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Isospin equilibration in neutron star mergers
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We analyze the isospin equilibration properties of neutrinoless nuclear (npe) matter in the temperature and
density range that is relevant to neutron star mergers. Our analysis incorporates neutrino-transparency corrections
to the isospin (“beta”) equilibrium condition which become noticeable at T � 1 MeV. We find that the isospin
relaxation rate rises rapidly as temperature rises, and at T ≈ 5 MeV it is comparable to the timescale of the
density oscillations that occur immediately after the merger. This produces a resonant peak in the bulk viscosity
at T ≈ 5 MeV, which causes density oscillations to be damped on the timescale of the merger. Our calculations
suggest that isospin relaxation dynamics may also be relevant when neutrinos are treated more accurately via
neutrino transport schemes.
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I. INTRODUCTION

Nuclear matter in neutron stars relaxes towards isospin
(“beta”) equilibrium; its steady state has an equilibrium pro-
ton fraction xeq

p which is a function of baryon density nB

and temperature T . Equilibrium is established by weak in-
teractions which operate on a timescale that can range from
microseconds to minutes. Astrophysical phenomena such as
density oscillations in neutron stars, which can be on a similar
timescale, can therefore drive the system out of equilibrium,
and the dynamics of the relaxation process may be relevant to
our understanding of the astrophysics.

In this analysis we focus on the astrophysical conditions
found in the central region of neutron star mergers, where
homogeneous nuclear matter at densities from one to several
times nuclear saturation density n0 and temperatures up to
80 MeV undergoes compression and rarefaction on millisec-
ond timescales [1,2]. The purpose of this work is to argue that
such oscillations are likely to drive the system out of isospin
equilibrium [3], and that it is important for simulations to track
its relaxation back to chemical equilibrium, using the most
accurate available Urca rate calculations, because it may lead
to physically important phenomena such as bulk viscosity.

A major complication is the role of neutrinos. There are
two limits in which they can be straightforwardly handled.
The first is the “neutrinoless” limit where the contribution
to flavor equilibration from neutrino absorption is negligi-
ble. This can be due to there being few neutrinos present
and/or to their having a low absorption cross section, e.g.,
at low temperatures. The second is the “neutrino-trapped”
regime where neutrinos have a short mean free path, e.g.,
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at high temperatures, and hence form a locally equilibrated
Fermi gas. In general, neutrinos in the central region of a
merger are expected to lie between these two extremes, and
techniques are still being developed to handle their complex
dynamics [4,5].

In neutrino-trapped matter, isospin equilibration proceeds
so fast that the relaxation dynamics can be neglected [6–8],
but previous work on neutrinoless matter found that isospin
relaxation occurs on the same timescale as the fluid dynam-
ics, giving rise to maximal bulk viscosity [9–12]. This paper
focuses on the neutrinoless regime, and provides an improved
treatment in various respects (see summary below) that aims
to reinforce the earlier conclusions, namely, that since isospin
relaxation dynamics are important in one of the two extreme
limits, there is good reason to do the best possible job of
including them in more realistic neutrino transport schemes.
In the Conclusions we outline our future plans towards
this goal.

Given this motivation, we calculate physical quantities rel-
evant for isospin equilibration in neutrinoless homogeneous
nuclear matter at densities above nuclear saturation density.
We focus our calculation on the range 0 < T < 10 MeV be-
cause neutrino trapping becomes stronger as temperatures rise
beyond a few MeV [13]. At these temperatures we can ne-
glect positrons because at the densities we study the electron
chemical potential μe is in the 100 MeV range so T � μe.
We neglect muons because they introduce extra processes
requiring a more sophisticated treatment. Previous analyses
have found that they do not make a large difference to the
equilibration and relaxation rates [14], so we postpone their
inclusion to future work. The quantities we calculate are the
isospin relaxation rate γI and the the frequency-dependent
bulk viscosity ζ and damping (sound attenuation) time for
density oscillations.

Previous work on isospin relaxation in neutrinoless mat-
ter has assumed that the condition for isospin equilibrium is
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FIG. 1. Density and temperature dependence of −μ
eq
I , the isospin chemical potential in isospin equilibrium [Eq. (1)], for the IUF

equation of state (left panel) and QMC-RMF3 (right panel); −μ
eq
I rises with temperature because it arises from thermal blurring of the Fermi

surfaces (see text). For IUF at low temperatures it is also influenced by the direct Urca threshold at nB ≈ 4n0.

μn = μp + μe (e.g., [9,12,15–22]). As we will now discuss,
this is only valid at temperatures below about 1 MeV. At
the temperatures attained in neutron star mergers there is a
non-negligible correction to this condition. In this paper, we
calculate the isospin relaxation rate and bulk viscosity using
the proper equilibrium condition.

In the infinite volume thermodynamic limit, equilibrium
is established when the forward and backward rates of each
process are equal (“detailed balance”), so the equilibrium
condition is a simple equality involving chemical potentials.
However, neutrino transparency is a finite-volume effect, aris-
ing when the mean free path of neutrinos is not much smaller
than the size of the system. In a neutrinoless system neutrinos
only occur in final states, never in initial states, so the system
does not obey the principle of detailed balance. Equilibrium is
attained when there is a balance between different processes:
neutron decay and electron capture [as seen in Eqs. (24) and
(25) below]. In general, the equilibrium condition in neutrino-
less matter takes the form [10,13]

μn = μp + μe − μ
eq
I (nB, T ), (1)

where there is an isospin chemical potential μ
eq
I whose value

is determined by the requirement that the net rate of isospin
creation is zero, i.e., the neutron decay and electron capture
rates (26) are equal,

�I ≡ �net
n→p = 0. (2)

At sufficiently low temperatures, T � 1 MeV, the correc-
tion μ

eq
I in Eq. (1) becomes negligible because the Fermi

surface approximation is valid: the Fermi-Dirac distribution
exponentially suppresses contributions from particles away
from their Fermi surfaces and the energy carried away by
neutrinos is negligible (of order T ). If neutrinos are kine-
matically negligible then neutron decay and electron capture
are effectively the time-reverse of each other, n � p e−, and
the isospin equilibrium condition can be obtained from apply-
ing detailed balance to that process, yielding μn = μp + μe,
i.e., μ

eq
I = 0. However, as the temperature rises above about

1 MeV, μ
eq
I becomes non-negligible, and can reach values as

large as 20 MeV (see Fig. 1 and Refs. [10,13]).
In Sec. II we derive expressions for the isospin relaxation

rate and the bulk viscosity in terms of the microscopic isospin
equilibration rate �I , i.e., the rate of Urca processes. In Sec. III
we describe the relativistic mean field theories (RMFTs) that
we use to model nuclear matter. In Sec. IV we summarize the
calculation of the Urca rates and in Sec. V we present our
results.

We use natural units where h̄ = c = kB = 1.

II. ISOSPIN EQUILIBRATION OF NUCLEAR MATTER

We now derive expressions for the isospin relaxation rate
γI and the bulk viscosity ζ of neutrinoless npe matter at arbi-
trary temperature. We will assume that matter always remains
locally electrically neutral, so all calculations are performed
at constant charge density nQ = 0. The derivation in this sec-
tion is applicable to both isothermal and adiabatic density
oscillations, by taking the derivatives at constant temperature
or constant entropy per baryon, respectively. In the presenta-
tion below we will not explicitly show the dependence on T
or s/nB.

A. Isospin relaxation

In neutrinoless nuclear npe(μ) matter, in addition to the
conserved baryon number B and conserved electric charge Q
there is another “briefly conserved” charge, isospin I . The rel-
evant charge densities and chemical potentials can be related
to the net densities and chemical potentials of neutrons (n),
protons (p), and electrons (e),

nB = np + nn,

nI = 1
2 np − 1

2 nn,

nQ = np − ne,

μB = 1
2μp + 1

2μn + 1
2μe,
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μI = μp − μn + μe,

μQ = −μe. (3)

The expressions above do not include a chemical potential
for lepton number because the neutrinos are far from thermal
equilibrium so there is no associated chemical potential.

It will be convenient to define the isospin fraction xI , which
is simply related to the proton fraction (xp ≡ np/nB),

xI ≡ nI

nB
= xp − 1

2
. (4)

For many purposes we can treat xI as equivalent to xp, since
∂/∂xI is the same as ∂/∂xp, and a derivative at constant xI is
also a derivative at constant xp.

As noted in Sec. I, on strong-interaction (≈10−23 s)
timescales all three charges are conserved, but on longer
timescales the weak interactions break isospin, so μI and xI

relax to their β equilibrated values μ
eq
I and xeq

I . To analyze
this equilibration process, where the system has been driven
out of equilibrium by a density oscillation, it is natural to work
in terms of nB and xI , since baryon density is the quantity that
tracks the density oscillation, and the isospin fraction tracks
relaxation to equilibrium.

Equilibration of isospin is governed by the rate equation

dnI

dt
= nI

nB

dnB

dt
+ �I (nB, xI ). (5)

The first term on the right side tells us that if isospin were
conserved then compression would change the isospin density
by the same fraction as it changes baryon density. In the
second term �I is the isospin production rate, i.e., the net rate
per unit volume at which isospin increases, or equivalently the
net rate at which neutrons are converted to protons. In Sec. IV
we describe how it can be calculated from the Fermi theory of
weak interactions by integrating the net n → p rate over the
Fermi-Dirac distributions of protons, neutrons, and electrons.

Using the definition (4), the rate equation (5) becomes

dxI

dt
= 1

nB
�I (nB, xI ), (6)

and the equilibrium isospin fraction xeq
I (nB) is defined by

�I
(
nB, xeq

I (nB, T )
) = 0. (7)

If xI is above its equilibrium value then there are too many
protons, so the rate of p → n becomes larger than n → p; �I

should then become negative, driving xI back down towards
its equilibrium value. To obtain physically relevant quantities
such as the isospin relaxation rate and bulk viscosity we con-
sider a generic small departure from equilibrium,

�I (n̄B + �nB, x̄I + �xI ) = ∂�I

∂nB

∣∣∣∣
xI

�nB + ∂�I

∂xI

∣∣∣∣
nB

�xI , (8)

where x̄I ≡ xeq
I (nB). Using this in the rate equation (6) we

obtain the rate equation for the isospin fraction

dxI

dt
= −γI�xI + γB

�nB

n̄B
, (9)

where

γI ≡ − 1

n̄B

∂�I

∂xI

∣∣∣∣
nB

,

(10)

γB ≡ ∂�I

∂nB

∣∣∣∣
xI

,

with both the derivatives evaluated at nB = n̄B, xI = x̄I . Ac-
cording to Eq. (9) a small deviation of xI from equilibrium
(with no change in nB) would evolve as ẋI = −γI (xI − xeq

I ), so
we identify γI as the isospin relaxation rate, which we expect
to be positive.

The other rate factor, γB, tells us how quickly equilibrium
is restored in response to a change in density at fixed isospin
fraction. In previous treatments (e.g., [15–22]) this was simply
related to γI [see Eq. (A4)] because it was assumed that
β equilibrium corresponds to μI = 0; however, as noted in
Sec. I, this is no longer true if the neutrinos are out of thermal
equilibrium at T � 1 MeV.

B. Bulk viscosity

To see how isospin equilibration leads to bulk viscous
damping, we consider a fluid element of nuclear matter, with
pressure p, that is driven out of equilibrium by a small-
amplitude density oscillation,

nB(t ) = n̄B + Re(δnB eiωt ),

xI (t ) = x̄I + Re(δxI eiωt ),

p(t ) = p̄ + Re(δp eiωt ). (11)

We assume that the oscillation occurs around equilibrium, so

x̄I = xeq
I (n̄B, T ). (12)

We adopt the phase convention that the baryon density am-
plitude δnB � n̄B is real. Bulk viscous dissipation arises from
a phase lag between pressure and density. The rate of energy
dissipation for the small-amplitude oscillation (11) is obtained
from the pdV work done by the oscillation in one cycle.
Rewriting pdV as p (dV/dt ) dt the rate of energy dissipation
per unit volume is

W = − 1

τV̄

∫ τ

0
p(t )

dV

dt
dt = 1

2
ω Im(δp)

δnB

n̄B
, (13)

where the period is τ = 2π/ω and we used Eq. (11) and the
relation nB = N/V for a fluid element containing N baryons.

The hydrodynamic relation between bulk viscosity and rate
of energy dissipation per unit volume is W = ζ (∇ · �v)2, which
for the small-amplitude oscillation (11) becomes (averaged
over one oscillation period)

W = 1

2
ζω2 (δnB)2

n̄2
B

. (14)

Identifying Eq. (13) with Eq. (14) we obtain the frequency-
dependent bulk viscosity

ζ (ω) = Im(δp)

δnB

n̄B

ω
. (15)
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For npe nuclear matter, where the phase lag of the pressure
arises from the equilibration of isospin, this becomes

ζ (ω) = n̄B

ω

∂ p

∂xI

∣∣∣∣
nB

Im(δxI )

δnB
. (16)

We can now obtain the bulk viscosity of nuclear matter by
analyzing the equilibration process in more detail, which will
allow us to calculate the phase lag. Substituting the explicit
form of the oscillations (11) in to the rate equation (9) we find
the relationship between the amplitudes δxI and δnB

iωδxI = −γIδxI + γB

n̄B
δnB, (17)

which can be rewritten
δxI

δnB
= 1

n̄B

γB

γI + iω
. (18)

For the bulk viscosity (16) we take the imaginary part of
Eq. (18),

ζ = − ∂ p

∂xI

∣∣∣∣
nB

γB

γ 2
I + ω2

, (19)

where γB and γI are defined in Eq. (10) This is the general
expression for the bulk viscosity, valid even when temper-
ature corrections shift the equilibrium away from its low
temperature limit μ

eq
I = 0. In Appendix A we take the low

temperature limit and show that previous calculations, which
assumed μ

eq
I = 0, agree with the general result in that limit. In

the low temperature limit (A5) it is clear that the dependence
of bulk viscosity on density and temperature features a reso-
nant maximum when the relaxation rate γI (nB, T ) coincides
with the angular frequency ω of the density oscillation. This
is less clear in the more general expression (19), but we have
found that for typical equations of state μ

eq
I varies slowly

enough as a function of nB and T so that γB(nB, T ) is still
roughly proportional to γI (nB, T ) (the constant of proportion-
ality is a slowly varying function of nB and T ), so the resonant
peak is still present.

The bulk viscosity (19) can also be written as

ζ = ζ0
γ 2

I

γ 2
I + ω2

, (20)

where

ζ0 = − ∂ p

∂xI

∣∣∣∣
nB

γB

γ 2
I

(21)

is the static (zero frequency) limit of the bulk viscosity. (Note
that in the isothermal regime the derivative of the pressure
can be rewritten as a derivative of μI , see Appendix B). From
the static bulk viscosity and the isospin relaxation rate γI ,
which are functions of nB and T , one can reconstruct the full
frequency-dependent bulk viscosity as a function of density
and temperature.

III. NUCLEAR MATTER MODELS

One of the most important features influencing the isospin
relaxation rate of nuclear matter is the direct Urca thresh-
old density, which separates the low-density range, where in

the T → 0 limit only modified Urca processes are allowed,
from the high-density range where direct Urca processes are
kinematically allowed (see Sec. IV). It is not known whether
real-world nuclear matter has a direct Urca threshold in the
relevant density range, so we perform calculations for two
relativistic mean-field theories, IUF [23] and QMC-RMF3
[24]. Both are consistent with current astrophysical and nu-
clear constraints. IUF has a direct Urca threshold at 4 n0

whereas QMC-RMF3 does not have a threshold in the range
of densities found in neutron stars.

At a given baryon density nB, temperature T , and proton
fraction xp we solve the RMFT mean field equations to obtain
the values of the meson condensates, thermodynamic quan-
tities such as the pressure and proton and neutron chemical
potentials, and also the nucleon effective masses and energy
shifts. The dispersion relations for nucleons in the relativistic
mean field models are then specified as

En =
√

m∗
n

2 + k2
n + Un, (22)

Ep =
√

m∗
p

2 + k2
p + Up, (23)

where m∗
i are the effective masses, ki are the particle momenta,

and Ui are the energy shifts. In RMFTs the effective masses
and energy shifts are functions of density, temperature, and
proton fraction. In the models that we use the protons and
neutrons have the same effective mass, so the energy shifts
play an important role by separating the neutron and proton
energies and thereby opening up more phase space for the
Urca processes.

IV. URCA RATES

A. Overview of Urca processes

The isospin equilibration rate �I Eq. (5) is given by the
neutron decay and electron capture processes, which are gov-
erned by the weak interaction. Depending on the number of
spectators, these processes are called direct or modified Urca.
The direct Urca processes in neutrino transparent matter are
neutron decay and electron capture

n → p + e− + ν̄, p + e− → n + ν. (24)

In most models of homogeneous nuclear matter the proton
fraction xp increases monotonically with the density. This
means that for some models there is a direct Urca thresh-
old density, defined as the density below which, in the limit
T → 0, the rate of the direct Urca process is exponentially
suppressed. Since at low temperature the participating neu-
trons, protons, and electrons are all on their Fermi surfaces,
the criterion for direct Urca to proceed is kFn � kF p + kFe

where kFi are the Fermi momenta for the particles. In npe
matter this threshold is xp � 0.11 since neutrality requires
kF p = kFe. Below the threshold density, kFn > kF p + kFe, so
momentum conservation forbids the direct Urca processes for
particles on their Fermi surfaces. In order for momentum con-
servation to be satisfied, some particles would need to be away
from their Fermi surfaces, but this population is exponentially
suppressed by their Fermi-Dirac distributions. Consequently,
the direct Urca rate is suppressed as exp(−E/T ) where E
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is an energy deficit that goes to zero as the density reaches
the dUrca threshold from below. At densities below the di-
rect Urca threshold (and temperatures well below the energy
deficit for the given density) we expect the Urca rates to be
dominated by the modified Urca process,

N + n → N + p + e− + ν̄,
(25)

N + p + e− → N + n + ν,

where N is a spectator nucleon that can scatter from one part
of its Fermi surface to another, injecting momentum via a
virtual pion in to the accompanying direct Urca process.

We now discuss the calculation of the direct Urca (“dU”)
and modified Urca (“mU”) rates, which establish β equilib-
rium (see Sec. II),

�nd = �dU,nd + �mU,nd, (26)

�ec = �dU,ec + �mU,ec. (27)

In this paper, we will calculate the direct Urca rates by
integrating over the full phase space, including Fermi-Dirac-
suppressed contributions that become non-negligible when
the temperature rises to the MeV range [13]. We will calculate
modified Urca rates in the Fermi surface approximation (in
which participating nucleons and electrons are assumed to be
on their Fermi surfaces) since modified Urca always has a
nonsuppressed contribution from such particles.

B. Direct Urca rates

The direct Urca neutron decay and electron captures rates
are [25]

�nd =
∫

d3kn

(2π )3

d3kp

(2π )3

d3ke

(2π )3

d3kν

(2π )3

× fn(1 − fp)(1 − fe)

∑ |M|2
(2E∗

n )(2E∗
p )(2Ee)(2Eν )

× (2π )4δ(4)(kn − kp − ke − kν ), (28)

and

�ec =
∫

d3kn

(2π )3

d3kp

(2π )3

d3ke

(2π )3

d3kν

(2π )3

× (1 − fn) fp fe

∑ |M|2
(2E∗

n )(2E∗
p )(2Ee)(2Eν )

× (2π )4δ(4)(kp + ke − kn − kν ), (29)

where |M| is the spin-summed matrix element,

E∗
i =

√
k2

i + m∗2
i are the effective nucleon disper-

sion relations, Ee = √
k2

e + m2
e and Eν = kν are the

electron/neutrino dispersion relations, and fi are Fermi-Dirac
distributions. Direct Urca rates are often calculated in various
approximations such as using nonrelativistic dispersion
relations for the nucleons [6,13,17,22], using vacuum masses
for the nucleons [13], simplifying the matrix element [6,22],
or using the Fermi surface approximation [17].

Our direct Urca rate calculations use the complete matrix
element, relativistic dispersion relations for all participating

particles, and integrate momenta over the entire phase space.
For details see Appendix A of Ref. [10].

C. Modified Urca rates

We use the standard expressions for the modified-Urca
neutron decay and electron captures rates,

�mU,nd =
∫

d3kn

(2π )3

d3kp

(2π )3

d3ke

(2π )3

d3kν

(2π )3

d3kN1

(2π )3

d3kN2

(2π )3

× (2π )4δ(4)(kn + kN1 − kp − ke − kν − kN2 )

× fn fN1 (1 − fp)(1 − fe)(1 − fN2 )

×
(

s

∑ |M|2
26E∗

n E∗
p EeEνE∗

N1
E∗

N2

)
(30)

and

�mU,ec =
∫

d3kn

(2π )3

d3kp

(2π )3

d3ke

(2π )3

d3kν

(2π )3

d3kN1

(2π )3

d3kN2

(2π )3

× (2π )4δ(4)(kp + ke + kN1 − kn − kν − kN2 )

× fp fe fN1 (1 − fn)(1 − fN2 )

×
(

s

∑ |M|2
26E∗

n E∗
p EeEνE∗

N1
E∗

N2

)
, (31)

where s = 1/2 is a symmetry factor to account for identical
particles. These are obtained using the matrix element from
Refs. [26,27] and using the Fermi surface approximation to
simplify the phase space integral. For details see Appendix B
of [10].

V. RESULTS

We now present numerical results for the quantities de-
scribed in Sec. II. We perform all the computations in the
isothermal regime: see Sec. VI for further discussion of this
assumption.

A. Isospin chemical potential

To calculate linear-response isospin equilibration proper-
ties such as the relaxation rate or bulk viscosity one needs to
perturb around the equilibrium state, i.e., the state in which
the net rate of isospin creation is zero. As noted in Sec. I, at
nonzero temperature this requires a nonzero isospin chemical
potential, μ

eq
I [Eq. (1)]. Its value is negative because thermal

corrections enhance electron capture more than neutron de-
cay, so to restore the balance between these rates we need
a chemical potential that reduces the proton fraction: this
suppresses electron capture by reducing the proton population
and enhances neutron decay by adding more occupied neutron
states.

In Fig. 1 we show how −μ
eq
I varies with density and

temperature for our two exemplary equations of state, IUF and
QMC-RMF3. The plot shows contours labeled by their value
of −μ

eq
I . As discussed in Refs. [10,13] μ

eq
I tends to zero as

T → 0 which is why it was neglected in previous treatments
of bulk viscosity in neutron stars. However, as the temperature
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FIG. 2. Density and temperature dependence of the isospin relaxation time τ = 1/γI [Eq. (10)]. The shaded region shows where the
relaxation time is between 0.1 ms and 25 ms, i.e., comparable to the timescale of merger dynamics. The thick line shows the temperatures and
densities where the bulk viscosity of a 1 kHz density oscillation would reach its maximum, i.e., where γI = 2π × 1 kHz (Sec. II B).

rises above about 1 MeV, it becomes non-negligible. Note that
for IUF, which has a direct Urca threshold at nB ≈ 4n0, μ

eq
I is

enhanced near the threshold density. This is because thermal
blurring of the Fermi surfaces becomes more important close
to threshold, and opens up phase space for the electron capture
process more than it does for neutron decay [10,13]; this
imbalance is the reason for a nonzero μ

eq
I .

B. Isospin relaxation rate

Figure 2 shows how the isospin relaxation time τ = 1/γI

(10) depends on density and temperature for our two refer-
ence equations of state, IUF (left) and QMC-RMF3 (right).
We have shaded the range of density and temperature where
relaxation occurs on the timescale relevant for mergers, 0.1 ms
to 25 ms. The thick contour shows where γI = 2π × 1 kHz,
which as we will see below is where the bulk viscosity reaches
a resonant maximum for a 1 kHz oscillation. If there is mate-
rial in a merger that lies in this density and temperature range
and obeys our assumptions (such as neutrino transparency),
then the relaxation of its proton fraction occurs on a timescale
that is comparable to that of the merger dynamics, indicating
that the relaxation process should be included in simulations.

In regions where the equilibration time is much smaller
than 0.1 ms equilibration happens so fast that one could
use the approximation that the matter is always in isospin
equilibrium. In regions where the equilibration time is much
longer than 20 ms the equilibration process is slow, and the
proton fraction of each fluid element could be approximated as
being constant. Previous simulations of neutron star mergers
have either investigated these extreme cases of instantaneous
equilibration, or frozen composition [28] or only partly imple-
mented the low density and low-temperature approximation to
the Urca rates studied here [5,29–32].

Recently a first attempt has been made [11] to include both
direct and modified Urca processes, calculated in the Fermi
surface approximation, in the simulation. It was found that

Urca processes affect the proton fraction of the fluid elements
on the timescale of the merger dynamics.

For the IUF equation of state there is a noticeable feature
in the relaxation time plot: relaxation becomes faster when
the density reaches around 4n0. This is because IUF has a
direct Urca threshold at this density. At densities above this
threshold more phase space opens up and Urca rates, at a given
temperature, are much faster than they are at densities below
the threshold. Below the threshold density, the relaxation time
is comparable to the merger timescale at temperatures of or-
der 2 to 4 MeV. Above the threshold density, the relaxation
time is comparable to the merger timescale at temperatures
below 2 MeV.

For QMC-RMF3, the relaxation time depends only weakly
on density. This is because there is no direct Urca threshold.
Across the whole density range that we studied β equilibrium
is determined by a balance between neutron decay (dominated
by modified Urca) and electron capture (dominated by direct
Urca) [10,13]. Consequently, the region where the relaxation
time is comparable to the merger timescale extends across the
whole density range that we computed, for temperatures in the
MeV-range.

Assuming that our reference equations of state (EOSs) are
representative, Fig. 2 implies that if neutrinoless homoge-
neous matter is present in mergers then regions at T � 5 MeV
will likely be driven out of isospin equilibrium and regions at
T ≈ 2 to 5 MeV (the exact range depending on the EoS) will
equilibrate on the timescale of the merger.

C. Bulk viscosity and damping time

In Fig. 3 we show the density and temperature dependence
of the static (zero-frequency) bulk viscosity ζ0 Eq. (21). The
plot shows contours of log10(ζ0) where ζ0 is in cgs units
(g cm−1 s−1). The static bulk viscosity depends inversely on
the relaxation rate, so it drops as the temperature rises, and
at low temperatures we also see the effects of the direct Urca
threshold at nB ≈ 4n0, as in Fig. 2.
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FIG. 3. Static (zero-frequency) bulk viscosity (21) for the IUF (left) and QMC-RMF3 (right) equations of state. The static bulk viscosity
drops as temperature rises because it is inversely proportional to the relaxation rate.

From the isospin relaxation rate and the static bulk vis-
cosity one can reconstruct the frequency-dependent bulk
viscosity [Eq. (20)]. Since density oscillations in neutron star
mergers typically have frequencies in the kHz range, Fig. 4
shows the density and temperature dependence of bulk vis-
cosity at angular frequency ω = 2π × kHz.

As described in Sec. II B, we expect the bulk viscosity
to reach a resonant maximum when the isospin relaxation
rate γI (nB, T ) coincides with the angular frequency ω of
the density oscillation. The relaxation rate rises quickly with
temperature since higher temperature opens up more phase
space near the Fermi surfaces. We therefore expect the bulk
viscosity to achieve its maximum value at the temperature
where γI (nB, T ) ≈ ω. From Fig. 2 we see that for a 1 kHz
density oscillation that temperature is around 5 MeV. This
explains what we see in Fig. 4: the contours run roughly
horizontally, with the bulk viscosity reaching a maximum at
T ≈ 5 MeV. At lower temperatures the system equilibrates so
slowly that isospin is almost conserved: the proton fraction

remains constant, and the system has a low bulk viscosity.
At higher temperatures where γI 	 ω the system equilibrates
so quickly that there is little phase lag between pressure and
density, and the bulk viscosity tends towards its static value ζ0

[Eq. (21)].
For the IUF EoS one can see the effect of the direct Urca

threshold at nB ≈ 4n0: below that density relaxation is slower
(due to a lack of kinematically allowed phase space), and so a
higher temperature is needed to bring the relaxation rate up to
1 kHz.

Comparing these to previous calculations that used nonrel-
ativistic dispersion relations for the nucleons (e.g., Refs. [22],
[9]), our resonance peaks are shifted to slightly higher tem-
peratures for given densities. This is because in our models of
nuclear matter the in-medium effective masses of the nucleons
are much lower than the vacuum masses so the relativistic
corrections are significant, decreasing the Urca rates and re-
laxation rates [10,14], which means higher temperatures are
required to achieve resonance (γI = ω).

FIG. 4. Bulk viscosity at frequency f = 1 kHz for the IUF (left) and QMC-RMF3 (right) equations of state. In both cases the resonant
peak occurs where the relaxation rate passes through ω = 2π × 1 kHz, which occurs at T ≈ 5 MeV.
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FIG. 5. Damping time for density oscillations of frequency 1 kHz as a function of density and temperature, for the IUF (left) and QMC-
RMF3 (right) equations of state.

One physical manifestation of bulk viscosity is the
damping of density oscillations. The damping time for an
oscillation of angular frequency ω is [9]

τdamp = κ−1

ω2ζ (ω)
, (32)

where the incompressibility is

κ−1 ≡ nB
∂ p

∂nB

∣∣∣∣
xI ,T

. (33)

Since this paper focuses on isothermal density oscillations we
use the isothermal compressibility.

Figure 5 shows how the damping time depends on den-
sity and temperature for IUF (left) and QMC-RMF3 (right).
We expect that in density and temperature regions where
the damping time is in the tens of milliseconds range, bulk
viscosity will have a significant impact on density oscillations
during the merger.

The key features of this plot are:
(1) the temperature dependence of the damping time is

mainly determined by that of the bulk viscosity, so the damp-
ing time is shortest when the bulk viscosity (Fig. 4) is largest,
i.e., at T ≈ 5 MeV;

(2) the density dependence of the damping time also
roughly follows that of the bulk viscosity, but damping is
slowed at high densities by the growth of the incompressibil-
ity: oscillations then store more energy and so take longer to
decay;

(3) the shortest damping times are short enough so that bulk
viscous damping is relevant on merger timescales.

These results are comparable to those obtained in Ref. [14],
which used different models for nuclear matter and used
the low-temperature approximation for beta equilibrium,
μ

eq
I = 0.

The data for the plots shown in this section are available
from Ref. [33]. The code used to develop the QMC-RMF3
model and to solve the mean-field equations for both our
models of nuclear matter can be found in Ref. [34]. The code

for calculating Urca rates and isospin equilibration properties
will be made public as part of the MUSES framework [35].

VI. CONCLUSIONS

We have analyzed the isospin equilibration properties of
neutrinoless nuclear (npe) matter in the temperature and den-
sity range that is relevant to neutron star mergers. Our analysis
includes corrections to the isospin equilibrium condition μn =
μp + μe which arise at T � 1 MeV. We find that at tem-
peratures of order 2 to 5 MeV the isospin relaxation time,
i.e., the timescale on which the proton fraction relaxes to
its equilibrium value, is comparable to the timescale of the
density oscillations that occur immediately after the merger.
At lower temperatures, isospin relaxes more slowly, and at
higher temperatures, it relaxes faster. For a 1 kHz density
oscillation this leads to a resonant peak in the bulk vis-
cosity at T ≈ 5 MeV, when the relaxation rate matches the
frequency. This causes damping of such a density oscilla-
tion on the timescale of the merger, providing evidence that
when neutrinos are treated more rigorously it may still be
important to include isospin relaxation dynamics in merger
simulations.

There are many directions in which further work is needed
to elucidate the dynamics of isospin under merger conditions:

(1) Our most significant assumption is neutrino trans-
parency, which is valid in the limit of a long mean free
path for the neutrinos. The behavior of neutrinos in mergers
is more complicated, with an energy-dependent mean free
path that interpolates between the transparent and trapped
regimes, requiring explicit treatment of neutrino transport [5].
Our next step will be to use the Urca rate calculation meth-
ods developed here to provide state-of-the-art calculations of
neutrino-energy-dependent rates, suitable for use in transport
computations.

(2) Our calculation of the n � p rate is based on the
standard separation between the direct Urca and modified
Urca contributions which are added to give the total rate. Our
treatment of direct Urca is full and rigorous, including the
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entire weak interaction matrix element and integrating the rate
over the whole phase space, but the standard expression for the
modified Urca rate uses crude approximations, and improving
on it is a natural next step [36].

(3) We performed our calculation in the isothermal regime,
assuming that the thermal relaxation rate is faster than the
dynamical timescales. It would be straightforward to perform
a parallel calculation in the adiabatic regime, but previous
analyses [13,14] have found that this does not change the
results significantly. This is because the temperatures involved
are lower than the Fermi energies of the relevant particles, so
the entropy contribution to the pressure is generally a small
correction. In reality thermal conduction in mergers is likely
to interpolate between the isothermal and adiabatic regimes,
again because of the role of neutrinos, which can have a long
mean free path depending on their energy and the ambient
density and temperature [2], so they likely dominate the ther-
mal conductivity.

(4) Our calculation of bulk viscosity and the damping time
for oscillations assumes linear response (“subthermal bulk
viscosity”) where the amplitude of the oscillations is small
in the sense that the departure of the chemical potentials from
equilibrium is much less than the temperature. Simulations
indicate that in the first few milliseconds after merger there are
large-amplitude oscillations, for which the suprathermal bulk
viscosity [37,38] would be relevant. We used linear response
to obtain suggestive indicators of the potential importance of
isospin relaxation dynamics in mergers. As shown in [11], a
direct implementation of the Urca rate equation (6) in a merger
simulation code will naturally incorporate all physical effects,
including the subthermal and suprathermal bulk viscosity.

(5) At merger densities we expect nuclear matter to con-
tain muons, which we neglected in this work. Including
them opens up additional equilibration channels (n � pμ

and purely leptonic processes) leading to a more complicated
picture with multiple relaxation times [14].

(6) A natural next step is to compare our results with
the isospin equilibration properties of more exotic forms of
matter, such as hyperonic [39] or quark matter [20,40–43].

In conclusion, this paper provides the most complete
treatment to date of the physics of isospin equilibration
in homogeneous neutrinoless nuclear matter, in the den-
sity and temperature range that is relevant to neutron star
mergers. Our calculation of the isospin relaxation rate and
related phenomena such as bulk viscosity and the damp-
ing of density oscillations provides a guideline for merger
simulators to assess which approximations for isospin equi-
libration are appropriate at a given density and temperature,
and when an explicit implementation of the relaxation process
is required.
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APPENDIX A: COLD β EQUILIBRIUM

Previous calculations of the bulk viscosity of neutrinoless
matter assumed that isospin equilibrium occurs when μn =
μp + μe, i.e., μ

eq
I = 0 for any nB, T . As we have described,

this is only valid when the temperature is below about 1 MeV.
In this low-temperature regime the isospin creation rate
depends only on �μI ,

�I = d�

dμI
�μI = d�

dμI

(
∂μI

∂xI

∣∣∣∣
nB

�xI + ∂μI

∂nB

∣∣∣∣
xI

�nB

)
. (A1)

To make contact with earlier results we define

χnB ≡ −nB
∂μI

∂nB

∣∣∣∣
xI

(A2)

and

χxI ≡ 1

n̄B

∂μI

∂xI

∣∣∣∣
nB

. (A3)

Then comparing Eq. (A1) with Eqs. (8) and (9) we can write
γB in terms of γI ,

γI = −χxI

d�

dμI
,

γB = 1

n̄B

χnB

χxI

γI . (A4)

Using the thermodynamic identity (B1) we can then write the
bulk viscosity (20) as

ζcold = χ2
nB

χxI

γI

γ 2
I + ω2

. (A5)

This agrees with previous calculations such as Eq. (128) of
Ref. [21].

APPENDIX B: A RELEVANT THERMODYNAMIC
IDENTITY

In this Appendix we show that

1

nB

∂ p

∂xI

∣∣∣∣
nB,T

= nB
∂μI

∂nB

∣∣∣∣
xI ,T

. (B1)

We start by observing that

1

nB

∂ p

∂xI

∣∣∣∣
nB,T

= ∂ p

∂nI

∣∣∣∣
nB,T

. (B2)

Using the thermodynamic expression for pressure, p =
μBnB + μI nI + T s − ε(nB, nI , s), and the relation

∂ε

∂nI

∣∣∣∣
nB,T

= ∂ε

∂nI

∣∣∣∣
nB,s

+ ∂s

∂nI

∣∣∣∣
nB,T

∂ε

∂s

∣∣∣∣
nB,nI

= μI + T
∂s

∂nI

∣∣∣∣
nB,T

, (B3)

it follows that

∂ p

∂nI

∣∣∣∣
nB,T

= nB
∂μB

∂nI

∣∣∣∣
nB,T

+ nI
∂μI

∂nI

∣∣∣∣
nB,T

. (B4)
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We now use the Maxwell relation

∂μB

∂nI

∣∣∣∣
nB,T

= ∂2ε

∂nB∂nI

∣∣∣∣
T

= ∂μI

∂nB

∣∣∣∣
nI ,T

, (B5)

where derivatives with respect to nB are taken
at constant nI and vice versa, so Eq. (B4)

becomes

∂ p

∂nI

∣∣∣∣
nB,T

= nB
∂μI

∂nB

∣∣∣∣
nI ,T

+ nI
∂μI

∂nI

∣∣∣∣
nB,T

= nB
∂μI

∂nB

∣∣∣∣
xI ,T

, (B6)

which proves Eq. (B2) and therefore Eq. (B1)
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