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Chiral condensate and the equation of state at nonzero baryon density from the hadron
resonance gas model with a repulsive mean field
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We study the QCD equation of state and the chiral condensate using the hadron resonance gas model with
repulsive mean-field interactions. We find that the repulsive interactions improve the agreement with the lattice
results on the derivatives of the pressure with respect to the baryon chemical potential up to eighth order. From
the temperature dependence of the chiral condensate we estimate the crossover temperature as a function of
baryon chemical potential, Tpc(μB ). We find that the chiral crossover line starts to deviate significantly from
the chemical freeze-out line already for μB > 400 MeV. Furthermore, we find that the chiral pseudocritical
line can be parametrized as Tpc(μB )/Tpc(0) = 1 − κ2[μB/Tpc(0)]2 − κ4[μB/Tpc(0)]4 with κ2 = 0.0150(2) and
κ4 = 3.1(6)×10−5, which are in agreement with lattice QCD results for small values of μB. For the first time we
find a tiny but nonzero value of κ4 in our study.

DOI: 10.1103/PhysRevC.109.055206

I. INTRODUCTION

Understanding QCD matter at nonzero temperatures and
baryon densities presents several challenges on the the-
ory side. Apart from asymptotically large temperatures and
baryon densities when perturbation theory can make predic-
tions for thermodynamics, the problem is nonperturbative.
For zero baryon density, lattice QCD methods have provided
continuum extrapolated results for physical quark masses for
many thermodynamic quantities. However, due to the infa-
mous sign problem, the lattice Monte Carlo techniques based
on the method of important sampling break down at finite
densities. Attempts to extend the lattice QCD calculations to
nonzero baryon densities through Taylor expansion in baryon
chemical potential, μB, or the imaginary chemical potential
approach has allowed us to understand QCD thermodynamics
μB < 2.5 T [1–4], which can be extended in a certain temper-
ature regime to μB/T ≈ 3.5 [5].

Below the chiral crossover temperature, QCD thermo-
dynamics can be fairly well understood using the hadron
resonance gas (HRG) model. The main idea of this model
is that the interactions between hadrons can be taken into
account through hadronic resonances and the interacting gas
of hadrons can be replaced by a gas of noninteracting hadrons
and hadronic resonances treated as stable particles. This
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approach can be justified within the framework of relativistic
virial expansion [6,7] and the comparison between the HRG
model results and the lattice data [8–13]. Indeed, the most
recent lattice QCD calculations of the QCD pressure and
the second order fluctuations and correlations of conserved
charges agree well with the the HRG model results [2,14–18].
For some quantities like baryon-strangeness or baryon-charm
correlations, it is important to include additional hadron states
that are not listed by the Particle Data Group (PDG) but
are predicted by lattice QCD and quark models [18–21]. For
strangeness-baryon number correlation, this idea is further
supported by the calculation within the relativistic virial ex-
pansion with state-of-the-art phase shift analysis [22].

The temperature dependence of the chiral condensate has
been studied within the HRG model [23–27], and attempts to
use the HRG model to estimate the chiral crossover temper-
ature at small baryon density have been made recently [27].
There is a widespread expectation that the chiral crossover
may become a true phase transition at large baryon density,
namely that the crossover will turn into a first-order phase
transition at μB = μCEP

B corresponding to the critical end-
point (CEP). Lattice QCD results strongly disfavor μCEP

B <

400 MeV for a range of temperatures around 0.85Tpc, while
functional renormalization group studies estimate μCEP

B to be
even larger, around 635 MeV [28] at T = 107 MeV. There-
fore, it would be interesting to estimate the chiral crossover
temperature at larger values of baryon density using the HRG
model framework.

The agreement between lattice QCD and the HRG model
results no longer holds for higher-order fluctuations of con-
served charges [2–4,29]. This may highlight the importance
of the inclusion of nonresonant attractive interactions as well
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as repulsive interactions among the baryons, which could
become very important at higher baryon densities. The most
common approach to include repulsive interactions within the
HRG model is through the inclusion of a hard-core repulsive
excluded volume for hadrons [30–37]. Recently these models
were refined to include both repulsive and attractive nonreso-
nant interactions via a van der Waals–like potential [38–42].
Another approach to include the repulsive interactions is
through the mean-field approximation. Here the strength of
the repulsive interaction is proportional to the baryon density
[43–45]. It has been shown that this model can explain the
deviations from the HRG model seen in the lattice QCD
calculations of higher-order derivatives of the QCD pressure
with respect to the baryon chemical potential [46]. Following
this work the use of the HRG model with repulsive mean-
field interactions was explored to explain the lattice results
on the QCD equation of state [47,48] and fluctuations and
correlations of conserved charges [49,50].

The aim of this paper is to study the temperature and the
μB dependence of the chiral condensate, and using this to
estimate the chiral crossover temperature as a function of μB.
We will also revisit the description of the higher-order baryon
number fluctuations and the QCD equation of state within the
HRG model with repulsive mean-field interactions in light
of the newest lattice QCD results. The paper is organized
as follows: In the next section, we review the HRG model
with repulsive interactions. In that section we also present the
comparison of this model with the state-of-the-art lattice QCD
results on fluctuations of conserved charges. In Sec. III we
discuss the calculation of the chiral condensate as a function
of temperature and baryon chemical potential. In Sec. IV we
present our results, i.e., the estimate of the chiral crossover
temperature as a function of baryon chemical potential, and
the curvature of the pseudocritical line. In Sec. V, we discuss
the temperature and baryon density dependence of the speed
of sound for the strangeness neutral system. Finally, our con-
clusions are presented in Sec. VI. In the Appendices, we give
some technical details of the calculations.

II. INCLUDING REPULSIVE BARYON INTERACTIONS
WITHIN THE HRG MODEL

It is well known from nucleon-nucleon scattering experi-
ments that there are repulsive interactions between nucleons
at short distances (or equivalently at high energies). From
the lattice results we know that this is also true for other
baryons [51]. These interactions will become important at
large baryon density. Since we are interested in extending the
HRG model to high baryon density the effect of the repulsive
baryon-baryon interactions has to be included. The repulsive
baryon-baryon interactions could play a role also at zero or
small baryon densities as the temperature increases toward
Tpc, since the abundance of baryons and antibaryons increases.
But from previous analysis we know that the corresponding
effect is small for the pressure and energy density [47]. How-
ever, higher-order derivatives of the pressure with respect to
the baryon chemical potential are sensitive to the effect of the
repulsive interactions even at zero baryon density [46]. This is
because these derivatives carry information about the physics

at high baryon density even when evaluated at zero baryon
chemical potential. Comparison of HRG calculations with the
lattice results on higher-order derivatives of the pressure with
respect to baryon chemical potential allows one to constrain
the contribution of the repulsive interactions. As already men-
tioned in the introduction in this work we use the repulsive
mean-field to include the effect of repulsive baryon-baryon
interactions in the HRG model.

The pressure for an interacting ensemble of baryons and
anti-baryons with densities nb and nb̄ respectively can be rep-
resented within the repulsive mean-field model as [48,49]

PB{B̄}
int = T

∑
i∈B{B̄}

∫
gi

d3 p

(2π )3
ln[1 + e−β(Ei−μeff )] + K

2
n2

b{b̄}.

(1)
Here the effective chemical potential for the ith species is
defined as μeff = BiμB − Knb{b̄}, with Bi being the baryon
number. Bi = +1 for baryons, and Bi = −1 for antibaryons
respectively, and β = 1/T , where T is the temperature of this
system. The number densities for baryons and antibaryons
can be solved self-consistently from the following pair of
equations:

nb =
∑
i∈B

∫
gi

d3 p

(2π )3

1

eβ(Ei−μB+Knb) + 1
and

nb̄ =
∑
i∈B̄

∫
gi

d3 p

(2π )3

1

eβ(Ei+μB+Knb̄) + 1
. (2)

The total pressure within the HRG model is the sum of
the contributions from this interacting ensemble of the
(anti)baryons and the noninteracting ensemble of mesons. We
include the quark model (QM) predicted states [52,53] in
addition to the Particle Data Group (PDG) listed hadrons up to
mass 3 GeV following [54,55]. The PDG list was made con-
sidering all the states, even the ones with large uncertainties,
and to avoid double counting the QM states are replaced by
the experimentally determined states if they have the same
mass and quantum numbers. We denote this HRG model
with the extended list of particles as the QMHRG model. For
μB = 0 we can use the Boltzmann approximation for baryons
and antibaryons due to their large masses. Therefore, for the
pressure and the number density we could write the following
set of equations [46]:

Pint = T (nb + nb̄) + K

2

(
n2

b + n2
b̄

)
and

nb{b̄} =
∑

i=B{B̄}

∫
gi

d3 p

(2π )3
e−β(Ei−μeff ) (3)

This approximation greatly simplifies the calculations of the
baryon number susceptibilities, which are defined as

χn
B = ∂n[P(μB/T )/T 4]

∂ (μB/T )n
, n = 2, 4, 6, 8. (4)

The explicit expressions of χB
n are presented in Appendix A.

In this work, we have included the partial pressures of
the QMHRG states with repulsive interactions among the
(anti)baryons at the mean-field level. Typically in the earlier
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FIG. 1. The second (top left), fourth (top right), sixth (bottom left), and eighth (bottom right) order baryon number fluctuations results
compared between ideal QMHRG (red line)and mean-field QMHRG (blue line) models and lattice QCD results with physical quark masses.
Lattice results for Nτ = 12 and Nτ = 8 are shown as red and green points respectively with the squares representing HotQCD [57] results and
the circles corresponding to Wuppertal-Budapest (WB) results [2]. The gray and yellow bands represent the fluctuation data in the continuum
limit from HotQCD [57] and WB [58] Collaborations.

works the mean-field coefficient has been chosen to be K =
450 MeV fm3 which is equivalent to 56.25 GeV−2 [46,56]
from phenomenological considerations. Here we suggest a
new way of estimating this constant. Our approach is moti-
vated by the fact that we have high precision lattice QCD data
for χB

2 and χB
4 extrapolated to the continuum limit [4,18,29].

Therefore, we adjust the value of K to reproduce these lattice
QCD results. In Fig. 1 we show the comparison of our results
for the second- and fourth-order baryon number fluctuations
with the corresponding lattice QCD results. The lattice QCD
results on χB

2 results disagree with the QMHRG model re-
sults for T > 150 MeV, while the lattice QCD results for
χB

4 start to disagree with QMHRG model results already for
T > 140 MeV, when no repulsive interactions are taken into
account. By including repulsive mean-field interactions within
the QMHRG model with K = 33 GeV−2, we obtain a good
agreement with the lattice QCD results for both χB

2 and χB
4

up to T ≈ 155 MeV. In addition there are lattice QCD results
for Nτ = 8 and Nτ = 12 from the HotQCD Collaboration [57]

and Nτ = 12 results from the Wuppertal-Budapest Collabora-
tion [2] for spatial volume V 1/3T = 4. Here Nτ is the temporal
lattice extent that is related to the temperature and the lattice
spacing a, as Nτ = 1/(aT ). Very recently continuum extrapo-
lated lattice QCD results on for sixth- and eighth-order baryon
number fluctuations were released for small spatial volume
V 1/3T = 2 [58].

In the lower panels of Fig. 1 we show the comparison
of the QMHRG model results with the corresponding lattice
QCD results for χB

6 and χB
8 . We see from the figure that

the QMHRG model results with repulsive mean-field and
K = 33 GeV−2 agree well with the lattice QCD results for
χB

6 and χB
8 within errors. The agreement with Wuppertal-

Budapest lattice results is especially remarkable as these
results have relatively small errors. These lattice QCD results
clearly disagree with the QMHRG model without repulsive
interactions; see Fig. 1 (lower panels). We thus conclude that,
in order to apply the QMHRG model at large values of baryon
number density to describe QCD, repulsive baryon-baryon
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interactions have to be taken into account. Here we also note
that based on the lattice QCD estimates of the charm quark
pressure [59,60] we do not expect significant contribution
from quark degrees of freedom to thermodynamics quanti-
ties below Tpc. Therefore, thermodynamic estimates based on
purely hadronic models will also agree with the lattice data up
to Tpc.

In the above discussion, we assumed that both baryons
and baryon resonances contribute equally to the mean field.
This is certainly a very simplistic assumption. One may ex-
pect that not all baryon resonances contribute to the mean
field at the same level because of their short lifetimes. As an
extreme assumption, we can assume that only ground state
baryons contribute to the repulsive mean field. As shown in
Appendix A, we can describe the lattice results on χB

2 , χB
4 , χB

6 ,
and χB

8 also in this case if the parameter K is increased from
K = 33 GeV−2 to K = 100 GeV−2. We also calculated the
QCD pressure and energy density using the QMHRG model
with repulsive mean-field interaction. We find that repulsive
mean-field interaction has a significant effect on the pressure
and energy density for μB/T � 2, and its inclusion improves
the agreement with the lattice QCD data. This is shown in
the Appendix B. We will return to the calculations of the
equations of state within the QMHRG model with repulsive
interactions in Sec. IV D for a strangeness neutral system.

III. CHIRAL CONDENSATE IN THE MEAN-FIELD
QMHRG MODEL

The light quark condensate at nonzero temperature and
density is defined as

〈ψ̄ψ〉l,T = 〈ψ̄ψ〉l,0 + ∂P

∂ml
, (5)

where ml is the light quark mass and P is the pressure of
the thermodynamic medium described by QCD. We work
with two degenerate light quarks, mu = md = ml . In the HRG
model, the derivatives of the pressure with respect to the
light quark mass can be written as the mass derivative of
the interacting baryonic gas pressure and the ideal mesonic
gas pressure. Using Eqs. (1) and (2) the derivative of the
interacting baryonic pressure in Eq. (1) can be further written
as (

∂Pint

∂ml

)
= −

∑
i=B

Mi
∂Mi

∂ml

∫
gi

d3 p

(2π )3

f b
i

Ei

−
∑
i=B̄

Mi
∂Mi

∂ml

∫
gi

d3 p

(2π )3

f b̄
i

Ei
. (6)

Here f b{b̄}
i is the Fermi-Dirac distribution function corre-

sponding to the baryons and antibaryons with the modified
chemical potential μeff = Biμi − Knb{b̄}. In the limit K = 0
one obtains the ideal gas result of Ref. [27]. The calculations
of the mass derivative of the mesonic pressure are the same as
in Ref. [27].

The nontrivial input needed for the calculation of the chiral
condensate is the dependence of the hadron and resonance
masses on the light quark mass ml . In this work, we have

estimated these mass derivatives following Ref. [27]. The
uncertainties in the derivatives of the hadron masses with
respect to ml have been estimated in Ref. [27], and we propa-
gate these uncertainties when evaluating the temperature and
μB dependence of the chiral condensate. As in our previous
work, we use the renormalized chiral condensate defined by
the HotQCD Collaboration [61] as

	l
R = d + msr

4
1 [〈ψ̄ψ〉l,T − 〈ψ̄ψ〉l,0], (7)

where the parameter r1 is derived from the static quark po-
tential [62] and d = r4

1ms(limml →0〈ψ̄ψ〉l,0)R. In the chiral
limit, the light quark condensate has only a multiplica-
tive renormalization factor. The superscript R denotes the
renormalized quantity. Taking into account the fact that
(limml →0〈ψ̄ψ〉l,0)R = 2
 and using the values of the low
energy constant of SU(2) chiral perturbation theory (χPT),

1/3 = 272(5) MeV and ms = 92.2(1.0) MeV in the MS
scheme at μ = 2 GeV from the FLAG 2022 review for the
2+1 flavor case [63], as well as r1 = 0.3106 fm [64], we
obtain the value of d = 0.022 791.

We estimate the chiral crossover temperature, Tpc as the
temperature where the renormalized chiral condensate drops
to half of its vacuum value. From the lattice QCD calcula-
tions at μB = 0 we know that this definition of the chiral
crossover temperature agrees well with the usual definition of
the chiral crossover temperature, defined as the peak position
of the chiral susceptibility [61]. In our previous work, we
showed that, using this definition of Tpc and the temperature
dependence of 	R

l within the QMHRG model, one obtains
a value of Tpc at μB = 0 as well as for small values of μB

that is only a few MeV larger than the lattice results [27]. We
expect that the above criterion to estimate Tpc should work at
larger values of μB as long as we are far away from a true
phase transition. Therefore, in this work, we assume that the
chiral transition remains a crossover transition also for large
values of μB and estimate the chiral crossover temperature
using the QMHRG model and the above considerations. This
is reasonable since there is no definite indication from lattice
QCD for a true phase transition at large μB, and based on
symmetry arguments the transition could be a crossover even
for very large values of μB [65].

IV. RESULTS ON THE CHIRAL CROSSOVER LINE

A. Renormalized chiral condensate in the mean-field formalism

One of the goals of this study is to study the dependence of
the renormalized chiral condensate on temperature and baryon
chemical potentials for a large range of μB, including values
not accessible in lattice QCD calculations. With the already
estimated value of the mean-field parameter K = 33 GeV−2,
we have evaluated 	l

R as a function of μB for different temper-
atures, shown in Fig. 2. We have also shown the 	l

R calculated
in the noninteracting QMHRG model for comparison. In the
figure, the uncertainty in the values of renormalized chiral
condensate obtained in the QMHRG model with repulsive
mean-field interactions due to the uncertainties of the quark
mass derivatives is represented as the width of the lines. For
the noninteracting QMHRG model, we do not show the cor-
responding uncertainties for better visibility. For temperatures
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FIG. 2. Left: The μB dependence of the renormalized chiral condensate at different temperatures T = 25–150 MeV. The bands are results
from the QMHRG model with repulsive mean-field interaction and the lines with points are the results from the ideal QMHRG model. Right:
The variation of the 	l

R with net-baryon number density normalized by the nuclear saturation density, n0 = 0.16 fm−3, for the same range of
temperatures. The widths of the bands represent the uncertainty of the chiral condensate due to the uncertainties in the quark mass derivatives
of the hadron masses; see text for details.

T < 100 MeV, we observe a prominent plateau in the value
of 	l

R for a range of baryon chemical potentials, the extent
of which reduces with increasing temperature. Furthermore,
we observe that the renormalized condensate falls faster with
increasing μB from the plateau region for the noninteracting
QMHRG model compared to the QMHRG model with re-
pulsive mean-field interactions. Thus the repulsive mean-field
pushes the transition point toward larger values of μB. As
stated above we use the condition of the chiral condensate
dropping to half of its vacuum values to estimate the crossover
point. Thus using the values of μB where 	R

l is at half of
its vacuum value for each temperature we obtain the estimate
of crossover line as a function of baryon chemical potential,
Tpc(μB).

We are also interested in estimating the chiral crossover
temperature as a function of the net baryon density, nB. There-
fore, we have also studied the dependence of 	R

l on nB. The
right panel of Fig. 2 shows the change in 	l

R at different tem-
peratures as a function of net baryon number density nB scaled
by the nuclear saturation density n0 = 0.16 fm−3. At a fixed
temperature, 	l

R decreases as the net baryon density increases
because baryons significantly contribute to the reduction of
the chiral condensate. From this figure, we observe that the
density corresponding to the chiral crossover transition for
T = 100 MeV slightly exceeds that for T = 25 MeV, for
example. This seemingly contradicts the usual expectation
that nB decreases as T increases along the chiral crossover
line. This is an artifact of the hadron resonance gas model at
very low temperatures, as discussed in Sec. IV C.

B. Curvature of the crossover line in the repulsive
mean-field QMHRG model

As discussed in the previous subsection, the tem-
perature at which the observable 	l

R falls to half its
zero-temperature value is used as an estimate of the

pseudocritical temperature Tpc [27] for each value of μB.
The extracted pseudocritical temperature as a function of μB,
Tpc(μB), is shown as a function of μB in the left panel of Fig. 3
using QMHRG model for K = 0 and K = 33 GeV−2. The
uncertainty in the value of 	R

l results in an uncertainty in the
value of the crossover temperature, which, however, is quite
small, about the size of the symbols in Fig. 3 or even smaller.
In the same figure, the vertical axis is scaled by the estimated
pseudocritical temperatures at zero baryon density, which are
Tpc(μB = 0) = 161.2(1.7) MeV for the ideal case [27] and
Tpc(μB = 0) = 161.5(1.6) MeV for the repulsive QMHRG
model with the mean-field coefficient K = 33 GeV−2. Our
analysis is restricted to μB � 750 MeV for reasons explained
below. As one can see from the figure, the effects of repulsive
baryon interactions start to have an impact on the value of Tpc

for μB > 300 MeV, pushing the chiral crossover temperature
toward larger values and leading to a better agreement with
the lattice QCD results on the curvature of the pseudocrit-
ical line. On the other hand for μB < 300 MeV the effects
of the repulsive mean-fields are small, and good agreement
for the curvature of the pseudocritical line is obtained using
QMHRG model with or without the repulsive mean fields
included.

In Fig. 3 we also show the recent parametrization of
the chemical freeze-out line in heavy ion collisions from
Ref. [67]. The freeze-out line is normalized by the freeze-
out temperature Tf = 158 MeV at μB = 0 [67]. For μB <

300 MeV the freeze-out line agrees well with the pseud-
ocritical line. However, we observe significant differences
between the pseudocritical line and the chemical freeze-
out line for μB > 400 MeV, which become larger as the
value of the baryon chemical potential increases. Namely, the
chiral crossover temperature is always larger than the chem-
ical freeze-out temperature. For μB = 400 MeV, the chiral
crossover temperature is more than 8 MeV larger than the
freeze-out temperature while at μB = 750 MeV it is more
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FIG. 3. Left: The pseudocritical line calculated from the QMHRG model is compared with the lattice QCD results from the HotQCD
Collaboration (light blue) from Ref. [66]. The ideal gas (K = 0) results are shown as a line and results including the mean-field repulsion
(K = 33) are shown as open symbols. These are compared with the freeze-out line (magenta) using the parametrization in Ref. [67]. The
gray line represents the fit performed by us to obtain the pseudocritical line; see text for details. Right: The net-baryon density in units of
n0 = 0.16 fm−3 is shown as function of μB along the pseudocritical line. The horizontal gray band represents the variance in the nB/n0, which
is due to the variation of Tpc arising from the uncertainties in the sigma terms. We also show the variation of the net baryon density along the
freeze-out line. The color scheme is the same as in the left panel.

than 20 MeV larger than the freeze-out temperature. Thus,
the systems produced in heavy ion collisions in the fixed
target mode of the beam energy scan (BES) program at the
Relativistic Heavy Ion Collider (RHIC) as well as in heavy
ion collisions at GSI are expected to undergo a significant
nonequilibrium chemical evolution in the hadronic phase un-
like the matter produced in heavy ion collisions at higher
center-of-mass energies, like the heavy ion collisions at the
Large Hadron Collider (LHC) and at RHIC in the collider
mode.

We next performed a fit to the obtained values of Tpc(μB)
with the following widely used ansatz:

Tpc(μB)

Tpc(0)
= 1 − κ2

(
μB

Tpc(0)

)2

− κ4

(
μB

Tpc(0)

)4

. (8)

It turns out that a good fit can be obtained by this ansatz
for μB � 750 MeV which results in the following val-
ues of the curvature coefficients: κ2 = 0.0150(2) and κ4 =
3.1(6)×10−5. The value of κ2 is consistent within errors
with the two most recent continuum estimates from lattice
QCD studies with physical masses, κ2 = 0.012(4) [66] and
κ2 = 0.0153(18) [68], as well as with the earlier lattice QCD
estimates [69–71]. For the first time, we could estimate a
nontrivial value of κ4 which is distinctly different from zero
given the estimated errors. Lattice QCD calculations report
a κ4 which is compatible with zero within errors [66,68].
The above estimate for the leading curvature coefficient is
somewhat smaller than the one obtained from the relativistic
nuclear mean-field model calculation, while κ4 has the oppo-
site sign [72]. Allowing for a nonzero value of κ6 does not
improve the quality of the fit, and only leads to much larger
errors in κ2 and κ4. Therefore, it is fair to say that, within our
accuracy, κ6 is consistent with zero.

C. Net-baryon density, energy density, and particle
composition along the pseudocritical line

The right panel of Fig. 3 shows the estimated values of net-
baryon density normalized by the nuclear saturation density
n0 as function of μB along the pseudocritical line in the T -μB

plane. The baryon density increases monotonically with μB as
expected, but for sufficiently large μB it reaches a maximum
and then decreases with a further increase in μB. This behavior
is clearly unphysical and therefore the applicability of the
HRG model is restricted for large values of μB. The maximum
in nB of 1.53(13)n0 is reached at μB = 700 MeV when K = 0
and at μB = 750 MeV for K = 33 GeV−2. Thus the inclusion
of repulsive mean-field interaction in the QMHRG model
calculation helps to extend the model to slightly larger values
of μB. However, our QMHRG model with a single repulsive
mean field is too simplistic and is not valid for very large
values of μB. The large value of nB obtained at relatively
small values of μB is due to the contribution from baryon
resonances. Since the chiral crossover temperature decreases
with increasing μB, the contribution from these states will
eventually decrease and the large value of the net-baryon
density near the crossover point should come from nucleons
and possibly their attractive interactions. But the simple HRG
model cannot describe this switchover. Thus for temperatures
close to the chiral crossover temperatures, the QMHRG model
is only applicable for μB < 750 MeV.

The nonmonotonic variation of nB with μB is also observed
in the Nambu–Jona-Lasinio model [73], where the mass-gap
equation determines the phase transition line, resulting in a
qualitatively similar trend. A similar maximum of the net-
baryon density as a function of μB was earlier observed in
a HRG motivated study along the freeze-out boundary in
Ref. [74], which was determined from the hadron yields at
different collision energies.
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FIG. 4. Left: Relative contributions to the energy density from mesons (blue) and baryons (red) along the pseudo-critical line compared
to the total energy density (gray) calculated in the mean-field QMHRG model. Right: The relative number densities of various baryon species
shown along the pseudo-critical line.

It is interesting to study the variation of energy density
along the pseudocritical line, which is shown in the left
panel of Fig. 4. One can see that the energy density along
the pseudocritical line slightly decreases with increasing
μB. The relative contribution to the energy density com-
ing from the baryon sector increases till μB = 650 MeV
as the baryon chemical potential increases, resulting in a
shift from a meson-dominated to a baryon-dominated sce-
nario, beyond μB = 350 MeV. A comparable phenomenon
can be observed in heavy-ion collisions, where a transition
from meson to baryon dominance during freeze-out takes
place at lower energies [75], where the net-baryon density is
larger.

Furthermore, we would like to understand the relative
abundances of different baryon species with increasing μB.
In the right panel of Fig. 4 we have shown the relative con-
tribution of different baryons and baryon resonances to the
net-baryon density as a function of μB along the pseudocritical
line. As the baryon chemical potential increases, the rela-
tive contribution of the nucleons also increases. The relative
contributions of the lowest lying strange baryons and of the
lowest 	 resonances do not change significantly with increas-
ing μB, either. While the net contribution from higher lying
resonances decreases with increasing μB, this contribution
remains significant up to μ = 750 MeV. Even for the largest
value of μB = 750 MeV, where our HRG model is applicable,
nucleons contribute less than 50% to the total net-baryon den-
sity. Thus the contribution of the baryon resonances remains
important even at large values of μB, and this contribution is
responsible for the relatively large values of nB. At the same
time, the treatment of the repulsive interactions for baryon res-
onances is quite simplistic. In future, a more refined QMHRG
mean-field model, which treats the repulsive interactions dif-
ferently in the nucleon, strange baryon, and baryon resonance
sectors will be needed to extend the reach of the QMHRG
model.

D. Strangeness neutrality and the chiral pseudocritical line

The system created in heavy ion collisions has zero net
strangeness, since the incoming nuclei do not contain strange
particles. Therefore, it is important to estimate the pseudocrit-
ical line for the conditions realized in heavy-ion experiments,
namely for zero net strangeness, nS = 0. At nonzero values
of μB, one needs to tune the strangeness chemical potential
μS to achieve zero net strangeness. We performed this tuning
to estimate the crossover temperature and the equation of
state within our QMHRG model. The values of μS needed
to achieve strangeness neutrality are shown in Appendix C.

In Fig. 5 (left) we show the crossover temperature in the
case of nS = 0 as a function of the baryon chemical potential,
while in Fig. 5 (right) we show the crossover temperature as
a function of the net-baryon number. For a comparison, we
also show our results for Tpc for the unconstrained, μS = 0
case in the same figure. We observe that imposing strangeness
neutrality pushes the crossover temperature to a slightly larger
values compared to the case of μS = 0 discussed in the previ-
ous subsections, whether or not one includes the effect of the
repulsive mean field. The effect of imposing strangeness neu-
trality on the crossover temperature is considerably smaller
than the effect of the repulsive interactions. Interestingly
enough, the effects of the repulsive interactions are not visible
on Tpc when plotted as a function of the net-baryon density.
This can seen from Fig. 5 (right). The clear difference between
the pseudocritical line and the freeze-out line is also apparent
for the zero net-strangeness case, cf. Fig. 5, especially when
the results are shown in the T -nB plane.

The maximum net-baryon number density that can be
reached within our model is slightly reduced compared to
the unconstrained, μS = 0 case to about 1.4n0 compared to
1.53n0 as obtained in the previous subsection. This is due to
the fact that a positive nonzero value of μS required by the
condition nS = 0 reduces the contribution of strange baryons
to the partition function.
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V. SPEED OF SOUND ALONG THE ISENTROPIC LINES

In heavy-ion experiments, the chemical freeze-out sur-
face is typically defined as a surface of constant entropy
per baryon density, denoted as s/nB [76]. Hence it is inter-
esting to study the evolution of the QCD matter formed in
heavy-ion collisions along the lines of constant s/nB. The
evolution of this matter is subject to several constraints, in-
cluding strangeness neutrality (nS = 0) and a fixed ratio of
net electric charge (nQ) to net-baryon number (nB) density
due to charge conservation. We study a particular case of
strangeness-neutral system with isospin symmetry which is
realized when nQ/nB = 0.5, corresponding to a nonzero μB

and μS but μQ = 0. It has been shown that the differences in
bulk thermodynamic observables that arise from deviations in

nQ/nB from the isospin-symmetric value of 0.5 are minimal
[29]. We have examined the isospin-symmetric scenario for a
range of entropy per baryon density values, s/nB = 15, 20, 30,
50, 100, and 400. These values effectively cover the range of
center-of-mass energies explored in the RHIC BES program
in the collider mode [29]. The left panel of Fig. 6 illustrates
the isentropic trajectories for different values of s/nB and
compares to the lattice QCD results available up to μB/T =
2.5 from Ref. [29]. We have also included the pseudocritical
line estimated by us in the same plot for comparison. Our
estimates obtained within the mean-field repulsive QMHRG
model show a good agreement with the lattice results at
temperatures below the pseudocritical temperatures. For com-
pleteness, we have also included the isentropic trajectories
for s/nB = 15 and s/nB = 20 calculated within the repulsive
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FIG. 6. Left: The isentropes for s/nB = 15, 20, 30, 50, 100, and 400 respectively are shown in the T -μB plane. Right: The speed of sound as
a function of the temperature is shown along these isentropes. The bands are the lattice QCD data from Ref. [29] and the points are the QMHRG
model calculations with repulsive mean field. The isentropes and the speed of sound in the low temperature region 60 < T < 150 MeV are
shown in the insets of the left and the right figures respectively. The black line represents the pseudocritical line evaluated within our mean-field
QMHRG model.
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QMHRG model. These trajectories are beyond the reach of
lattice QCD calculations and hold significance for lower col-
lision energies of the RHIC BES program in the fixed target
mode [77].

In the right panel of Fig. 6, we have shown the speed of
sound calculated within the mean-field repulsive QMHRG
model calculated along these constant s/nB trajectories. The
speed of sound is defined as [29]

c2
s =

(
∂P

∂ε

)
s/nB,nS ,nB/nQ

= (∂P/∂T )s/nB,nS ,nB/nQ

(∂ε/∂T )s/nB,nS ,nB/nQ

. (9)

Here, all the derivatives are taken along the lines of constant
nS = 0, nB/nQ = 0.5 for different values of s/nB. We show
the speed of sound for our QMHRG model and compare it
with the latest lattice QCD results from Ref. [29]. The c2

s
calculated within the mean-field QMHRG model decreases
as the temperature is increased towards Tpc for s/nB > 30.
The QMHRG results with repulsive mean field for c2

s are in
agreement with the lattice QCD results for T < 150 MeV.
Beyond this temperature, the lattice QCD results show an
increasing trend with the temperature, which cannot be re-
produced within a QMHRG model, even when the effect
of the repulsive interactions are included. We also observe
that in the temperature range 100 < T < 150 MeV the speed
of sound decreases with increasing temperature both in the
lattice QCD calculations and in the QMHRG model. This
leads to a minimum of the speed of sound in the range of
temperatures 140–150 MeV. From the inset of Fig. 6 (right)
we also observe that the speed of sound has a maximum in the
low temperature region for s/nB � 30.

The behavior of the speed of sound for s/nB = 20 and
s/nB = 15, currently inaccessible through lattice QCD tech-
niques, is somewhat different. From Fig. 6 (right) we observe
that for s/nB = 20 the speed of sound has a very shallow
minimum around T = 145 MeV, while for s/nB = 15 it is al-
ways monotonically increasing with increasing temperatures.
This implies that the maximum in c2

s , evident from the plot at
low temperatures T < 75 MeV and small baryon densities,
should disappear when baryon densities are increased. We
thus do not observe a softening of the equation of state near the
chiral crossover transition at large values of baryon densities
corresponding to s/nB ≈ 15 within this mean-field treatment
of repulsive baryon interactions.

VI. SUMMARY

In this paper, we have studied the QCD equation of state
and the chiral crossover at nonzero net baryon density using
the QMHRG model with repulsive mean-field interaction. We
have shown that this model can describe the lattice results
on the fluctuations of net baryon number up to the eighth
order in the vicinity of the chiral crossover temperature if
the parameter characterizing the strength of the mean-field
repulsive interactions is properly chosen. This is contrary to
the usual QMHRG which can describe the higher-order net
baryon number fluctuations only for considerably lower tem-
peratures.

We extended our previous calculation of the chiral
crossover temperature within the QMHRG model limited to

the region of small baryon chemical potential [27] to much
larger values of the baryon chemical potential. We showed that
for μB > 400 MeV there is a significant effect of the repulsive
mean field on the value of the chiral crossover temperature.
We found that the μB dependence of the chiral crossover tem-
perature can be very well parametrized by the following form:
Tpc(μB)/Tpc(0) = 1 − κ2[μB/Tpc(0)]2 − κ4[μB/Tpc(0)]4 with
κ2 = 0.0150(2) and κ4 = 3.1(6)×10−5. The value of the lead-
ing curvature coefficient, κ2, agrees well with the lattice QCD
results within errors. The smallness of κ4 is consistent with
the upper bounds from lattice QCD, but for the first time we
found that the corresponding value is significantly different
from zero.

To realize the relevance of this study in the context of
heavy-ion collision experiments, we have estimated the chiral
crossover line imposing the strangeness-neutrality condition.
The separation between the freeze-out curve and the pseu-
docritical line increases toward high density, which implies
a longer-lived interacting hadronic phase at lower collision
energies. Furthermore, we have used the repulsive mean-field
QMHRG model to calculate the speed of sound along various
isentropic (constant s/nB) lines pertinent to heavy-ion colli-
sion experiments, constrained by the strangeness neutrality
and nQ/nB ratio. In the hadron phase, there is good agreement
between our calculation and the latest available data from
lattice QCD. We have also predicted the isentropic trajectory
and the speed of sound within this repulsive mean-field model
for s/nB = 15, where no lattice QCD data are available. We
see that starting from this value of s/nB the previously seen
characteristic softening of the QCD equation of state near the
chiral crossover regions disappears.

We pointed out that the QMHRG model with a single
repulsive mean field for all baryons only works for μB <

750 MeV. For larger values of the baryon chemical potential,
a more refined mean field approach is needed, with different
mean fields for different baryon species.
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APPENDIX A: CALCULATION OF BARYON NUMBER
FLUCTUATIONS WITHIN MEAN-FIELD HRG

The fluctuations of baryon charges can be derived from the
pressure using [57]

χn
B = ∂n[P(μB/T )/T 4]

∂ (μB/T )n
. (A1)
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In the mean-field formalism, the respective number densi-
ties for baryons and antibaryons in the Boltzmann approxima-
tion are written as [46]

nb =
∑
i=B

∫
gi

d3 p

(2π )3
e−β(Ei−μB+Knb) and

nb̄ =
∑
i=B̄

∫
gi

d3 p

(2π )3
e−β(Ei+μB+Knb̄). (A2)

Here, β is the inverse of temperature. The above equations are
transcendental equations and one can evaluate the fluctuations
of the net baryon number by taking the derivative with μB/T ,

∂nb

∂ (βμB)
=

∑
i=B

gi

∫
d3 p

(2π )3
e−β(Ei−μB+Knb)

[
1 − βK

∂nb

∂ (βμB)

]

=
∑
i=B

ni

[
1 − βK

∂nb

∂ (βμB)

]
. (A3)

By rearranging the above equation, one can write the first
derivative as

n′
b = ∂nb

∂ (βμB)
=

∑
i=B ni[

1 + βK
∑

i=B ni
] = nb

[1 + βKnb]
. (A4)

Similarly, for the antibaryon sector,

n′̄
b = ∂nb̄

∂ (βμB)
= −∑

i=B̄ ni[
1 + βK

∑
i=B̄ ni

] = −nb̄

[1 + βKnb̄]
. (A5)

In the mean-field formalism, the total pressure in the baryon
sector is written as a sum of the partial pressures of the
(anti)baryons [46],

P = T (nb + nb̄) + K

2

(
n2

b + n2
b̄

)
and

P

T 4
= β3(nb + nb̄) + β4 K

2

(
n2

b + n2
b̄

)
.

Taking the first-order derivative with respect to βμB, we get

χ1
B = β3(n′

b + n′̄
b) + β4K (nbn′

b + nb̄n′̄
b)

= β3n′
b(1 + βKnb) + β3n′̄

b(1 + βKnb̄).

= β3(nb − nb̄) (A6)

The above equation ensures that the net baryon number is
given by the difference of the number of baryons and the
number of antibaryons, and vanishes for μB = 0.

Using the above expressions, it is easy to extend the calcu-
lations to higher-order derivatives with respect to μB/T . For
completeness here we list all the derivatives up to the eighth
order:

χ1
B = β3[nb − nb̄],

χ2
B = β3

[
nb

(1 + βKnb)
+ nb̄

(1 + βKnb̄)

]
,

χ3
B = β3

[
nb

(1 + βKnb)3
− nb̄

(1 + βKnb̄)3

]
,

χ4
B = β3

[
nb(1 − 2βKnb)

(1 + βKnb)5
+ nb̄(1 − 2βKnb̄)

(1 + βKnb̄)5

]
,

χ5
B = β3

[
nb(1 − 8βKnb + 6[βKnb]2)

(1 + βKnb)7
− nb̄(1 − 8βKnb̄ + 6[βKnb̄]2)

(1 + βKnb̄)7

]
,

χ6
B = β3

[
nb(1 − 22βKnb + 58[βKnb]2 − 24[βKnb]3)

(1 + βKnb)9
+ nb̄(1 − 22βKnb̄ + 58[βKnb̄]2 − 24[βKnb̄]3)

(1 + βKnb̄)9

]
,

χ7
B = β3

[
nb(1 − 52βKnb + 328[βKnb]2 − 444[βKnb]3 + 120[βKnb]4)

(1 + βKnb)11

]

−β3

[
nb̄(1 − 52βKnb̄ + 328[βKnb̄]2 − 444[βKnb̄]3 + 120[βKnb̄]4)

(1 + βKnb̄)11

]
,

χ8
B = β3

[
nb(1 − 114βKnb + 1452[βKnb]2 − 4400[βKnb]3 + 3708[βKnb]4 − 720[βKnb]5)

(1 + βKnb)13

]

+β3

[
nb̄(1 − 114βKnb̄ + 1452[βKnb̄]2 − 4400[βKnb̄]3 + 3708[βKnb̄]4 − 720[βKnb̄]5)

(1 + βKnb̄)13

]
. (A7)

It is obvious from the above equations that the odd fluctuations
of net baryon number vanish for μB = 0.

Using the above expressions we calculated the fluctuations
of the net baryon density up to the eighth order at μB = 0

and compared them to the available lattice results for dif-
ferent values of the parameter K . The value K = 33 GeV−2

leads to a good agreement with the lattice QCD results as
one sees from Fig. 7. Here it is assumed that all baryons
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FIG. 7. Top row: second-order (left) and fourth-order (right) baryon number fluctuations; bottom row: sixth-order (left) and eighth-order
(right) baryon number fluctuations, shown as a function of temperature and μB = 0. The K = 0 results represent the ideal QMHRG model,
whereas the K = 33 data are calculated with mean-field repulsive interactions among all the baryons with a mean-field coefficient of K =
33 GeV−2. Similarly, MF in OD represents the case where we have included repulsive mean-field interaction only among the baryons in
octets and decuplets. Lattice QCD results for Nτ = 8 and Nτ = 12 are shown in red and green colors respectively, where the squares and
circles correspond to data from the HotQCD [57] and Wuppertal-Budapest (WB) [2] Collaborations. The gray and yellow bands represent the
fluctuation data in the continuum limit from the HotQCD [57] and WB [58] Collaborations.

and baryon resonances contribute to the mean field. If we
assume that only ground-state baryons contribute to the mean
field then we do not get such a good agreement with the
lattice QCD results for the same value of K . However, using a
larger value of K , namely K = 100 GeV−2 a reasonably good
agreement with the lattice QCD results can be obtained; cf.
Fig. 7.

APPENDIX B: CALCULATION OF THE EQUATION
OF STATE WITHIN THE MEAN-FIELD HRG MODEL

The energy density is defined from the pressure as

ε = −P − β

(
∂P

∂β

)
βμ

. (B1)

Taking the derivative of the number density with β we find(
∂nb

∂β

)
βμ

=
∑
i=B

gi

∫
d3 p

(2π )3
e−β(Ei−μB+Knb)

×
[
−Ei − Knb − βK

(
∂nb

∂β

)
βμ

]

= −
∑
i=B

gi

∫
d3 p

(2π )3
f b
i Ei − Kn2

b − βKnb

(
∂nb

∂β

)
βμ

.

(B2)

Rearranging the above equation we get

(
∂nb

∂β

)
βμ

=
−∑

i=B gi
∫ d3 p

(2π )3 f b
i Ei − Kn2

b

1 + βKnb
. (B3)
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FIG. 8. The pressure P/T 4 (upper row) and energy density ε/T 4 (lower row) normalized by T 4 calculated for ideal (red) and repulsive
mean-field (blue) QMHRG models. Lattice results (black points) are from Ref. [1]. The results are displayed for μB/T = 0, 1, and 2, in the
left, middle, and right panels respectively.

Similarly for the antibaryon we can write

(
∂nb̄

∂β

)
βμ

=
−∑

i=B̄ gi
∫ d3 p

(2π )3 f b̄
i Ei − Kn2

b̄

1 + βKnb̄
. (B4)

The derivative of the pressure is written as

−β

(
∂P

∂β

)
βμ

= + 1

β
(nb + nb̄) −

(
∂nb

∂β

)
βμ

(1 + βKnb)

−
(

∂nb̄

∂β

)
βμ

(1 + βKnb̄)

= + 1

β
(nb + nb̄) +

∑
i=B

gi

∫
d3 p

(2π )3
f b
i Ei + Kn2

b

+
∑
i=B̄

gi

∫
d3 p

(2π )3
f b̄
i Ei + Kn2

b̄. (B5)

Putting the derivative terms together in Eq. (B1), one can
derive the final expression for the energy density,

ε = − 1

β
(nb + nb̄) − K

2

(
n2

b + n2
b̄

) + 1

β
(nb + nb̄)

+
∑
i=B

gi

∫
d3 p

(2π )3
f b
i Ei +

∑
i=B̄

gi

∫
d3 p

(2π )3
f b̄
i Ei

+ K
(
n2

b + n2
b̄

)

=
∑
i=B

gi

∫
d3 p

(2π )3
f b
i Ei +

∑
i=B̄

gi

∫
d3 p

(2π )3
f b̄
i Ei

+ K

2

(
n2

b + n2
b̄

)
. (B6)

In the ideal limit of K = 0 the above formula reduces to the
ideal HRG expression for energy density. In Fig. 8 we show
the pressure and energy density in units of T 4 in QMHRG and
compare them with the lattice QCD results from Ref. [1]. The
results for both the ideal case and repulsive mean-field case
with K = 33 GeV−2 at μB/T = 0, 1, and 2 are displayed. For
all baryon chemical potentials, the QMHRG estimations align
well with lattice results up to 150 MeV. At high μB/T , the
effect of repulsive mean field is more pronounced due to the
increased thermal abundance of baryons at high density; cf.
Fig. 8.

APPENDIX C: STRANGENESS CHEMICAL POTENTIAL
FOR STRANGE NEUTRALITY CASE

In Fig. 9 (left) we show the temperature normalized baryon
and strangeness chemical potential along the chiral crossover
line for nS = 0. We see that the effect of the repulsive mean
field is visible for the baryon chemical potential, but is very
small for the strangeness chemical potential. In Fig. 9 (right)
we show the ratio μS/μB along the crossover line. We see
that the repulsive mean-field significantly reduces this ratio
compared to the ideal case.
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FIG. 9. The chemical potentials μB/T and μS/T (left) and the ratio μB/μS (right) are shown for different temperatures along the
pseudocritical line. K = 0 denotes ideal QMHRG model results, whereas K = 33 represents the case where we have included repulsive
interaction among all baryons with a mean-field coefficient of K = 33 GeV−2.
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