380 21.986
13.599 −19.610 0.371 22.695 22.639 22.209 −19.660 0.331 22.659 22.610 22.148
13.905 −19.459 0.436 23.008 22.933 22.572 −19.529 0.371 22.949 22.890 22.472
14.047 −19.244 0.650 23.307 23.154 22.966 −19.351 0.507 23.209 23.104 22.821
14.056 −19.220 0.680 23.337 23.172 23.004 −19.333 0.525 23.235 23.123 22.855
14.063 −19.199 0.711 23.362 23.185 23.037 −19.316 0.543 23.255 23.137 22.883
14.085 −19.024 1.181 23.448 23.069 23.141 −19.177 0.829 23.306 23.067 22.998
14.098 −18.934 1.490 23.517 23.008 23.182 −19.111 0.991 23.351 23.040 23.048

055804-11



ARUS HARUTYUNYAN et al. PHYSICAL REVIEW C 109, 055804 (2024)

TABLE V. Model Sly9 and B12 = 100.

T = 1 MeV T = 5 MeV

log10 ρ log10 τ ωcτ log10 σ log10 σ0 log10 σ1 log10 τ ωcτ log10 σ log10 σ0 log10 σ1

11.613 −19.464 1.190 22.121 21.736 21.813 −19.516 1.057 22.106 21.736 21.798
12.123 −19.510 0.954 22.176 21.894 21.875 −19.559 0.852 22.160 21.891 21.855
12.623 −19.555 0.738 22.263 22.073 21.942 −19.603 0.661 22.243 22.064 21.915
12.891 −19.576 0.632 22.334 22.188 21.990 −19.624 0.566 22.312 22.176 21.956
13.091 −19.582 0.569 22.408 22.285 22.041 −19.631 0.508 22.382 22.270 22.002
13.191 −19.580 0.545 22.452 22.339 22.076 −19.630 0.486 22.424 22.321 22.032
13.291 −19.571 0.529 22.504 22.397 22.121 −19.623 0.469 22.473 22.377 22.072
13.393 −19.555 0.520 22.565 22.461 22.178 −19.610 0.459 22.530 22.438 22.123
13.491 −19.530 0.524 22.634 22.529 22.248 −19.589 0.457 22.594 22.503 22.185
13.591 −19.493 0.542 22.717 22.605 22.340 −19.558 0.467 22.670 22.576 22.265
13.691 −19.442 0.578 22.813 22.688 22.450 −19.516 0.488 22.756 22.655 22.362
13.791 −19.377 0.639 22.922 22.774 22.579 −19.462 0.525 22.852 22.738 22.475
13.809 −19.364 0.653 22.943 22.789 22.604 −19.451 0.534 22.871 22.753 22.497
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