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QCD analysis of xF3 structure functions in deep-inelastic scattering:
Mellin transform with Gegenbauer polynomials up to N3LO approximation
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This paper provides a thorough examination of the xF3 structure functions in deep-inelastic scattering through
a comprehensive QCD analysis. Our approach harnesses sophisticated mathematical techniques, namely, the
Mellin transform combined with Gegenbauer polynomials. We have employed the Jacobi polynomials approach
for analysis, conducting investigations at three levels of precision: next-to-leading order (NLO), next-to-next-
to-leading order (N2LO), and next-next-next-to-leading order (N3LO). We have performed a comparison of
our sets of valence-quark parton distribution functions with those of recent research groups, specifically CT18
and MSHT20 at NLO and N2LO, and MSTH23 at N3LO, which are concurrent with our current analysis. The
combination of Mellin transforms with Gegenbauer polynomials proves to be a powerful tool for investigating
the xF3 structure functions in deep-inelastic scattering and the results obtained from our analysis demonstrate a
favorable alignment with experimental data.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental the-
ory of strong interactions, describing the behavior of quarks
and gluons, the building blocks of protons, neutrons, and other
hadrons. Deep-inelastic scattering (DIS) experiments have
been a cornerstone in the study of QCD, providing crucial
insights into the internal structure of nucleons and the distri-
bution of quarks and gluons within them. Among the various
observables in DIS, the xF3 structure functions hold particular
significance as they encode essential information about the
parton distribution functions (PDFs) within the nucleon.

The xF3 structure functions, related to the charged current
DIS, play a pivotal role in testing the predictions of QCD and
probing the dynamics of quarks and gluons at different energy
scales. The study of xF3 [1–21] has witnessed significant
progress over the years, with advances in both experimen-
tal techniques and theoretical frameworks. To extract precise
information from experimental data and interpret it in the con-
text of QCD, sophisticated theoretical tools and mathematical
techniques are required.

In this context, the Mellin transform [22], which allows for
the determination of moments of the proton structure func-
tions, has emerged as an effective tool for the QCD analysis
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of the xF3 structure functions. The Mellin transform facilitates
the improvement of approximations, leading to more accu-
rate predictions for scaling violations and the evolution of
PDFs with changing momentum scales. We have used Jacobi
polynomials to perform the transformation of the evolved
functions from the Mellin space to the Bjorken x space,
which is an important step in our analysis, as it allows us to
compare our results with experimental data. Additionally, we
leverage Gegenbauer polynomials for PDFs’ parametrization,
which offer orthogonality and flexibility in function approx-
imation. We show that using the Gegenbauer polynomial
expansion method and the next-to-next-to-next-to-leading or-
der (denoted as NNNLO or N3LO) approximation, which are
novel and accurate techniques in this context.

Using Gegenbauer polynomials in models can increase the
precision and quality of the approximations and the theoretical
models. The best values for the parameters of these polynomi-
als can be chosen by fitting them to experimental data.

This paper presents a comprehensive QCD analysis of the
proton structure function xF3 using neutrino-nucleus scatter-
ing data from CCFR [23], NuTeV [24], and CHORUS [25]
experiments. We explain the theoretical framework of QCD
and the Jacobi polynomial approach, and the key concepts for
the subsequent analysis.

We conclude that the QCD analysis of the xF3 structure
function using Mellin transforms with Jacobi polynomi-
als and Gegenbauer polynomials for PDFs parameteriza-
tion is a significant advancement in the nucleon struc-
ture and the strong interaction. This method is a fast,
precise, and direct way to calculate the final structure
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function with high accuracy. It allows us to extract the
valence-quark distribution functions from the neutrino-
nucleus scattering data without complicated calculations in
the kinematic region of interest.

This article is organized as follows. In Sec. II, we introduce
the PDFs’ parametrization and the theoretical framework for
the Mellin transform. In Sec. III, we describe the Jacobi poly-
nomials and the QCD fit procedure. In Sec. IV, we present the
fit results. In Sec. V, we discuss the GLS sum rule. The final
section, Sec. VI, summarizes and concludes the article.

II. THEORETICAL FRAMEWORK TO
MELLIN TRANSFORM

In charged-current neutrino DIS processes, a neutrino ν

(ν̄) interacts with a quark inside the nucleon through the
exchange of a virtual W ± boson. The nonsinglet structure
function xF3(x, Q2), which arises from the parity-violating
weak interaction, characterizes the momentum density of par-
tons, including both valence quarks and antiquarks, within the
nucleon.

In the quark-parton model, the structure functions xF νp
3 and

xF ν̄p
3 for neutrino-proton and antineutrino-proton interactions

are given by changing the signs of the antiquark distributions
in the expressions for F νp

2 and F ν̄p
2 . By considering F2 = 2xF1,

one can have the above F νp
2 and F ν̄p

2 structure functions in
terms of PDFs, F νp

2 = 2x(d + s + ū + c̄) and F ν̄p
2 = 2x(u +

c + d̄ + s̄). By changing the signs of ū, d̄ , s̄, and c̄, The correct
expressions for xF νp

3 and xF ν̄p
3 are

xF νp
3 = 2x(d + s − ū − c̄),

xF ν̄p
3 = 2x(u + c − d̄ − s̄). (1)

By considering u ≡ uv + ū and d ≡ dv + d̄ and combining
the above equations, the structure function xF3 is as follows:

xF (ν+ν̄ )p
3 = xF νp

3 + xF ν̄p
3 = 2x(uv + dv ) + 2x(s − s̄)

+ 2x(c − c̄). (2)

So, one can have the average of the neutrino and antineutrino
nucleon structure function as follows:

xF N
3 (x, Q2) = 1

2

(
xF νN

3 + xF ν̄N
3

)
(x, Q2)

= 1
2

([
xF (ν+ν̄ )p

3 + xF (ν+ν̄ )n
3

]
/2

)
(x, Q2). (3)

However, due to the isospin symmetry, xF (ν+ν̄ )p
3 = xF (ν+ν̄ )n

3 ,
the average of the neutrino and antineutrino nucleon structure
is

xF N
3 (x, Q2) = 1

2 xF (ν+ν̄)p
3 (x, Q2)

= [x(uv + dv ) + x(s − s̄) + x(c − c̄)](x, Q2).

(4)

It is important to recognize that the differences between
the strange quark and its antiquark s − s̄, as well as the
charm quark and its antiquark c − c̄, are typically negligible.
Consequently, the average structure of the nucleon as probed
by neutrinos and antineutrinos predominantly reflects the

distribution of valence quarks as

xF N
3 (x, Q2) = (xuv + xdv )(x, Q2). (5)

where the combinations dv ≡ d − d̄ and uv ≡ u − ū cor-
respond to the valence densities of down and up quarks,
respectively, in the proton. The quantities s(x) and c(x) repre-
sent the distributions of strange and charm quarks, while c̄(x)
is the distribution of charm antiquarks.

When experimental data are reported by collaborations
such as CCFR [23], NuTeV [24], and CHORUS [25], this
expression characterizes the momentum density of partons,
including valence quarks and antiquarks, within the nucleon
and provides essential insights into the quark-gluon dynamics
in the proton.

For the current analysis, we employ the following standard
parametrizations for the valence distributions, xuv and xdv ,
using Gegenbauer polynomials:

xuv = Nuxαuv (1 − x)βuv

(
1 +

3∑
i=1

ai
uC

7
2 (i, 1 − 2x)

)
, (6)

xdv = Nd

Nu
(1 − x)βdv xuv.

xdv = Nd xαuv (1 − x)βuv +βdv

(
1 +

3∑
i=1

ai
uC

7
2 (i, 1 − 2x)

)
,

(7)

where Q2
0 = 1 GeV2 is the input scale and C

7
2 (i, 1 − 2x) are

the Gegenbauer polynomials. The normalizations Nu and Nd

are fixed by
∫ 1

0 uvdx = 2 and
∫ 1

0 dvdx = 1, respectively.
We use the neutrino-nucleus data so we take into account

the nuclear effects and use the nuclear weight function in the
structure function xF3 calculations. We select the new forms
for xuv and xdv that follow the following expressions:

xuA
v = Wuv

Zxuv + Nxdv

A
,

xdA
v = Wdv

Nxuv + Zxdv

A
. (8)

The shapes of the weight functions are as follows:

Wuv
= 1 +

(
1 − 1

A1/3

)
Au + c1x + c2x2 + c3x3

(1 − x)0.4
,

Wdv
= 1 +

(
1 − 1

A1/3

)
Ad + c1x + c2x2 + c3x3

(1 − x)0.4
. (9)

This distribution of nuclear weight was calculated in the
Refs. [26,27] in the next-to-leading order (NLO) and next-
to-next-to-leading order (denoted as NNLO or N2LO) ap-
proximations and the results are shown in Figs. 1 and 2.
In our analysis, we used the NNLO weight function for the
NNNLO approximation, because no group has obtained a
weight function in this approximation, i.e., NNNLO, for the
nuclear structure functions. The deep-inelastic scattering data
of the neutrino nucleus are for iron and lead, and we selected
A = 56, Z = 26, and N = A − Z to represent the number of
neutrons for iron and A = 208, Z = 82 to represent the num-
ber of neutrons for lead.
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FIG. 1. The nuclear weight function calculated in Refs. [26,27]
in NLO and NNLO approximations for 56Fe.

The Mellin transforms of these functions are defined as

uA
v

(
N, Q2

0

) =
∫ 1

0
xuA

v

(
x, Q2

0

)
xn−2dx,

dA
v

(
N, Q2

0

) =
∫ 1

0
xdA

v

(
x, Q2

0

)
xn−2dx. (10)

The evolution equation of the nonsinglet structure function
xF3(x, Q2) in Mellin space, extended to the NLO-loop order,

FIG. 2. The nuclear weight function calculated in Refs. [26,27]
in NLO and NNLO approximations for 208Pb.

can be found in Ref. [22].

F3(N, Q2) = (
1 + a C(1)

3 (N )
)

×F3
(
N, Q2

0

)( a

a0

)−P̂0(N )/β0

{
1 − 1

β0
(a − a0)

[
P̂+

1 (N ) − β1

β0
P̂0(N )

]}
.

(11)

to describe Eq. (11) for the transformation of Altarelli Parisi
equation for the xF3 function in the NLO approximation. The
evolution equation of xF3(x, Q2), extended to the N2LO-loop
order, can be found in Ref. [28,29]. Within this framework, the
nonsinglet structure functions can be expressed as follows:

F3(N, Q2) = (
1 + a C(1)

3 (N ) + a2 C(2)
3 (N )

)
×F3

(
N, Q2

0

)( a

a0

)−P̂0(N )/β0

{
1 − 1

β0
(a − a0)

[
P̂+

1 (N ) − β1

β0
P̂0(N )

]

− 1

2β0

(
a2 − a2

0

)[
P̂+

2 (N ) − β1

β0
P̂+

1 (N )

+
(

β2
1

β2
0

− β2

β0

)
P̂0(N )

]

+ 1

2β2
0

(a − a0)2

(
P̂+

1 (N ) − β1

β0
P̂0(N )

)2
}

.

(12)

The NLO and N2LO Wilson coefficient functions C(1)
3

and C(2)
3 in Mellin N space can be determined easily using

Refs. [30,31]. The splitting functions in Mellin N space can
be found in Refs. [32–36].

The expansion coefficients βk of the β function of QCD
are known up to k = 3, corresponding to the N3LO [37–39].
These βk coefficients are important for determining the evolu-
tion of the strong-coupling constant αs with the scale Q2 and
are significant in the perturbative calculations of various QCD
processes:

β0 = 11 − 2/3 n f ,

β1 = 102 − 38/3 n f ,

β2 = 2857/2 − 5033/18 n f + 325/54 n2
f ,

β3 = 29243.0 − 6946.30 n f + 405.089 n2
f + 1093/729 n3

f ,

(13)

where n f stands for the number of effectively massless quark
flavors and βk denotes the coefficients of the usual four-
dimensional MS beta function of QCD.
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Within this framework, the nonsinglet structure functions can be expressed as follows in N3LO:

F3(N, Q2) = (
1 + as C(1)

3,NS(N ) + a2
s C(2)

3,NS(N ) + a3
s C(3)

3,NS(N )
)
F3

(
N, Q2

0

)( as

a0

)−P̂0(N )/β0
{

1 − 1

β0
(as − a0)

[
P̂+

1 (N ) − β1

β0
P̂0(N )

]

− 1

2β0

(
a2

s − a2
0

)[
P̂+

2 (N ) − β1

β0
P̂+

1 (N ) +
(

β2
1

β2
0

− β2

β0

)
P̂0(N )

]
+ 1

2β2
0

(as − a0)2

(
P̂+

1 (N ) − β1

β0
P̂0(N )

)2

− 1

3β0

(
a3

s − a3
0

)[
P̂+

3 (N ) − β1

β0
P̂+

2 (N ) +
(

β2
1

β2
0

− β2

β0

)
P̂+

1 (N ) +
(

β3
1

β3
0

− 2
β1β2

β2
0

+ β3

β0

)
P̂0(N )

]

+ 1

2β2
0

(as − a0)
(
a2

0 − a2
s

)(
P̂+

1 (N ) − β1

β0
P̂0(N )

)[
P̂2(N ) − β1

β0
P̂1(N ) −

(
β2

1

β2
0

− β2

β0

)
P̂0(N )

]

− 1

6β3
0

(as − a0)3

(
P̂+

1 (N ) − β1

β0
P̂0(N )

)3
}

(14)

and

F3
(
N, Q2

0

) = uA
v

(
N, Q2

0

) + dA
v

(
N, Q2

0

)
. (15)

Here as(= αs/4π ) and a0 represent the strong-coupling con-
stant at the scales of Q2 and Q2

0, respectively. C(m)
3,NS(N ) refers

to the nonsinglet Wilson coefficients in O(am
s ), which can be

found in Ref. [40]. The term “P̂m” also denotes the Mellin
transforms of the (m + 1)-loop splitting functions.

The strong-coupling constant as is of utmost significance in
the present paper regarding the evolution of parton densities.
At NmLO, the scale dependence of as is determined by

d as

d ln Q2
= βNmLO(as) = −

m∑
k=0

ak+2
s βk . (16)

In complete N3LO-loop approximation and using the �

parametrization, the running coupling is given by [41,42]

as(Q
2) = 1

β0L�

− 1

(β0L�)2
b1 ln L� + 1

(β0L�)3

× [
b2

1

(
ln2 L� − ln L� − 1

) + b2
] + 1

(β0L�)4

×
[

b3
1

(
− ln3 L� + 5

2
ln2 L� + 2 ln L� − 1

2

)

−3b1b2 ln L� + b3

2

]
, (17)

where L� ≡ ln(Q2/�2), bk ≡ βk/β0, and � is the QCD scale
parameter. The first line of Eq. (17) includes the the NLO-
loop coefficients, the second line is the N2LO-loop, and the
third line denotes the N3LO-loop correction. Equation (17)
solves the evolution equation (16) only up to higher orders
in 1/L�. The functional form of αs(Q2), in N3LO-loop ap-
proximation and for six different values of � show in Eq.
(17). To be able to compare with other measurements of �,
we adopt the matching of flavor thresholds at Q2 = m2

c and
Q2 = m2

b, with mc = 1.5 GeV and mb = 4.5 GeV, as described
in Refs. [43,44].

III. JACOBI POLYNOMIALS AND THE
PROCEDURE OF QCD FITS

One of the simplest and fastest methods for reconstructing
the structure function from QCD predictions for its Mellin
moments is through the expansion of Jacobi polynomials. The
Jacobi polynomials are especially suitable for this purpose
since they allow one to factor out an essential part of the x
dependence of the structure function into the weight function
[45].

According to this method, one can relate the xF3 structure
function with its Mellin moments as

xF Nmax
3 (x, Q2) = xβ (1 − x)α

Nmax∑
n=0

�α,β
n (x)

×
n∑

j=0

c(n)
j (α, β )F3( j + 2, Q2), (18)

where Nmax is the number of polynomials. Jacobi polynomials
of order n [45], �α,β

n (x), satisfy the orthogonality condition
with the weight function wαβ = xβ (1 − x)α:∫ 1

0
dx wαβ�

α,β

k (x)�α,β

l (x) = δk,l . (19)

In the above, c(n)
j (α, β ) are the coefficients expressed through

	 functions and satisfying the orthogonality relation in
Eq. (19), and F3( j + 2, Q2) are the moments determined in
the previous section. Nmax, α, and β have to be chosen so as to
achieve the fastest convergence of the series on the right-hand
side of Eq. (18) and to reconstruct F2 with the required accu-
racy. In our analysis we use Nmax = 9, α = 3.0, and β = 0.5.
The same method has been applied to calculate the nonsinglet
structure function xF3 from their moments [9,12,15,16] and
for the polarized structure function xg1 [46–49]. Obviously
the Q2 dependence of the polarized structure function is de-
fined by the Q2 dependence of the moments. The evolution
equations allow for the calculation of the Q2 dependence of
parton distributions provided at a certain reference point, Q2

0.
These distributions are typically parametrized based on plau-
sible theoretical assumptions regarding their behavior near the
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TABLE I. Published data points for charged-current structure functions xF3(x, Q2) used in the present global fit. The x and Q2 ranges, the
number of data points, and the related references are also listed.

Experiment x Q2 Number of data points Reference

CCFR 0.0075 � x � 0.75 1.3 � Q2 � 125.9 116 [23]
NuTeV 0.015 � x � 0.75 3.162 � Q2 � 50.118 64 [24]
CHORUS 0.02 � x � 0.65 2.052 � Q2 � 81.55 50 [25]

endpoints, x = 0 and x = 1. For the data utilized in the global
analysis, most experiments combine various systematic errors
into one effective error for each data point, along with the
statistical error. Additionally, the fully correlated normaliza-
tion error of the experiment is usually specified separately.
Therefore, it is natural to adopt the following definitions for
the effective χ2 [50]:

χ2
global =

∑
n

wnχ
2
n (n labels the different experiments),

χ2
n =

(
1 − Nn

�Nn

)2

+
∑

i

(
NnxF data

3,i − xF theor
3,i

Nn�xF data
3,i

)2

. (20)

For the nth experiment, xF data
3,i , �xF data

3,i , and xF theor
3,i de-

note the data value, the measurement uncertainty (statistical
and systematic combined), and the theoretical value for the
ith data point. �Nn is the experimental normalization un-
certainty and Nn is an overall normalization factor for the
data of experiment n. The factor wn is a possible weight-
ing factor (with default value 1). However, we allowed for
a relative normalization shift Nn between the different data
sets within the normalization uncertainties �Nn quoted by the
experiments.

Now the sums in χ2
global run over all data sets and in

each data set over all data points. The minimization of the
above χ2 value to determine the best parametrization of the
unpolarized parton distributions is done using the program
MINUIT [51].

IV. FIT RESULTS

The data for the charged-current structure functions
xF3(x, Q2) used in our analysis are listed in Table I. The x
and Q2 ranges, the number of data points, and the related
references are also listed in this table. The CCFR [23] and
NuTeV [24] Collaborations at Fermilab conducted neutrino
deep-inelastic scattering experiments using an iron target,
which were subsequently adjusted to account for an isoscalar
target. They covered much of the same kinematic range of mo-
mentum fraction x, but CCFR covered slightly higher Q2. At
high values of x, the predictions were mainly determined by
the valence up-quark distribution, which was very well con-
strained by the charged-current DIS structure function data.
We also include recent data from the CHORUS Collaboration
[25], which were taken from a lead target and cover a similar
range in x compared with CCFR. The NuTeV data seem to
be more precise. In practice, we find the high-x NuTeV and
CHORUS data very difficult to fit, leading to higher values
of χ2.

The accuracy of this result stems from the obtained
χ2/d.o. f value by fitting the initial valence PDFs at Q2

0 =
1 GeV2, as detailed in Table II. The world average value for
αs(M2

z ) = 0.1179 ± 8.5 × 10−6, as reported in Ref. [52], is in
good agreement with the reported ones in Table II.

In Figs. 3–5, valence PDFs for different approaches at
Q2 = 1 GeV2 and Q2 = 10 GeV2 are depicted in NLO,
NNLO, and NNNLO approximations. As can be seen, the
agreement with the results of MSHT20 [54] improves no-
tably at NNLO. The results of the analysis by MSTH23
[55] in N3LO are very close to those of AMGA24 at
Q2 = 1 GeV2.

Additionally, the results for the xF3 proton structure
function in NLO, NNLO, and NNNLO approximations are
presented in Fig. 6. The comparison to experimental data
from the CCFR Collaboration [23], which provides direct
measurements of the xF3 structure function, is also shown.
The agreement between the theoretical predictions and the
experimental data highlights the reliability of the current the-
oretical framework.

Furthermore, in Figs. 7 and 8, the xF3 structure functions at
NLO, NNLO, and NNNLO are compared with experimental
data from the NuTeV [24] and CHORUS [25] Collaborations
at various values of Q2. These comparisons further validate
the theoretical predictions and provide additional constraints
on the PDFs. In Ref. [3], the χ2 for NNLO was reported as
1.482, while in the current model we obtain 1.4691, indicating

FIG. 3. xuv and xdv in NLO and N2LO approximations in the
Mellin model compared with MSHT20 [54] and CT18 [53] data.
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TABLE II. Best-fit parameters and uncertainties of the Mellin fits at NLO, N2LO, and N3LO at the initial scale Q2
0 = 1.0 GeV2.

Mellin

NLO N2LO N3LO

a1
u −0.20077 ± 0.0013422 0.026755 ± 0.00332961 −0.16898 ± 0.022263

a2
u 0.030599 ± 0.000367904 −0.0195933 ± 0.00170209 0.0235584 ± 0.00059855

a3
u −0.0033036 ± 0.00010995 0.003302035 ± 0.000536726 −0.0020921 ± 0.00017266

αuv 0.63134 ± 0.008237101 0.782549 ± 0.00586995 0.78679 ± 0.016633
βuv 4.05839 ± 0.055065 2.962457 ± 0.0272975 4.24605 ± 0.057478
βdv −0.0075767 ± 0.16530 0.00262071 ± 0.082775 0.00105091 ± 0.17327
αs

(
Q2

0

)
0.49941 ± 0.017535 0.45056 ± 0.007143 0.41758 ± 0.01003

αs

(
M2

z

)
0.12101 ± 0.000551 0.11958 ± 0.007143 0.118011 ± 0.000505

χ 2/d.o. f 368.8118/223 = 1.6538 327.6235/223 = 1.4691 310.0293/223 = 1.39026

that the choice of Gegenbauer polynomial is appropriate. We
have done calculations up to NNNLO order accurately. As
can be observed, our analysis derives the exact solution by
incorporating the splitting function as per Ref. [36] and the
Wilson coefficient following Ref. [40] within the NNNLO
approximation, unlike Ref. [16] which employed the Padé ap-
proximation method for the xF3 structure function at NNNLO.
We have established that the Gegenbauer polynomial is as
effective as the Chebyshev polynomial, corroborated by find-
ings from the MSHT20 and MSTH23 groups in Refs. [54,55],
respectively. Our analysis successfully computes the nonsin-
glet component of the structure function using a minimal data
set and a streamlined approach, achieving congruence with
other established models.

V. THE GROSS–LLEWELLYN SMITH SUM RULE

Another intriguing issue revolves around the extraction
of the value of the Gross–Llewellyn Smith (GLS) sum rule.
The GLS sum rule is a crucial property in the context of
deep-inelastic neutrino-nucleon scattering. The GLS sum rule
in the quark parton model, associated with the xF3 structure
function, is expressed as shown in Ref. [56].

The GLS sum rule relates the integral of the xF3(x, Q2)
structure function over the entire x:

GLS(Q2) = 1

2

∫ 1

0

xF ν̄p+νp
3 (x, Q2)

x
dx. (21)

Its experimental verification provides valuable constraints on
the parameters of the electroweak theory and is crucial for

FIG. 4. xuv and xdv in the N3LO approximation in the Mellin
model compared with MSHT23 data [55].

understanding the interplay between weak and strong interac-
tions in the nucleon. By accurately extracting the value of the
GLS sum rule from experimental data and comparing it with
theoretical predictions, we can gain insights into the quark and
parton distributions inside the nucleon and shed light on the
physics beyond the standard model.

In the work of Ref. [57], authors reported the following
result for the measurement of the GLS sum rule at the scale

FIG. 5. xuv and xdv at Q2 = 10 GeV2 in NLO, N2LO, and N3LO
approximations in the Mellin model compare with MSHT20 [54] and
MSHT23 [55] data.
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FIG. 6. xF3 in NLO, N2LO, and N3LO approximations in the
Mellin model compared with CCFR data [23].

|Q2| = 3 GeV2:

GLS (|Q2| = 3 GeV2) = 2.5 ± 0.018 (stat.) ± 0.078 (syst.).
(22)

FIG. 7. xF3 at NLO, N2LO, and N3LO approximations in the
Mellin model compared with NuTeV data [24].

FIG. 8. xF3 at NLO, N2LO, and N3LO approximations in the
Mellin model compared with CHORUS data [25].

The value of the GLS sum rule at the scale |Q2| = 8 GeV2

is reported as 2.62 ± 0.15 in Ref. [58]. In our work, we ob-
tained GLS, (|Q2| = 8, GeV2) = 2.46591 ± 0.06289 for the
NLO analysis; GLS, (|Q2| = 8, GeV2) = 2.46271 ± 0.04021
for N2LO analysis; and GLS, (|Q2| = 8, GeV2) = 2.32743 ±
0.03761 for N3LO analysis in Mellin space, which are in good
agreement with the results obtained by the mentioned research
groups.

VI. SUMMARY AND CONCLUSIONS

In this paper, we present an analysis of the valence-quark
distribution functions in the proton using Gegenbauer polyno-
mials for their parametrization. These polynomials have many
advantages in QCD analysis; they provide a flexible frame-
work for expanding functions, allowing the approximation of
various shapes and behaviors in the PDFs and facilitating the
fitting of experimental data and extraction of relevant physi-
cal quantities. Moreover, Gegenbauer polynomials enable the
systematic incorporation of higher-order NNNLO corrections,
thereby enhancing the precision of theoretical predictions
in QCD analyses. In our analysis, we employ precise split-
ting functions and Wilson coefficients, eschewing the use of
the Padé approximation, at the next-to-next-to-next-to-leading
order. In fact we demonstrated that using the Gegenbauer
polynomial for parametrization is a fast, precise, and direct
way to calculate the final structure function with high accu-
racy. The comparison with the MSTH23 and MSTH20 results,
which used the Chebyshev polynomials, shows the advantage
of the Gegenbauer polynomials and provides a more precise
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determination of xF3 in the kinematic region of interest with-
out complicated calculations.

Through careful analysis, the figures presented in our study
show a convincing correspondence with both established
models and empirical data, attesting to the robustness and reli-
ability of our methodology. This concordance underscores the
validity of our findings and supports the wider applicability of
our approach within the field of particle physics.

A FORTRAN package containing our unpolarized PDFs of
NLO, NNLO, and NNNLO approximations as well as the

unpolarized structure functions xF3(x, Q2) can be obtained via
email from the authors upon request. This package includes an
example program to illustrate the use of the routines.
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